Abstract

Second-harmonic generation (SHG) in PPKTP, PPMgSLT, and PPMgLN crystals is analyzed by frequency-doubling CW light from a 1064 nm fiber laser over a range of powers up to 10 W. Data for fundamental powers less than 3 W is used to determine the effects of the fundamental laser linewidth on SHG and to identify imperfections in the periodicity and boundary sharpness of the crystals’ poled domains which can reduce SHG. Data for fundamental powers greater than 3 W is used to diagnose and model limiting effects on SHG such as pump depletion and thermal dephasing. Thermal dephasing was found to reduce second-harmonic power by 25% or more for input fundamental powers approaching 10 W.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. L. Rockwell, "New directions for infrared countermeasures," Aerospace Am. 44, 22 (2006).
  2. K. S. Arnold and C. Y. She, "Metal fluorescence lidar (light detection and ranging) and the middle atmosphere," Contemp. Phys. 44, 35 (2003).
    [CrossRef]
  3. Z. M. Liao, S. A. Payne, J. Dawson, A. Drobschoff, C. Ebbers, D. Pennington, and L. Taylor, "Thermally induced dephasing in periodically poled KTP frequency-doubling crystals," J. Opt. Soc. Am. B 21, 2191 (2004).
    [CrossRef]
  4. O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, "Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals," Appl. Phys. Lett. 87, 131101 (2005).
    [CrossRef]
  5. N. E. Yu, C. Jung, D.-K. Ko, J. Lee, O. A. Louchev, S. Kurimura, and K. Kitamura, "Thermal dephasing of quasi-phase-matched second-harmonic generation in periodically poled stoichiometric LiTaO3 at high input power," J. Korean Phys. Soc. 49, 528 (2006).
  6. H. Furuya, A. Morikawa, K. Mizuuchi, and K. Yamamoto, "High-beam-quality continuous wave 3 W green-light generation in bulk periodically poled MgO:LiNbO3," Jpn. J. Appl. Phys. 45, 6704 (2006).
    [CrossRef]
  7. S. V. Tovstonog, S. Kurimura, and K Kitamura, "Continuous-wave 2 W green light generation in periodically poled Mg-doped stoichiometric lithium tantalate," Jpn. J. Appl. Phys. 45, L907 (2006).
    [CrossRef]
  8. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: Tuning and tolerances," IEEE J. Quantum Elect. 28, 2631 (1992).
    [CrossRef]
  9. G. D. Boyd and D. A. Kleinman, "Parametric interaction of focused Gaussian light beams," J. Appl. Phys. 39, 3597 (1968).
    [CrossRef]
  10. M. V. Pack, D. J. Armstrong, and A. V. Smith, "Measurement of the χ(2) tensors of KTiOPO4, KTiOAsO4, RbTiOPO4, and RbTiOAsO4 crystals," Appl. Opt. 43, 3319 (2004).
    [CrossRef] [PubMed]
  11. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, "Absolute scale of second-order nonlinear-optical coefficients," J. Opt. Soc. Am. B 14, 2268 (1997).
    [CrossRef]
  12. D. Eimerl, "Thermal aspects of high-average-power electrooptic switches," IEEE J. Quantum Elect. 23, 2238 (1987).
    [CrossRef]
  13. Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, "Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations," Appl. Phys. Lett. 77, 2494 (2000).
    [CrossRef]

2006 (4)

N. E. Yu, C. Jung, D.-K. Ko, J. Lee, O. A. Louchev, S. Kurimura, and K. Kitamura, "Thermal dephasing of quasi-phase-matched second-harmonic generation in periodically poled stoichiometric LiTaO3 at high input power," J. Korean Phys. Soc. 49, 528 (2006).

H. Furuya, A. Morikawa, K. Mizuuchi, and K. Yamamoto, "High-beam-quality continuous wave 3 W green-light generation in bulk periodically poled MgO:LiNbO3," Jpn. J. Appl. Phys. 45, 6704 (2006).
[CrossRef]

S. V. Tovstonog, S. Kurimura, and K Kitamura, "Continuous-wave 2 W green light generation in periodically poled Mg-doped stoichiometric lithium tantalate," Jpn. J. Appl. Phys. 45, L907 (2006).
[CrossRef]

D. L. Rockwell, "New directions for infrared countermeasures," Aerospace Am. 44, 22 (2006).

2005 (1)

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, "Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals," Appl. Phys. Lett. 87, 131101 (2005).
[CrossRef]

2004 (2)

2003 (1)

K. S. Arnold and C. Y. She, "Metal fluorescence lidar (light detection and ranging) and the middle atmosphere," Contemp. Phys. 44, 35 (2003).
[CrossRef]

2000 (1)

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, "Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations," Appl. Phys. Lett. 77, 2494 (2000).
[CrossRef]

1997 (1)

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: Tuning and tolerances," IEEE J. Quantum Elect. 28, 2631 (1992).
[CrossRef]

1987 (1)

D. Eimerl, "Thermal aspects of high-average-power electrooptic switches," IEEE J. Quantum Elect. 23, 2238 (1987).
[CrossRef]

1968 (1)

G. D. Boyd and D. A. Kleinman, "Parametric interaction of focused Gaussian light beams," J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Armstrong, D. J.

Arnold, K. S.

K. S. Arnold and C. Y. She, "Metal fluorescence lidar (light detection and ranging) and the middle atmosphere," Contemp. Phys. 44, 35 (2003).
[CrossRef]

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, "Parametric interaction of focused Gaussian light beams," J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: Tuning and tolerances," IEEE J. Quantum Elect. 28, 2631 (1992).
[CrossRef]

Dawson, J.

Drobschoff, A.

Ebbers, C.

Eimerl, D.

D. Eimerl, "Thermal aspects of high-average-power electrooptic switches," IEEE J. Quantum Elect. 23, 2238 (1987).
[CrossRef]

Fejer, M. M.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: Tuning and tolerances," IEEE J. Quantum Elect. 28, 2631 (1992).
[CrossRef]

Furukawa, Y.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, "Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations," Appl. Phys. Lett. 77, 2494 (2000).
[CrossRef]

Furuya, H.

H. Furuya, A. Morikawa, K. Mizuuchi, and K. Yamamoto, "High-beam-quality continuous wave 3 W green-light generation in bulk periodically poled MgO:LiNbO3," Jpn. J. Appl. Phys. 45, 6704 (2006).
[CrossRef]

Ito, R.

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: Tuning and tolerances," IEEE J. Quantum Elect. 28, 2631 (1992).
[CrossRef]

Jung, C.

N. E. Yu, C. Jung, D.-K. Ko, J. Lee, O. A. Louchev, S. Kurimura, and K. Kitamura, "Thermal dephasing of quasi-phase-matched second-harmonic generation in periodically poled stoichiometric LiTaO3 at high input power," J. Korean Phys. Soc. 49, 528 (2006).

Kitamoto, A.

Kitamura, K

S. V. Tovstonog, S. Kurimura, and K Kitamura, "Continuous-wave 2 W green light generation in periodically poled Mg-doped stoichiometric lithium tantalate," Jpn. J. Appl. Phys. 45, L907 (2006).
[CrossRef]

Kitamura, K.

N. E. Yu, C. Jung, D.-K. Ko, J. Lee, O. A. Louchev, S. Kurimura, and K. Kitamura, "Thermal dephasing of quasi-phase-matched second-harmonic generation in periodically poled stoichiometric LiTaO3 at high input power," J. Korean Phys. Soc. 49, 528 (2006).

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, "Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals," Appl. Phys. Lett. 87, 131101 (2005).
[CrossRef]

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, "Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations," Appl. Phys. Lett. 77, 2494 (2000).
[CrossRef]

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, "Parametric interaction of focused Gaussian light beams," J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Ko, D.-K.

N. E. Yu, C. Jung, D.-K. Ko, J. Lee, O. A. Louchev, S. Kurimura, and K. Kitamura, "Thermal dephasing of quasi-phase-matched second-harmonic generation in periodically poled stoichiometric LiTaO3 at high input power," J. Korean Phys. Soc. 49, 528 (2006).

Kondo, T.

Kurimura, S.

S. V. Tovstonog, S. Kurimura, and K Kitamura, "Continuous-wave 2 W green light generation in periodically poled Mg-doped stoichiometric lithium tantalate," Jpn. J. Appl. Phys. 45, L907 (2006).
[CrossRef]

N. E. Yu, C. Jung, D.-K. Ko, J. Lee, O. A. Louchev, S. Kurimura, and K. Kitamura, "Thermal dephasing of quasi-phase-matched second-harmonic generation in periodically poled stoichiometric LiTaO3 at high input power," J. Korean Phys. Soc. 49, 528 (2006).

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, "Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals," Appl. Phys. Lett. 87, 131101 (2005).
[CrossRef]

Lee, J.

N. E. Yu, C. Jung, D.-K. Ko, J. Lee, O. A. Louchev, S. Kurimura, and K. Kitamura, "Thermal dephasing of quasi-phase-matched second-harmonic generation in periodically poled stoichiometric LiTaO3 at high input power," J. Korean Phys. Soc. 49, 528 (2006).

Liao, Z. M.

Louchev, O. A.

N. E. Yu, C. Jung, D.-K. Ko, J. Lee, O. A. Louchev, S. Kurimura, and K. Kitamura, "Thermal dephasing of quasi-phase-matched second-harmonic generation in periodically poled stoichiometric LiTaO3 at high input power," J. Korean Phys. Soc. 49, 528 (2006).

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, "Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals," Appl. Phys. Lett. 87, 131101 (2005).
[CrossRef]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: Tuning and tolerances," IEEE J. Quantum Elect. 28, 2631 (1992).
[CrossRef]

Miyamoto, A.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, "Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations," Appl. Phys. Lett. 77, 2494 (2000).
[CrossRef]

Mizuuchi, K.

H. Furuya, A. Morikawa, K. Mizuuchi, and K. Yamamoto, "High-beam-quality continuous wave 3 W green-light generation in bulk periodically poled MgO:LiNbO3," Jpn. J. Appl. Phys. 45, 6704 (2006).
[CrossRef]

Morikawa, A.

H. Furuya, A. Morikawa, K. Mizuuchi, and K. Yamamoto, "High-beam-quality continuous wave 3 W green-light generation in bulk periodically poled MgO:LiNbO3," Jpn. J. Appl. Phys. 45, 6704 (2006).
[CrossRef]

Pack, M. V.

Payne, S. A.

Pennington, D.

Rockwell, D. L.

D. L. Rockwell, "New directions for infrared countermeasures," Aerospace Am. 44, 22 (2006).

She, C. Y.

K. S. Arnold and C. Y. She, "Metal fluorescence lidar (light detection and ranging) and the middle atmosphere," Contemp. Phys. 44, 35 (2003).
[CrossRef]

Shirane, M.

Shoji, I.

Smith, A. V.

Suda, N.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, "Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations," Appl. Phys. Lett. 77, 2494 (2000).
[CrossRef]

Takekawa, S.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, "Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations," Appl. Phys. Lett. 77, 2494 (2000).
[CrossRef]

Taylor, L.

Terao, M.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, "Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations," Appl. Phys. Lett. 77, 2494 (2000).
[CrossRef]

Tovstonog, S. V.

S. V. Tovstonog, S. Kurimura, and K Kitamura, "Continuous-wave 2 W green light generation in periodically poled Mg-doped stoichiometric lithium tantalate," Jpn. J. Appl. Phys. 45, L907 (2006).
[CrossRef]

Yamamoto, K.

H. Furuya, A. Morikawa, K. Mizuuchi, and K. Yamamoto, "High-beam-quality continuous wave 3 W green-light generation in bulk periodically poled MgO:LiNbO3," Jpn. J. Appl. Phys. 45, 6704 (2006).
[CrossRef]

Yu, N. E.

N. E. Yu, C. Jung, D.-K. Ko, J. Lee, O. A. Louchev, S. Kurimura, and K. Kitamura, "Thermal dephasing of quasi-phase-matched second-harmonic generation in periodically poled stoichiometric LiTaO3 at high input power," J. Korean Phys. Soc. 49, 528 (2006).

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, "Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals," Appl. Phys. Lett. 87, 131101 (2005).
[CrossRef]

Aerospace Am. (1)

D. L. Rockwell, "New directions for infrared countermeasures," Aerospace Am. 44, 22 (2006).

Appl. Opt. (1)

Appl. Phys. Lett. (2)

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, "Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations," Appl. Phys. Lett. 77, 2494 (2000).
[CrossRef]

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, "Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals," Appl. Phys. Lett. 87, 131101 (2005).
[CrossRef]

Contemp. Phys. (1)

K. S. Arnold and C. Y. She, "Metal fluorescence lidar (light detection and ranging) and the middle atmosphere," Contemp. Phys. 44, 35 (2003).
[CrossRef]

IEEE J. Quantum Elect. (2)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: Tuning and tolerances," IEEE J. Quantum Elect. 28, 2631 (1992).
[CrossRef]

D. Eimerl, "Thermal aspects of high-average-power electrooptic switches," IEEE J. Quantum Elect. 23, 2238 (1987).
[CrossRef]

J. Appl. Phys. (1)

G. D. Boyd and D. A. Kleinman, "Parametric interaction of focused Gaussian light beams," J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

J. Korean Phys. Soc. (1)

N. E. Yu, C. Jung, D.-K. Ko, J. Lee, O. A. Louchev, S. Kurimura, and K. Kitamura, "Thermal dephasing of quasi-phase-matched second-harmonic generation in periodically poled stoichiometric LiTaO3 at high input power," J. Korean Phys. Soc. 49, 528 (2006).

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. (2)

H. Furuya, A. Morikawa, K. Mizuuchi, and K. Yamamoto, "High-beam-quality continuous wave 3 W green-light generation in bulk periodically poled MgO:LiNbO3," Jpn. J. Appl. Phys. 45, 6704 (2006).
[CrossRef]

S. V. Tovstonog, S. Kurimura, and K Kitamura, "Continuous-wave 2 W green light generation in periodically poled Mg-doped stoichiometric lithium tantalate," Jpn. J. Appl. Phys. 45, L907 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup. The λ/2 plate and polarizer P were only used in the low fundamental power (Pω ≤ 3W) data runs.

Fig. 2.
Fig. 2.

Temperature tuning curves for (a) PPKTP, (b) PPMgSLT, and (c) PPMgLN, taken with approximately 1 W fundamental power through the crystals.

Fig. 3.
Fig. 3.

SH conversion efficiency as a function of fundamental power for PPMgLN (squares), PPKTP (circles), and PPMgSLT (triangles). Also shown are linear fits to the data.

Fig. 4.
Fig. 4.

SH output power from a PP nonlinear crystal as a function of laser linewidth. The calculation assumes that sum-frequency generation as well as SHG may occur. Output power is normalized to the calculated SH power generated by a laser with infinitely narrow linewidth, and laser linewidth is normalized to the wavelength acceptance bandwidth of the crystal.

Fig. 5.
Fig. 5.

Temperature tuning curves for (a) PPKTP, (b) PPMgSLT, and (c) PPMgLN. For PPKTP and PPMgSLT, the input fundamental powers are Pω ∼ 4.5 W (solid line), Pω ∼ 6.5 W (dashed line), and Pω ∼ 10.0 W (dotted line). For PPMgLN, the input fundamental powers are the same except Pω ∼ 8.3 W (dotted line).

Fig. 6.
Fig. 6.

SH conversion efficiency as a function of fundamental power for (a) PPKTP, (b) PPMgSLT, and (c) PPMgLN. Also shown are model fits that show a linear increase of SH conversion efficiency (solid line), SH conversion efficiency when pump depletion is taken into account (dotted line), and SH conversion efficiency when pump depletion and thermal dephasing are taken into account (dashed line).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ΔT = 0.4429 λ ω L [ n 2 ω T n 2 ω T β ( n 2 ω n ω ) ] 1
η = P 2 ω ( P ω ) 2 = 16 π 2 d eff 2 L λ ω 3 n ω n 2 ω ε 0 c f
d eff = 2 π d 33
Δ λ crystal = 0.4429 λ ω L n 2 ω n ω λ ω + n ω λ 1 2 n 2 ω λ 1
P 2 ω = P 2 ω , ideal sin c 2 [ 0.8858 π ( λ λ 0 Δλ crystal ) ]
P ( λ ) = 0.94 Δλ laser exp [ 2.772 ( λ λ 0 Δλ laser ) 2 ]
P SFG = 0 0 P ( λ ) P ( λ ) P 2 ω , λ + λ
P 2 ω , λ + λ = P 2 ω , ideal sin c 2 [ 0.8858 π ( λ + λ 2 λ 0 Δλ crystal ) ]
P 2 ω , λ + λ = P 2 ω , ideal sin c 2 { 0.8858 π [ λ + λ 2 λ 0 + ( T T 0 ΔT ) Δλ crystal Δλ crystal ] }
2 T = P heat VK
T crystal T stage = P heat 4 πLK [ 1 + 2 ln ( a 2 w 0 2 ) ]

Metrics