Abstract

We investigate the characteristics of crossing and branching nodes in monolayer soft-lithography-based polymer optical interconnects with experimental and theoretical analysis. The theoretical crosstalk, as calculated by a function of crossing angle, was determined for a set of interconnect pairs with varying cross-sections, and was compared with experimental measurements. Furthermore, a suitable branching angle was found for branching node and the effects of short-distance mode scrambling in highly multimode polymer waveguides were studied in detail. It was found that mode-filling occurred within a propagation distance of 1.5mm for a 50×50μm2 cross-section for VCSEL coupling; however, complete scrambling of ray direction required a propagation distance of more than 5 mm.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Savage, "Linking with Light," IEEE Spectrum 39, 32-36 (2002).
    [CrossRef]
  2. C. Berger, M. A. Kossel, C. Menolfi, T. Morf, T. Toifl and M. L. Schmatz, "High-density optical interconnects within large-scale systems," in VCSELs and Optical Interconnects, H. Thienpont and J. Danckaert, eds., Proc. SPIE 4942, 222-235 (2003).
    [CrossRef]
  3. H. Cho, P. Kapur, and K. C. Saraswat, "Power comparison between high-speed electrical and optical interconnects for icnterchip communication," J. Lightwave Technol. 22, 2021-2033 (2004) http://www.opticsinfobase.org/abstract.cfm?URI=JLT-22-9-2021>
    [CrossRef]
  4. C. Choi, L. Lin, Y. Liu and R. T. Chen, "Polymer-waveguide-based fully embedded board-level optoelectronic interconnects," in Photonic Devices and Algorithms for Computing IV, K. M. Iftekharuddin and A. A. S. Awwal, eds., Proc. SPIE 4788, 68-72 (2002).
    [CrossRef]
  5. G. V. Steenberge, P. Geerinck, S. V. Put, J. V. Koetsem, H. Ottevaere, D. Morlion, H. Thienpont, and P. V. Daele, "MT-compatible laser-ablated interconnections for optical printed circuit boards," J. Lightwave Technol. 22, 2083-2090 (2004) http://www.opticsinfobase.org/abstract.cfm?URI=JLT-22-9-2083>
    [CrossRef]
  6. A. Neyer, S. Kopetz, E. Rabe, W. Kang and S. Tombrink, "Electrical-optical circuit board using polysiloxane optical waveguide layer," in Proceedings of IEEE Conference on Electronic Components and Technology, 2005, 246- 251.
  7. C. Choi, L. Lin, Y. Liu, J. Choi, L. Wang, D. Haas, J. Magera, and R. T. Chen, "Flexible optical waveguide film fabrications and optoelectronic devices integration for fully embedded board-level optical interconnects," J. Lightwave Technol. 22, 2168- (2004) http://www.opticsinfobase.org/abstract.cfm?URI=JLT-22-9-2168>
    [CrossRef]
  8. J. Wu, J. Wu, J. Bao, and X. Wu, "Soft-lithography-based optical interconnection with high misalignment tolerance," Opt. Express 13, 6259-6267 (2005)
    [CrossRef] [PubMed]
  9. Y. Kokubun, T. Fuse, and K. Iga, "Optimum length of multimode optical branching waveguide for reducing its mode dependence," Appl. Opt. 24, 4408- 4413 (1985) http://www.opticsinfobase.org/abstract.cfm?URI=ao-24-24-4408>
    [CrossRef] [PubMed]
  10. M. Eskiyerly, A. Garcia-Valenzuela, and M. Tabib-Azar, "Mode Conversion and Large Angle Transmission in Symmetric Multimode Y-Junction Couplers," Proc. SPIE 1793, 70-82 (1993).
    [CrossRef]
  11. Y. Xia and G. M. Whitesides, "Soft Lithography," Annu. Rev. Mater. Sci. 28, 153-184 (1998)
    [CrossRef]
  12. Y. Huang, G. Paloczi, J. Scheuer, and A. Yariv, "Soft lithography replication of polymeric microring optical resonators," Opt. Express 11, 2452-2458 (2003).
    [CrossRef] [PubMed]

2005 (1)

2004 (2)

2003 (1)

2002 (1)

N. Savage, "Linking with Light," IEEE Spectrum 39, 32-36 (2002).
[CrossRef]

1998 (1)

Y. Xia and G. M. Whitesides, "Soft Lithography," Annu. Rev. Mater. Sci. 28, 153-184 (1998)
[CrossRef]

1985 (1)

Bao, J.

Cho, H.

Daele, P. V.

Fuse, T.

Geerinck, P.

Huang, Y.

Iga, K.

Kapur, P.

Koetsem, J. V.

Kokubun, Y.

Morlion, D.

Ottevaere, H.

Paloczi, G.

Put, S. V.

Saraswat, K. C.

Savage, N.

N. Savage, "Linking with Light," IEEE Spectrum 39, 32-36 (2002).
[CrossRef]

Scheuer, J.

Steenberge, G. V.

Thienpont, H.

Whitesides, G. M.

Y. Xia and G. M. Whitesides, "Soft Lithography," Annu. Rev. Mater. Sci. 28, 153-184 (1998)
[CrossRef]

Wu, J.

Wu, X.

Xia, Y.

Y. Xia and G. M. Whitesides, "Soft Lithography," Annu. Rev. Mater. Sci. 28, 153-184 (1998)
[CrossRef]

Yariv, A.

Annu. Rev. Mater. Sci. (1)

Y. Xia and G. M. Whitesides, "Soft Lithography," Annu. Rev. Mater. Sci. 28, 153-184 (1998)
[CrossRef]

Appl. Opt. (1)

IEEE Spectrum (1)

N. Savage, "Linking with Light," IEEE Spectrum 39, 32-36 (2002).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (2)

Other (5)

C. Berger, M. A. Kossel, C. Menolfi, T. Morf, T. Toifl and M. L. Schmatz, "High-density optical interconnects within large-scale systems," in VCSELs and Optical Interconnects, H. Thienpont and J. Danckaert, eds., Proc. SPIE 4942, 222-235 (2003).
[CrossRef]

C. Choi, L. Lin, Y. Liu and R. T. Chen, "Polymer-waveguide-based fully embedded board-level optoelectronic interconnects," in Photonic Devices and Algorithms for Computing IV, K. M. Iftekharuddin and A. A. S. Awwal, eds., Proc. SPIE 4788, 68-72 (2002).
[CrossRef]

A. Neyer, S. Kopetz, E. Rabe, W. Kang and S. Tombrink, "Electrical-optical circuit board using polysiloxane optical waveguide layer," in Proceedings of IEEE Conference on Electronic Components and Technology, 2005, 246- 251.

C. Choi, L. Lin, Y. Liu, J. Choi, L. Wang, D. Haas, J. Magera, and R. T. Chen, "Flexible optical waveguide film fabrications and optoelectronic devices integration for fully embedded board-level optical interconnects," J. Lightwave Technol. 22, 2168- (2004) http://www.opticsinfobase.org/abstract.cfm?URI=JLT-22-9-2168>
[CrossRef]

M. Eskiyerly, A. Garcia-Valenzuela, and M. Tabib-Azar, "Mode Conversion and Large Angle Transmission in Symmetric Multimode Y-Junction Couplers," Proc. SPIE 1793, 70-82 (1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic of a monolayer inter-chip Optical Interconnection Circuits on PCB.

Fig. 2.
Fig. 2.

(a). Schematic of a cross-over interconnect pair; (b) Schematic of a branching interconnect pair;

Fig. 3.
Fig. 3.

(left) Top: The Cross-over Section in side view; Bottom: Optical beam propagation in the cross-over structure. Figure 3 (middle) Left: Top view of a crossing node fabricated by soft lithography technique; Right: A crossing node on a PCB. Figure 3 (right) A branching node printed on PCB by soft lithography.

Fig. 4.
Fig. 4.

Crosstalk as a function of cross angle for cross-over interconnects of polymer waveguides with various cross-sections. Red curves are calculated results by using BPM. Dotted blue line shows that crossing angle changes with cross-section at -20dB crosstalk. Open symbols and blue fitted curves stand for experimental measurements. Refractive indices of core/cladding were at (a) 1.50/1.00 and (b) 1.50/1.48.

Fig. 5.
Fig. 5.

(left) BPM simulation of crossing interconnects with a 50×50μm2 cross-section at a cross angle (a) 5°, (b) 10° and (c) 12.5°. Figure 5 (right) Monte Carlo simulation of ray tracing result. Numbers of rays were reduced for better visibility.

Fig. 6.
Fig. 6.

(left) Leakage v.s. branching angle of polymer waveguides with cross-sections of 50×50μm2 and 100×100μm2. Open symbols stand for experimental measurement. Figure 6 (right) BPM simulation of Y-branching with a cross-section of 50×50μm2 at a branching angle of (a) 3°, (b) 8°, and (c) 11°.

Fig. 7.
Fig. 7.

Beam center shift as a function of propagation length after branching with two cross-sections at a branching angle of 3°and 6°. The insets show recorded beam center oscillates from one side to another and eventually centers.

Fig. 8.
Fig. 8.

(Left) Calculated beam filling of light guide as a function of propagation distance when a typical SM VCSEL (10° 1/e2) is coupled to a straight rectangular light guide. Squares denote a waveguide of a cross-section of 50×50μm2, circles for 100 ×100m2, with inset figures showing intensity profiles. Figure 8 (Right) Crosstalk as a function of propagation distance from the VCSEL to crossing point at a cross angle of 9°.

Tables (2)

Tables Icon

Table 1. Specifications of optical components used in BPM and ZEMAX® ray tracing Monte Carlo simulations

Tables Icon

Table 2. Calculated insertion loss using BPM simulations

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

FillingFactor = 2 ω ω 2 ω 2 I ( u ) I ( 0 ) du

Metrics