Abstract

Near-field coupling of a single gold nanoparticle (GNP) to a single fluorescent molecule is investigated here for varying separation d between the two. While the emission quantum efficiency of the coupled system generally decreases for d → 0, a pronounced near-field enhancement is observed under certain conditions, partly outweighing the efficiency loss at small distances. We report on optimizing these conditions by varying the excitation field direction and the three-dimensional relative configuration between the GNP and the fluorophore. Furthermore, we examine how the sphere diameter, the surrounding medium, as well as the absorption and emission wavelengths of the molecular dipole influence the fluorescence yield. Our results are of high practical relevance for all GNP-mediated application fields such as fluorescence microscopy, scattering near-field optical microscopy, bioanalytics, and medical applications.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. H. Drexhage, "Interaction of light with monomolecular dye layers," Prog. Opt. 12, 165 (1974).
  2. G. Chumanov, K. Sokolov, B. W. Gregory, and T. M. Cotton, "Colloidal Metal Films as a Substrate for Surface- Enhanced Spectroscopy," J. Phys. Chem. 99, 9466 (1995).
    [CrossRef]
  3. A. Leitner, M. E. Lippitsch, S. Draxler, M. Riegler, and F. R. Aussenegg, "Fluorescence Properties of Dyes Adsorbed to Silver Islands, Investigated by Picosecond Techniques," Appl. Phys. B 36, 105 (1985).
    [CrossRef]
  4. J. K¨ummerlen, A. Leitner, H. Brunner, F. R. Aussenegg, and A.Wokaun, "Enhanced dye fluorescence over silver island films: analysis of the distance dependence," Mol. Phys. 80, 1031 (1993).
    [CrossRef]
  5. J. Gersten and A. Nitzan, "Spectroscopic properties of molecules interacting with small dielectric particles," J. Chem. Phys. 75, 1139 (1981).
    [CrossRef]
  6. E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. M¨oller, and D. I. Gittins, "Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects," Phys. Rev. Lett. 89, 2030021 (2002), and references therein.
    [CrossRef]
  7. S. Nie and S. R. Emory, "Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering," Science 275, 1102 (1997).
    [CrossRef] [PubMed]
  8. T. Kalkbrenner, M. Ramstein, J. M. Mlynek, and V. Sandoghdar, "A Single Gold Particle as a Probe for Apertureless Scanning Near-field Optical Microscopy," J. Microsc. 202, 72 (2002).
    [CrossRef]
  9. P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and Quenching of Single-Molecule Fluorescence," Phys. Rev. Lett. 96, 113002 (2006).
    [CrossRef] [PubMed]
  10. S. K¨uhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of Single-Molecule Fluorescence using a Gold Nanoparticle as an Optical Nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
    [CrossRef] [PubMed]
  11. T. Hartling and L. M. Eng, "Gold-particle-mediated detection of ferroelectric domains on the nanometer scale," Appl. Phys. Lett. 87, 142902 (2005).
    [CrossRef]
  12. C. Hafner, The generalized multiple multipole technique for computational electromagnetics (Artech, 1990).
  13. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).
  14. Note that this holds for a good fluorescent marker. For any intrinsic quantum efficiency qi < 1, Eq. 1) can be renormalized.
  15. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999)
  16. P. B. Johnson and R. W. Christy, "Optical constants of noble metals," Phys. Rev. B 6, 4370 (1972).
    [CrossRef]
  17. K. Sokolov, G. Chumanov, and T. M. Cotton, "Enhancement of Molecular Fluorescence near the Surface of Colloidal Metal Films," Anal. Chem. 70, 3898 (1998).
    [CrossRef] [PubMed]
  18. E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. Munoz Javier, and W. J. Parak, "Gold Particles Quench Fluorescence by Phase Induced Radiative Rate Suppression," Nano Lett. 5, 585 (2005).
    [CrossRef] [PubMed]
  19. U. Kreibig and M. Vollmer, Optical properties of metal clusters (Springer, Berlin, 1995).
  20. Note that all wavelength assignments refer to vacuum wavelengths.
  21. F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, "Plasmonic Enhancement of Molecular Fluorescence," Nano Lett. 7, 496 (2007).
    [CrossRef] [PubMed]
  22. Y. Chen, K. Munechika, and D. S. Ginger, "Dependence of Fluorescence Intensity on the Spectral Overlap between Fluorophores and Plasmon Resonant Single Silver Nanoparticles," Nano Lett. 7, 690 (2007).
    [CrossRef] [PubMed]
  23. S. Gerber, F. Reil, U. Hohenester, T. Schlagenhaufen, J. R. Krenn, and A. Leitner, "Tailoring light emission properties of fluorophores by coupling to resonance-tuned metallic nanostructures," Phys. Rev. B. 75, 073404 (2007).
    [CrossRef]
  24. P. Bharadwaj, P. Anger, and L. Novotny, "Nanoplasmonic Enhancement of Single-Molecule Fluorescence," Nanotechnology 18, 44017 (2007).
  25. J. Renger, S. Grafstrom, V. Deckert, and L.M. Eng, "Evanescent wave scattering and local electric field enhancement at ellipsoidal silver particles in the vicinity of a glass surface," J. Opt. Soc. Am. A 21, 1362 (2004).
    [CrossRef]
  26. P. Olk, J. Renger, T. Hartling, M.T. Wenzel, and L. M. Eng, "Two particle-enhanced nano Raman microscopy and spectroscopy," Nano Lett. 7, 1736 (2007).
    [CrossRef] [PubMed]

2007 (5)

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, "Plasmonic Enhancement of Molecular Fluorescence," Nano Lett. 7, 496 (2007).
[CrossRef] [PubMed]

Y. Chen, K. Munechika, and D. S. Ginger, "Dependence of Fluorescence Intensity on the Spectral Overlap between Fluorophores and Plasmon Resonant Single Silver Nanoparticles," Nano Lett. 7, 690 (2007).
[CrossRef] [PubMed]

S. Gerber, F. Reil, U. Hohenester, T. Schlagenhaufen, J. R. Krenn, and A. Leitner, "Tailoring light emission properties of fluorophores by coupling to resonance-tuned metallic nanostructures," Phys. Rev. B. 75, 073404 (2007).
[CrossRef]

P. Bharadwaj, P. Anger, and L. Novotny, "Nanoplasmonic Enhancement of Single-Molecule Fluorescence," Nanotechnology 18, 44017 (2007).

P. Olk, J. Renger, T. Hartling, M.T. Wenzel, and L. M. Eng, "Two particle-enhanced nano Raman microscopy and spectroscopy," Nano Lett. 7, 1736 (2007).
[CrossRef] [PubMed]

2006 (2)

P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and Quenching of Single-Molecule Fluorescence," Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

S. K¨uhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of Single-Molecule Fluorescence using a Gold Nanoparticle as an Optical Nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

2005 (2)

T. Hartling and L. M. Eng, "Gold-particle-mediated detection of ferroelectric domains on the nanometer scale," Appl. Phys. Lett. 87, 142902 (2005).
[CrossRef]

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. Munoz Javier, and W. J. Parak, "Gold Particles Quench Fluorescence by Phase Induced Radiative Rate Suppression," Nano Lett. 5, 585 (2005).
[CrossRef] [PubMed]

2004 (1)

2002 (2)

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. M¨oller, and D. I. Gittins, "Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects," Phys. Rev. Lett. 89, 2030021 (2002), and references therein.
[CrossRef]

T. Kalkbrenner, M. Ramstein, J. M. Mlynek, and V. Sandoghdar, "A Single Gold Particle as a Probe for Apertureless Scanning Near-field Optical Microscopy," J. Microsc. 202, 72 (2002).
[CrossRef]

1998 (1)

K. Sokolov, G. Chumanov, and T. M. Cotton, "Enhancement of Molecular Fluorescence near the Surface of Colloidal Metal Films," Anal. Chem. 70, 3898 (1998).
[CrossRef] [PubMed]

1997 (1)

S. Nie and S. R. Emory, "Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering," Science 275, 1102 (1997).
[CrossRef] [PubMed]

1995 (1)

G. Chumanov, K. Sokolov, B. W. Gregory, and T. M. Cotton, "Colloidal Metal Films as a Substrate for Surface- Enhanced Spectroscopy," J. Phys. Chem. 99, 9466 (1995).
[CrossRef]

1993 (1)

J. K¨ummerlen, A. Leitner, H. Brunner, F. R. Aussenegg, and A.Wokaun, "Enhanced dye fluorescence over silver island films: analysis of the distance dependence," Mol. Phys. 80, 1031 (1993).
[CrossRef]

1985 (1)

A. Leitner, M. E. Lippitsch, S. Draxler, M. Riegler, and F. R. Aussenegg, "Fluorescence Properties of Dyes Adsorbed to Silver Islands, Investigated by Picosecond Techniques," Appl. Phys. B 36, 105 (1985).
[CrossRef]

1981 (1)

J. Gersten and A. Nitzan, "Spectroscopic properties of molecules interacting with small dielectric particles," J. Chem. Phys. 75, 1139 (1981).
[CrossRef]

1974 (1)

K. H. Drexhage, "Interaction of light with monomolecular dye layers," Prog. Opt. 12, 165 (1974).

1972 (1)

P. B. Johnson and R. W. Christy, "Optical constants of noble metals," Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Anger, P.

P. Bharadwaj, P. Anger, and L. Novotny, "Nanoplasmonic Enhancement of Single-Molecule Fluorescence," Nanotechnology 18, 44017 (2007).

P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and Quenching of Single-Molecule Fluorescence," Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

Aussenegg, F. R.

A. Leitner, M. E. Lippitsch, S. Draxler, M. Riegler, and F. R. Aussenegg, "Fluorescence Properties of Dyes Adsorbed to Silver Islands, Investigated by Picosecond Techniques," Appl. Phys. B 36, 105 (1985).
[CrossRef]

Bharadwaj, P.

P. Bharadwaj, P. Anger, and L. Novotny, "Nanoplasmonic Enhancement of Single-Molecule Fluorescence," Nanotechnology 18, 44017 (2007).

P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and Quenching of Single-Molecule Fluorescence," Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

Chen, Y.

Y. Chen, K. Munechika, and D. S. Ginger, "Dependence of Fluorescence Intensity on the Spectral Overlap between Fluorophores and Plasmon Resonant Single Silver Nanoparticles," Nano Lett. 7, 690 (2007).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, "Optical constants of noble metals," Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Chumanov, G.

K. Sokolov, G. Chumanov, and T. M. Cotton, "Enhancement of Molecular Fluorescence near the Surface of Colloidal Metal Films," Anal. Chem. 70, 3898 (1998).
[CrossRef] [PubMed]

G. Chumanov, K. Sokolov, B. W. Gregory, and T. M. Cotton, "Colloidal Metal Films as a Substrate for Surface- Enhanced Spectroscopy," J. Phys. Chem. 99, 9466 (1995).
[CrossRef]

Cotton, T. M.

K. Sokolov, G. Chumanov, and T. M. Cotton, "Enhancement of Molecular Fluorescence near the Surface of Colloidal Metal Films," Anal. Chem. 70, 3898 (1998).
[CrossRef] [PubMed]

G. Chumanov, K. Sokolov, B. W. Gregory, and T. M. Cotton, "Colloidal Metal Films as a Substrate for Surface- Enhanced Spectroscopy," J. Phys. Chem. 99, 9466 (1995).
[CrossRef]

Draxler, S.

A. Leitner, M. E. Lippitsch, S. Draxler, M. Riegler, and F. R. Aussenegg, "Fluorescence Properties of Dyes Adsorbed to Silver Islands, Investigated by Picosecond Techniques," Appl. Phys. B 36, 105 (1985).
[CrossRef]

Drexhage, K. H.

K. H. Drexhage, "Interaction of light with monomolecular dye layers," Prog. Opt. 12, 165 (1974).

Dulkeith, E.

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. Munoz Javier, and W. J. Parak, "Gold Particles Quench Fluorescence by Phase Induced Radiative Rate Suppression," Nano Lett. 5, 585 (2005).
[CrossRef] [PubMed]

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. M¨oller, and D. I. Gittins, "Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects," Phys. Rev. Lett. 89, 2030021 (2002), and references therein.
[CrossRef]

Emory, S. R.

S. Nie and S. R. Emory, "Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering," Science 275, 1102 (1997).
[CrossRef] [PubMed]

Feldmann, J.

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. Munoz Javier, and W. J. Parak, "Gold Particles Quench Fluorescence by Phase Induced Radiative Rate Suppression," Nano Lett. 5, 585 (2005).
[CrossRef] [PubMed]

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. M¨oller, and D. I. Gittins, "Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects," Phys. Rev. Lett. 89, 2030021 (2002), and references therein.
[CrossRef]

Gerber, S.

S. Gerber, F. Reil, U. Hohenester, T. Schlagenhaufen, J. R. Krenn, and A. Leitner, "Tailoring light emission properties of fluorophores by coupling to resonance-tuned metallic nanostructures," Phys. Rev. B. 75, 073404 (2007).
[CrossRef]

Gersten, J.

J. Gersten and A. Nitzan, "Spectroscopic properties of molecules interacting with small dielectric particles," J. Chem. Phys. 75, 1139 (1981).
[CrossRef]

Ginger, D. S.

Y. Chen, K. Munechika, and D. S. Ginger, "Dependence of Fluorescence Intensity on the Spectral Overlap between Fluorophores and Plasmon Resonant Single Silver Nanoparticles," Nano Lett. 7, 690 (2007).
[CrossRef] [PubMed]

Goodrich, G. P.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, "Plasmonic Enhancement of Molecular Fluorescence," Nano Lett. 7, 496 (2007).
[CrossRef] [PubMed]

Gregory, B. W.

G. Chumanov, K. Sokolov, B. W. Gregory, and T. M. Cotton, "Colloidal Metal Films as a Substrate for Surface- Enhanced Spectroscopy," J. Phys. Chem. 99, 9466 (1995).
[CrossRef]

Halas, N. J.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, "Plasmonic Enhancement of Molecular Fluorescence," Nano Lett. 7, 496 (2007).
[CrossRef] [PubMed]

Hohenester, U.

S. Gerber, F. Reil, U. Hohenester, T. Schlagenhaufen, J. R. Krenn, and A. Leitner, "Tailoring light emission properties of fluorophores by coupling to resonance-tuned metallic nanostructures," Phys. Rev. B. 75, 073404 (2007).
[CrossRef]

Johnson, B. R.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, "Plasmonic Enhancement of Molecular Fluorescence," Nano Lett. 7, 496 (2007).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, "Optical constants of noble metals," Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Kalkbrenner, T.

T. Kalkbrenner, M. Ramstein, J. M. Mlynek, and V. Sandoghdar, "A Single Gold Particle as a Probe for Apertureless Scanning Near-field Optical Microscopy," J. Microsc. 202, 72 (2002).
[CrossRef]

Klar, T. A.

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. Munoz Javier, and W. J. Parak, "Gold Particles Quench Fluorescence by Phase Induced Radiative Rate Suppression," Nano Lett. 5, 585 (2005).
[CrossRef] [PubMed]

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. M¨oller, and D. I. Gittins, "Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects," Phys. Rev. Lett. 89, 2030021 (2002), and references therein.
[CrossRef]

Krenn, J. R.

S. Gerber, F. Reil, U. Hohenester, T. Schlagenhaufen, J. R. Krenn, and A. Leitner, "Tailoring light emission properties of fluorophores by coupling to resonance-tuned metallic nanostructures," Phys. Rev. B. 75, 073404 (2007).
[CrossRef]

Leitner, A.

S. Gerber, F. Reil, U. Hohenester, T. Schlagenhaufen, J. R. Krenn, and A. Leitner, "Tailoring light emission properties of fluorophores by coupling to resonance-tuned metallic nanostructures," Phys. Rev. B. 75, 073404 (2007).
[CrossRef]

A. Leitner, M. E. Lippitsch, S. Draxler, M. Riegler, and F. R. Aussenegg, "Fluorescence Properties of Dyes Adsorbed to Silver Islands, Investigated by Picosecond Techniques," Appl. Phys. B 36, 105 (1985).
[CrossRef]

Levi, S. A.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. M¨oller, and D. I. Gittins, "Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects," Phys. Rev. Lett. 89, 2030021 (2002), and references therein.
[CrossRef]

Lippitsch, M. E.

A. Leitner, M. E. Lippitsch, S. Draxler, M. Riegler, and F. R. Aussenegg, "Fluorescence Properties of Dyes Adsorbed to Silver Islands, Investigated by Picosecond Techniques," Appl. Phys. B 36, 105 (1985).
[CrossRef]

Mlynek, J. M.

T. Kalkbrenner, M. Ramstein, J. M. Mlynek, and V. Sandoghdar, "A Single Gold Particle as a Probe for Apertureless Scanning Near-field Optical Microscopy," J. Microsc. 202, 72 (2002).
[CrossRef]

Morteani, A. C.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. M¨oller, and D. I. Gittins, "Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects," Phys. Rev. Lett. 89, 2030021 (2002), and references therein.
[CrossRef]

Munechika, K.

Y. Chen, K. Munechika, and D. S. Ginger, "Dependence of Fluorescence Intensity on the Spectral Overlap between Fluorophores and Plasmon Resonant Single Silver Nanoparticles," Nano Lett. 7, 690 (2007).
[CrossRef] [PubMed]

Munoz Javier, A.

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. Munoz Javier, and W. J. Parak, "Gold Particles Quench Fluorescence by Phase Induced Radiative Rate Suppression," Nano Lett. 5, 585 (2005).
[CrossRef] [PubMed]

Nie, S.

S. Nie and S. R. Emory, "Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering," Science 275, 1102 (1997).
[CrossRef] [PubMed]

Niedereichholz, T.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. M¨oller, and D. I. Gittins, "Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects," Phys. Rev. Lett. 89, 2030021 (2002), and references therein.
[CrossRef]

Nitzan, A.

J. Gersten and A. Nitzan, "Spectroscopic properties of molecules interacting with small dielectric particles," J. Chem. Phys. 75, 1139 (1981).
[CrossRef]

Novotny, L.

P. Bharadwaj, P. Anger, and L. Novotny, "Nanoplasmonic Enhancement of Single-Molecule Fluorescence," Nanotechnology 18, 44017 (2007).

P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and Quenching of Single-Molecule Fluorescence," Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

Olk, P.

P. Olk, J. Renger, T. Hartling, M.T. Wenzel, and L. M. Eng, "Two particle-enhanced nano Raman microscopy and spectroscopy," Nano Lett. 7, 1736 (2007).
[CrossRef] [PubMed]

Parak, W. J.

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. Munoz Javier, and W. J. Parak, "Gold Particles Quench Fluorescence by Phase Induced Radiative Rate Suppression," Nano Lett. 5, 585 (2005).
[CrossRef] [PubMed]

Ramstein, M.

T. Kalkbrenner, M. Ramstein, J. M. Mlynek, and V. Sandoghdar, "A Single Gold Particle as a Probe for Apertureless Scanning Near-field Optical Microscopy," J. Microsc. 202, 72 (2002).
[CrossRef]

Reil, F.

S. Gerber, F. Reil, U. Hohenester, T. Schlagenhaufen, J. R. Krenn, and A. Leitner, "Tailoring light emission properties of fluorophores by coupling to resonance-tuned metallic nanostructures," Phys. Rev. B. 75, 073404 (2007).
[CrossRef]

Reinhoudt, D. N.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. M¨oller, and D. I. Gittins, "Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects," Phys. Rev. Lett. 89, 2030021 (2002), and references therein.
[CrossRef]

Renger, J.

Riegler, M.

A. Leitner, M. E. Lippitsch, S. Draxler, M. Riegler, and F. R. Aussenegg, "Fluorescence Properties of Dyes Adsorbed to Silver Islands, Investigated by Picosecond Techniques," Appl. Phys. B 36, 105 (1985).
[CrossRef]

Ringler, M.

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. Munoz Javier, and W. J. Parak, "Gold Particles Quench Fluorescence by Phase Induced Radiative Rate Suppression," Nano Lett. 5, 585 (2005).
[CrossRef] [PubMed]

Sandoghdar, V.

T. Kalkbrenner, M. Ramstein, J. M. Mlynek, and V. Sandoghdar, "A Single Gold Particle as a Probe for Apertureless Scanning Near-field Optical Microscopy," J. Microsc. 202, 72 (2002).
[CrossRef]

Schlagenhaufen, T.

S. Gerber, F. Reil, U. Hohenester, T. Schlagenhaufen, J. R. Krenn, and A. Leitner, "Tailoring light emission properties of fluorophores by coupling to resonance-tuned metallic nanostructures," Phys. Rev. B. 75, 073404 (2007).
[CrossRef]

Sokolov, K.

K. Sokolov, G. Chumanov, and T. M. Cotton, "Enhancement of Molecular Fluorescence near the Surface of Colloidal Metal Films," Anal. Chem. 70, 3898 (1998).
[CrossRef] [PubMed]

G. Chumanov, K. Sokolov, B. W. Gregory, and T. M. Cotton, "Colloidal Metal Films as a Substrate for Surface- Enhanced Spectroscopy," J. Phys. Chem. 99, 9466 (1995).
[CrossRef]

Tam, F.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, "Plasmonic Enhancement of Molecular Fluorescence," Nano Lett. 7, 496 (2007).
[CrossRef] [PubMed]

van Veggel, F. C. J. M.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. M¨oller, and D. I. Gittins, "Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects," Phys. Rev. Lett. 89, 2030021 (2002), and references therein.
[CrossRef]

Anal. Chem. (1)

K. Sokolov, G. Chumanov, and T. M. Cotton, "Enhancement of Molecular Fluorescence near the Surface of Colloidal Metal Films," Anal. Chem. 70, 3898 (1998).
[CrossRef] [PubMed]

Appl. Phys. B (1)

A. Leitner, M. E. Lippitsch, S. Draxler, M. Riegler, and F. R. Aussenegg, "Fluorescence Properties of Dyes Adsorbed to Silver Islands, Investigated by Picosecond Techniques," Appl. Phys. B 36, 105 (1985).
[CrossRef]

Appl. Phys. Lett. (1)

T. Hartling and L. M. Eng, "Gold-particle-mediated detection of ferroelectric domains on the nanometer scale," Appl. Phys. Lett. 87, 142902 (2005).
[CrossRef]

J. Chem. Phys. (1)

J. Gersten and A. Nitzan, "Spectroscopic properties of molecules interacting with small dielectric particles," J. Chem. Phys. 75, 1139 (1981).
[CrossRef]

J. Microsc. (1)

T. Kalkbrenner, M. Ramstein, J. M. Mlynek, and V. Sandoghdar, "A Single Gold Particle as a Probe for Apertureless Scanning Near-field Optical Microscopy," J. Microsc. 202, 72 (2002).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. (1)

G. Chumanov, K. Sokolov, B. W. Gregory, and T. M. Cotton, "Colloidal Metal Films as a Substrate for Surface- Enhanced Spectroscopy," J. Phys. Chem. 99, 9466 (1995).
[CrossRef]

Mol. Phys. (1)

J. K¨ummerlen, A. Leitner, H. Brunner, F. R. Aussenegg, and A.Wokaun, "Enhanced dye fluorescence over silver island films: analysis of the distance dependence," Mol. Phys. 80, 1031 (1993).
[CrossRef]

Nano Lett. (4)

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. Munoz Javier, and W. J. Parak, "Gold Particles Quench Fluorescence by Phase Induced Radiative Rate Suppression," Nano Lett. 5, 585 (2005).
[CrossRef] [PubMed]

P. Olk, J. Renger, T. Hartling, M.T. Wenzel, and L. M. Eng, "Two particle-enhanced nano Raman microscopy and spectroscopy," Nano Lett. 7, 1736 (2007).
[CrossRef] [PubMed]

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, "Plasmonic Enhancement of Molecular Fluorescence," Nano Lett. 7, 496 (2007).
[CrossRef] [PubMed]

Y. Chen, K. Munechika, and D. S. Ginger, "Dependence of Fluorescence Intensity on the Spectral Overlap between Fluorophores and Plasmon Resonant Single Silver Nanoparticles," Nano Lett. 7, 690 (2007).
[CrossRef] [PubMed]

Nanotechnology (1)

P. Bharadwaj, P. Anger, and L. Novotny, "Nanoplasmonic Enhancement of Single-Molecule Fluorescence," Nanotechnology 18, 44017 (2007).

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, "Optical constants of noble metals," Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Phys. Rev. B. (1)

S. Gerber, F. Reil, U. Hohenester, T. Schlagenhaufen, J. R. Krenn, and A. Leitner, "Tailoring light emission properties of fluorophores by coupling to resonance-tuned metallic nanostructures," Phys. Rev. B. 75, 073404 (2007).
[CrossRef]

Phys. Rev. Lett. (3)

P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and Quenching of Single-Molecule Fluorescence," Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

S. K¨uhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of Single-Molecule Fluorescence using a Gold Nanoparticle as an Optical Nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. M¨oller, and D. I. Gittins, "Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects," Phys. Rev. Lett. 89, 2030021 (2002), and references therein.
[CrossRef]

Prog. Opt. (1)

K. H. Drexhage, "Interaction of light with monomolecular dye layers," Prog. Opt. 12, 165 (1974).

Science (1)

S. Nie and S. R. Emory, "Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering," Science 275, 1102 (1997).
[CrossRef] [PubMed]

Other (6)

U. Kreibig and M. Vollmer, Optical properties of metal clusters (Springer, Berlin, 1995).

Note that all wavelength assignments refer to vacuum wavelengths.

C. Hafner, The generalized multiple multipole technique for computational electromagnetics (Artech, 1990).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).

Note that this holds for a good fluorescent marker. For any intrinsic quantum efficiency qi < 1, Eq. 1) can be renormalized.

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Geometry used for the calculation of the emission quantum efficiency q according to Eq. 4. The power Prad emitted from the coupled particle - dipole system as well as the power Pnr dissipated in the gold particle are calculated by 3D Poynting vector integration over spherical surfaces S 1 and S 2, respectively.

Fig. 2.
Fig. 2.

(a) Calculations were carried out for five different positions A to E of the molecular dipole with respect to the particle and the excitation field. While positions A to D are located on one of the main cartesian axes, case E represents a dipole positioned at that specific site where the excitation field reaches its maximum. The dark arrows indicate the dipole oscillation direction considered. Note that case A was devided into A1 and A2, describing a radially and a tangentially oscillating dipole, respectively. Excitation occurs by a linearly polarized plane wave incident from the left along the x axis. (b) Plane-wave excitation of plasmon modes on a 80-nm GNP at λexc = 532 nm and (c) λexc = 400 nm. Note the tilt of the field maxima in the direction of propagation for the shorter wavelength (c).

Fig. 3.
Fig. 3.

Normalized excitation rate γexc /γ 0 exc (dashed line), quantum efficiency q (dotted line), and normalized fluorescence rate γem /γ 0 em (solid line) versus distance [nm], calculated for an 80-nm GNP and a dipole located at positions A1 to E (see Fig. 2). Excitation wavelength is λexc = 532 nm, dipole emission at λem = 560 nm.

Fig. 4.
Fig. 4.

Normalized excitation rate γexc /γ 0 exc (dashed line), quantum efficiency q (dotted line), and normalized fluorescence rate γem /γ 0 em (solid line) versus distance [nm], calculated for a 30-nm GNP and a dipole located at positions A1, B, C, D (see Fig. 2). Excitation wavelength is λexc = 532 nm, dipole emission at λem = 560 nm. A1 (α) and A1 (β): Comparison of q and γexc /γ 0 exc , respectively, for case A1 of the 30-nm GNP (solid line) and the 80-nm GNP (dotted line). As both quantities are lower for the 30-nm particle at short distances, no fluorescence enhancement occurs in case A1. Cases A2 and E have been omitted (see text).

Fig. 5.
Fig. 5.

Normalized radial field Er /E 0 at position E for (a) a 30-nm GNP, and (b) an 80-nm GNP, calculated for d = 0 (fluorophore at GNP surface). Position and height of the enhancement peak are shifted for different embedding media (air: εm = 1.00, water: εm = 1.69, immersion oil: εm = 2.25).

Fig. 6.
Fig. 6.

Normalized excitation rate γexc /γ 0 exc (dashed line), quantum efficiency q (dotted line), and normalized fluorescence rate γem /γ 0 em (solid line) versus distance [nm], calculated for an 80-nm GNP and a dipole located at positions A1 (right colum) and E (middle). The system is embedded in (a) air (εm = 1.00), (b) water (εm = 1.69), and (c) immersion oil (εm = 2.25). Excitation wavelength is λexc = 532 nm, while dipole emission occurs at λem = 560 nm [20]. Although q drops for higher εm , the fluorescence yield reaches its maximum in water due to the highly enhanced excitation field.

Fig. 7.
Fig. 7.

Normalized fluorescence rate γem /γ 0 em at 560 nm, 590 nm, and 650 nm for air (εm = 1.00), water (εm = 1.69), and immersion oil (εm = 2.25) [20], plotted as a function of distance d and excitation wavelength λexc . The fluorescence enhancement follows the excitation field in its spectral distribution.

Tables (1)

Tables Icon

Table 1. Due to the symmetry of the coupled particle - dipole system (see Fig. 2 (a)), not all excitation field components Ex ,Ey ,Ez have to be considered for the respective positions A1 to E. While no Ey excitation component exists, a finite Ex field component becomes observable besides Ez when the particle diameter is in the order of the wavelength of the incident wave. Dipole excitation due to Ez and Ex was treated separately for cases A1 and A2. For case E, Ex and Ez were used to calculate the maximum of the radial field. Vanishing field components are marked by “0”, nonzero components not considered for excitation by “x”, and nonzero components considered to excite the dipole by “✓”.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

γ em = q γ exc q E exc p mol 2
P rad = 1 2 S 1 Re ( E exc × H * exc ) s r ds ,
P nr = 1 2 S 2 Re ( E exc × H * exc ) s ̂ r ds .
q = P rad P rad + P nr .
α ( ω ) = 4 πr s 3 ε 0 ε ( ω ) ε m ε ( ω ) + 2 ε m ,
E exc = E 0 e iωt [ ( cos θ n r sin θ n θ ) + ε ( ω ) ε m ε ( ω ) + 2 ε m r s 3 r 3 ( 2 cos θ n r + sin θ n θ ) ]

Metrics