Abstract

We investigate the potential of microstructured optical fibers (MOFs) for highly sensitive absorption and fluorescence measurements by infiltrating a dye solution in the holey structure. Generally in a MOF only the evanescent part of the electromagnetic field penetrates into the sample material, providing a weak light-matter interaction. We compare such a MOF with a selectively filled hollow core photonic crystal fiber (HCPCF), in which most of the field energy propagates in the sample material. We show that dye concentrations down to 1×10-10 M can be detected in a HCPCF using only nanoliter sample volumes. Our experiments proof that HCPCFs are well suited for demanding sensing applications, outperforming existing fiber tools that rely on evanescent sensing.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. D. Nielsen, et al., "Low-loss photonic crystal fibers for transmission systems and their dispersion properties," Opt. Express 12, 1372-1376 (2004).
    [CrossRef] [PubMed]
  2. V. V. Ravi Kanth Kumar et al., "Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation," Opt. Express 10, 1520-1525 (2002).
  3. J. B. Jensen, et al., "Selective detection of antibodies in microstructured polymer optical fibers," Opt. Express 13, 5883-5889 (2005).
    [CrossRef] [PubMed]
  4. T. M. Monro, et al., "Sensing with microstructured optical fibres," Meas. Sci. Technol. 12, 854-858 (2001).
    [CrossRef]
  5. B. J. Eggleton, et al., "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001).
    [CrossRef] [PubMed]
  6. J. B. Jensen, et al., "Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions," Opt. Lett. 29, 1974-1976 (2004).
    [CrossRef] [PubMed]
  7. L. Rindorf, et al., "Towards biochips using microstructured optical fiber sensors," Anal. Bioanal. Chem. 385, 1370-1375 (2006).
    [CrossRef] [PubMed]
  8. C. M. B. Cordeiro, et al., "Microstructured-core optical fibre for evanescent sensing applications," Opt. Express 14, 13056-13066 (2006).
    [CrossRef] [PubMed]
  9. R. F. Creganet, et al., "Single-Mode Photonic Band Gap Guidance of Light in Air," Science 285, 1537-1539 (1999).
    [CrossRef]
  10. J. C. Knight, "Photonic crystal fibers," Nature 424, 847-851 (2003).
    [CrossRef] [PubMed]
  11. P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
    [CrossRef] [PubMed]
  12. S. Yiou, et al., "Stimulated Raman scattering in an ethanol core microstructured optical fiber," Opt. Express 13, 4786-4791 (2005).
    [CrossRef] [PubMed]
  13. K. Nielsen et al., "Selective filling of photonic crystal fibres," J. Opt. A: Pure Appl. Opt. 7, L13-L20 (2005).
    [CrossRef]
  14. J. M. Fini, "Microstructure fibres for optical sensing in gases and liquids," Meas. Sci. Technol. 15, 1120-1128 (2004).
    [CrossRef]
  15. F. Benabid, et al., "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005).
    [CrossRef] [PubMed]
  16. T. Ritari et al., "Gas sensing using air-guiding photonic bandgap fibers," Opt. Express 12, 4080-4087 (2004).
    [CrossRef] [PubMed]
  17. M. Lelek, et al., "High sensitivity autocorrelator based on a fluorescent liquid core fiber," Appl. Phys. Lett. 89, 061117 (2006).
    [CrossRef]
  18. L. Rindorf, et al., "Photonic crystal fiber long-period gratings for biochemical sensing," Opt. Express 14, 8224- 8231 (2006).
    [CrossRef] [PubMed]
  19. S. Smolka, et al., "Selectively coated photonic crystal fiber for highly sensitive fluorescence detection," Appl. Phys. Lett. 90, 111101 (2007).
    [CrossRef]
  20. S. O. Konorov, et al., "Photonic-crystal fiber as a multifunctional optical sensor and sample collector," Opt. Express 13, 3454-3459 (2005).
    [CrossRef] [PubMed]
  21. C. M. B. Cordeiro, et al., "Lateral access to the holes of photonic crystal fibers - selective filling and sensing applications," Opt. Express 14, 8403-8512 (2006).
    [CrossRef] [PubMed]
  22. S. J. Myers, et al., "Manipulation of spontaneous emission in a tapered photonic crystal fibre," Opt. Express 14, 12439-12444 (2006).
    [CrossRef] [PubMed]
  23. L. Xiao, et al., "Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer," Opt. Express 13, 9014-9022 (2005).
    [CrossRef] [PubMed]
  24. H. Yan, et al., "Hollow core photonic crystal fiber surface-enhanced Raman probe," Appl. Phys. Lett. 89, 204101 (2006).
    [CrossRef]
  25. Y. Zhang, et al., "Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering," Appl. Phys. Lett. 90, 193504 (2007).
    [CrossRef]

2007 (2)

S. Smolka, et al., "Selectively coated photonic crystal fiber for highly sensitive fluorescence detection," Appl. Phys. Lett. 90, 111101 (2007).
[CrossRef]

Y. Zhang, et al., "Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering," Appl. Phys. Lett. 90, 193504 (2007).
[CrossRef]

2006 (7)

2005 (6)

2004 (4)

2003 (2)

J. C. Knight, "Photonic crystal fibers," Nature 424, 847-851 (2003).
[CrossRef] [PubMed]

P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

2002 (1)

2001 (2)

T. M. Monro, et al., "Sensing with microstructured optical fibres," Meas. Sci. Technol. 12, 854-858 (2001).
[CrossRef]

B. J. Eggleton, et al., "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001).
[CrossRef] [PubMed]

1999 (1)

R. F. Creganet, et al., "Single-Mode Photonic Band Gap Guidance of Light in Air," Science 285, 1537-1539 (1999).
[CrossRef]

Benabid, F.

F. Benabid, et al., "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005).
[CrossRef] [PubMed]

Cordeiro, C. M. B.

Creganet, R. F.

R. F. Creganet, et al., "Single-Mode Photonic Band Gap Guidance of Light in Air," Science 285, 1537-1539 (1999).
[CrossRef]

Eggleton, B. J.

Fini, J. M.

J. M. Fini, "Microstructure fibres for optical sensing in gases and liquids," Meas. Sci. Technol. 15, 1120-1128 (2004).
[CrossRef]

Jensen, J. B.

Knight, J. C.

J. C. Knight, "Photonic crystal fibers," Nature 424, 847-851 (2003).
[CrossRef] [PubMed]

Konorov, S. O.

Lelek, M.

M. Lelek, et al., "High sensitivity autocorrelator based on a fluorescent liquid core fiber," Appl. Phys. Lett. 89, 061117 (2006).
[CrossRef]

Monro, T. M.

T. M. Monro, et al., "Sensing with microstructured optical fibres," Meas. Sci. Technol. 12, 854-858 (2001).
[CrossRef]

Myers, S. J.

Nielsen, K.

K. Nielsen et al., "Selective filling of photonic crystal fibres," J. Opt. A: Pure Appl. Opt. 7, L13-L20 (2005).
[CrossRef]

Nielsen, M.D.

Ravi Kanth Kumar, V. V.

Rindorf, L.

L. Rindorf, et al., "Towards biochips using microstructured optical fiber sensors," Anal. Bioanal. Chem. 385, 1370-1375 (2006).
[CrossRef] [PubMed]

L. Rindorf, et al., "Photonic crystal fiber long-period gratings for biochemical sensing," Opt. Express 14, 8224- 8231 (2006).
[CrossRef] [PubMed]

Ritari, T.

Russell, P.

P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Smolka, S.

S. Smolka, et al., "Selectively coated photonic crystal fiber for highly sensitive fluorescence detection," Appl. Phys. Lett. 90, 111101 (2007).
[CrossRef]

Xiao, L.

Yan, H.

H. Yan, et al., "Hollow core photonic crystal fiber surface-enhanced Raman probe," Appl. Phys. Lett. 89, 204101 (2006).
[CrossRef]

Yiou, S.

Zhang, Y.

Y. Zhang, et al., "Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering," Appl. Phys. Lett. 90, 193504 (2007).
[CrossRef]

Anal. Bioanal. Chem. (1)

L. Rindorf, et al., "Towards biochips using microstructured optical fiber sensors," Anal. Bioanal. Chem. 385, 1370-1375 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

S. Smolka, et al., "Selectively coated photonic crystal fiber for highly sensitive fluorescence detection," Appl. Phys. Lett. 90, 111101 (2007).
[CrossRef]

M. Lelek, et al., "High sensitivity autocorrelator based on a fluorescent liquid core fiber," Appl. Phys. Lett. 89, 061117 (2006).
[CrossRef]

H. Yan, et al., "Hollow core photonic crystal fiber surface-enhanced Raman probe," Appl. Phys. Lett. 89, 204101 (2006).
[CrossRef]

Y. Zhang, et al., "Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering," Appl. Phys. Lett. 90, 193504 (2007).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

K. Nielsen et al., "Selective filling of photonic crystal fibres," J. Opt. A: Pure Appl. Opt. 7, L13-L20 (2005).
[CrossRef]

Meas. Sci. Technol. (2)

J. M. Fini, "Microstructure fibres for optical sensing in gases and liquids," Meas. Sci. Technol. 15, 1120-1128 (2004).
[CrossRef]

T. M. Monro, et al., "Sensing with microstructured optical fibres," Meas. Sci. Technol. 12, 854-858 (2001).
[CrossRef]

Nature (2)

J. C. Knight, "Photonic crystal fibers," Nature 424, 847-851 (2003).
[CrossRef] [PubMed]

F. Benabid, et al., "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005).
[CrossRef] [PubMed]

Opt. Express (12)

T. Ritari et al., "Gas sensing using air-guiding photonic bandgap fibers," Opt. Express 12, 4080-4087 (2004).
[CrossRef] [PubMed]

S. O. Konorov, et al., "Photonic-crystal fiber as a multifunctional optical sensor and sample collector," Opt. Express 13, 3454-3459 (2005).
[CrossRef] [PubMed]

C. M. B. Cordeiro, et al., "Lateral access to the holes of photonic crystal fibers - selective filling and sensing applications," Opt. Express 14, 8403-8512 (2006).
[CrossRef] [PubMed]

S. J. Myers, et al., "Manipulation of spontaneous emission in a tapered photonic crystal fibre," Opt. Express 14, 12439-12444 (2006).
[CrossRef] [PubMed]

L. Xiao, et al., "Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer," Opt. Express 13, 9014-9022 (2005).
[CrossRef] [PubMed]

C. M. B. Cordeiro, et al., "Microstructured-core optical fibre for evanescent sensing applications," Opt. Express 14, 13056-13066 (2006).
[CrossRef] [PubMed]

B. J. Eggleton, et al., "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001).
[CrossRef] [PubMed]

M. D. Nielsen, et al., "Low-loss photonic crystal fibers for transmission systems and their dispersion properties," Opt. Express 12, 1372-1376 (2004).
[CrossRef] [PubMed]

V. V. Ravi Kanth Kumar et al., "Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation," Opt. Express 10, 1520-1525 (2002).

J. B. Jensen, et al., "Selective detection of antibodies in microstructured polymer optical fibers," Opt. Express 13, 5883-5889 (2005).
[CrossRef] [PubMed]

L. Rindorf, et al., "Photonic crystal fiber long-period gratings for biochemical sensing," Opt. Express 14, 8224- 8231 (2006).
[CrossRef] [PubMed]

S. Yiou, et al., "Stimulated Raman scattering in an ethanol core microstructured optical fiber," Opt. Express 13, 4786-4791 (2005).
[CrossRef] [PubMed]

Opt. Lett. (1)

Science (2)

R. F. Creganet, et al., "Single-Mode Photonic Band Gap Guidance of Light in Air," Science 285, 1537-1539 (1999).
[CrossRef]

P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(color online) (a) Schematic representation of the completely filled SCMOF and (b) the selectively filled HCPCF. (c) Corresponding simulated electric field intensity distribution of the fundamental eigenmode at a wavelength of λ = 530 nm in the completely filled SCMOF and (d) in the selectively filled HCPCF. Ethylene glycol is assumed as sample material in both cases.

Fig. 2.
Fig. 2.

(color online) (a) Optical microscope image of the end facet of a HCPCF after the cladding holes have been sealed by a fusion splicer. The arrow indicates the point where only the hollow core is still open, enabling a selective infiltration of liquids. (b) Image of the white light transmission through the selectively filled HCPCF. Here, two adjacent cladding holes are filled in addition to the core, clearly demonstrating the index guiding. (c) Part of the experimental setup. R6G solved in ethylene glycol is selectively injected into the HCPCF and exited by an Ar+ laser at λ = 514 nm.

Fig. 3.
Fig. 3.

(color online) (a) Absorption and fluorescence spectrum of R6G solved in ethylene glycol and completely infiltrated into the SCMOF (black curves). The dye concentration is 5×10-5 M and 5×10-6 M, respectively. (b) Corresponding absorption and fluorescence spectrum of the selectively infiltrated HCPCF (black curves) for concentrations of c = 5×10-7 M and c = 1×10-9 M, respectively. The red curves in (a) and (b) indicate free space measurements of R6G (c = 1.7×10-6 M). (c) and (d) Averaged absorption results for different concentrations of R6G in the completely filled SCMOF and the selectively infiltrated HCPCF, respectively. The slope of the graphs represents the interaction coefficient γ. (e) and (f) Averaged fluorescence intensity for different concentrations of R6G in the completely filled SCMOF and the selectively infiltrated HCPCF, respectively.

Tables (2)

Tables Icon

Table 1. Interaction coefficient γ for the fundamental mode λ = 530 nm in the completely filled SCMOF and the selectively filled HCPCF for different infiltrated solvents.

Tables Icon

Table 2. Internal numerical aperture NA for the fundamental mode at λ = 530 nm in the completely filled SCMOF and the selectively filled HCPCF for different infiltrated solvents.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I = I 0 e α .
NA = sin [ π 2 arcsin ( n eff cladding n eff core ) ] ,
c min ( L ) ( γ ) = [ ln ( I 0 I ) ] min Lγε

Metrics