Abstract

The experimental observation of photorefractive self focusing in Sn 2 P 2 S 6 : Te bulk crystals at 1.06 μm wavelength is presented. Steady state self focusing is reached as fast as 15 ms for an input peak intensity equal to 160 W/cm2. Self focusing is maximum for input peak intensities around 15 W/cm2 and is decreasing for intensities below and above this value.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Lan, M. F. Shih and M. Segev, "Self-trapping of one-dimensional and two-dimensional optical beams and induced waveguides in photorefractive KNbO3," Opt. Lett. 22, 1467 (1997).
    [CrossRef]
  2. M. Chauvet, S. Hawkins, G. Salamo, M. Segev, D. Bliss, and G. Bryant, "Self-trapping of planar optical beams by use of the photorefractive effect in InP:Fe," Opt. Lett. 21, 1333 (1996).
    [CrossRef]
  3. T. Schwartz, Y. Ganor, T. Carmon, R. Uzdin, S. Shwartz, M. Segev, and U. El-Hanany, "Photorefractive solitons and light-induced resonance control in semiconductor CdZn:Te," Opt. Lett. 27(14), 1229 (2002).
    [CrossRef]
  4. A. A. Grabar, M. Jazbinsek, A. Shumelyuk, Yu. M. Vysochanskii, G. Montemezzani, and P. Gunter, chapter Photorefractive effect in Sn2P2S6 in Photorefractive Materials and Their Applications, Vol. 2, J. P.Huignard and P. G¨unter, eds., pp. 327-362 (Springer, New York, 2007).
  5. A. Shumelyuk, S. Odoulov, D. Kip, and E. Kratzig, "Electric-field enhancement of beam coupling in SPS," Appl. Phys. B 72, 707-710 (2001).
    [CrossRef]
  6. T. Bach, M. Jazbinsek, P. Gunter, A. A. Grabar, I. M.Stoika, and Yu. M. Vysochanskii, "Self Pumped Optical Phase Conjugation at 1.06 μm in Te-doped Sn2P2S6," Opt. Express 13, 9890 (2005).
    [CrossRef] [PubMed]
  7. A. Shumelyuk, S. Odoulov, O. Oleynik, G. Brost, and A. Grabar, "Spectral sensitivity of nominally undoped photorefractive Sn2P2S6," Appl. Phys. B 88, 79-82 (2007).
    [CrossRef]
  8. T. Bach, M. Jazbinsek, G. Montemezzani, P. G¨unter, A. A. Grabar, and Yu. M. Vysochanskii, "Tailoring of infrared photorefractive properties of Sn2P2S6 crystals by Te and Sb doping," J. Opt. Soc. Am. B 24, 1535 (2007).
    [CrossRef]
  9. A. Zozulya, D. Anderson, A. Mamaev, and M. Saffman, "Solitary attractors and low-order filamentation in anisotropic self-focusing media," Phys. Rev. A 57, 522 (1998).
    [CrossRef]
  10. N. Fressengeas, J. Maufoy, and G. Kugel, "Temporal behavior of bidimensional photorefractive bright spatial solitons," Phys. Rev. E. 54, 6866-6875 (1996).
    [CrossRef]
  11. G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. M. Fejer, and M. C. Bashaw, "Dark and bright photovoltaic spatial solitons," Phys. Rev. A 50, 4457 (1994).
    [CrossRef]
  12. N. Fressengeas, N. Khelfaoui, C. Dan, D. Wolfersberger, G. Montemezzani, H. Leblond, and M. Chauvet, "Roles of resonance and dark irradiance for infrared photorefractive self-focusing and solitons in bi-polar InP:Fe," Accepted for publication in Phys. Rev. A; available for consultation at arXiv:0705.3521v2.
  13. A. A. Zozulya and D. Z. Anderson, "Nonstationary self-focusing in photorefractive media," Opt. Lett. 20, 837 (1995).
    [CrossRef] [PubMed]
  14. M. F. Shih, P. Leach, M. Segev, M. H. Garett, G. J. Salamo, and G. C. Valley, "Two-dimensional steady-state photorefractive screening solitons," Opt. Lett. 21, 324 (1996).
    [CrossRef] [PubMed]
  15. N. Fressengeas, D. Wolfersberger, J. Maufoy, and G. Kugel, "Experimental study of the self-focusing process temporal behavior in photorefractive Bi12TiO20," App. Phys. 85, 2062 (1999).
    [CrossRef]

2007 (2)

A. Shumelyuk, S. Odoulov, O. Oleynik, G. Brost, and A. Grabar, "Spectral sensitivity of nominally undoped photorefractive Sn2P2S6," Appl. Phys. B 88, 79-82 (2007).
[CrossRef]

T. Bach, M. Jazbinsek, G. Montemezzani, P. G¨unter, A. A. Grabar, and Yu. M. Vysochanskii, "Tailoring of infrared photorefractive properties of Sn2P2S6 crystals by Te and Sb doping," J. Opt. Soc. Am. B 24, 1535 (2007).
[CrossRef]

2005 (1)

2002 (1)

2001 (1)

A. Shumelyuk, S. Odoulov, D. Kip, and E. Kratzig, "Electric-field enhancement of beam coupling in SPS," Appl. Phys. B 72, 707-710 (2001).
[CrossRef]

1999 (1)

N. Fressengeas, D. Wolfersberger, J. Maufoy, and G. Kugel, "Experimental study of the self-focusing process temporal behavior in photorefractive Bi12TiO20," App. Phys. 85, 2062 (1999).
[CrossRef]

1998 (1)

A. Zozulya, D. Anderson, A. Mamaev, and M. Saffman, "Solitary attractors and low-order filamentation in anisotropic self-focusing media," Phys. Rev. A 57, 522 (1998).
[CrossRef]

1997 (1)

1996 (3)

1995 (1)

1994 (1)

G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. M. Fejer, and M. C. Bashaw, "Dark and bright photovoltaic spatial solitons," Phys. Rev. A 50, 4457 (1994).
[CrossRef]

Anderson, D.

A. Zozulya, D. Anderson, A. Mamaev, and M. Saffman, "Solitary attractors and low-order filamentation in anisotropic self-focusing media," Phys. Rev. A 57, 522 (1998).
[CrossRef]

Anderson, D. Z.

Bach, T.

Bashaw, M. C.

G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. M. Fejer, and M. C. Bashaw, "Dark and bright photovoltaic spatial solitons," Phys. Rev. A 50, 4457 (1994).
[CrossRef]

Bliss, D.

Brost, G.

A. Shumelyuk, S. Odoulov, O. Oleynik, G. Brost, and A. Grabar, "Spectral sensitivity of nominally undoped photorefractive Sn2P2S6," Appl. Phys. B 88, 79-82 (2007).
[CrossRef]

Bryant, G.

Carmon, T.

Chauvet, M.

Crosignani, B.

G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. M. Fejer, and M. C. Bashaw, "Dark and bright photovoltaic spatial solitons," Phys. Rev. A 50, 4457 (1994).
[CrossRef]

El-Hanany, U.

Fejer, M. M.

G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. M. Fejer, and M. C. Bashaw, "Dark and bright photovoltaic spatial solitons," Phys. Rev. A 50, 4457 (1994).
[CrossRef]

Fressengeas, N.

N. Fressengeas, D. Wolfersberger, J. Maufoy, and G. Kugel, "Experimental study of the self-focusing process temporal behavior in photorefractive Bi12TiO20," App. Phys. 85, 2062 (1999).
[CrossRef]

N. Fressengeas, J. Maufoy, and G. Kugel, "Temporal behavior of bidimensional photorefractive bright spatial solitons," Phys. Rev. E. 54, 6866-6875 (1996).
[CrossRef]

Ganor, Y.

Garett, M. H.

Grabar, A.

A. Shumelyuk, S. Odoulov, O. Oleynik, G. Brost, and A. Grabar, "Spectral sensitivity of nominally undoped photorefractive Sn2P2S6," Appl. Phys. B 88, 79-82 (2007).
[CrossRef]

Hawkins, S.

Jazbinsek, M.

Kip, D.

A. Shumelyuk, S. Odoulov, D. Kip, and E. Kratzig, "Electric-field enhancement of beam coupling in SPS," Appl. Phys. B 72, 707-710 (2001).
[CrossRef]

Kugel, G.

N. Fressengeas, D. Wolfersberger, J. Maufoy, and G. Kugel, "Experimental study of the self-focusing process temporal behavior in photorefractive Bi12TiO20," App. Phys. 85, 2062 (1999).
[CrossRef]

N. Fressengeas, J. Maufoy, and G. Kugel, "Temporal behavior of bidimensional photorefractive bright spatial solitons," Phys. Rev. E. 54, 6866-6875 (1996).
[CrossRef]

Lan, S.

Leach, P.

Mamaev, A.

A. Zozulya, D. Anderson, A. Mamaev, and M. Saffman, "Solitary attractors and low-order filamentation in anisotropic self-focusing media," Phys. Rev. A 57, 522 (1998).
[CrossRef]

Maufoy, J.

N. Fressengeas, D. Wolfersberger, J. Maufoy, and G. Kugel, "Experimental study of the self-focusing process temporal behavior in photorefractive Bi12TiO20," App. Phys. 85, 2062 (1999).
[CrossRef]

N. Fressengeas, J. Maufoy, and G. Kugel, "Temporal behavior of bidimensional photorefractive bright spatial solitons," Phys. Rev. E. 54, 6866-6875 (1996).
[CrossRef]

Montemezzani, G.

Odoulov, S.

A. Shumelyuk, S. Odoulov, O. Oleynik, G. Brost, and A. Grabar, "Spectral sensitivity of nominally undoped photorefractive Sn2P2S6," Appl. Phys. B 88, 79-82 (2007).
[CrossRef]

A. Shumelyuk, S. Odoulov, D. Kip, and E. Kratzig, "Electric-field enhancement of beam coupling in SPS," Appl. Phys. B 72, 707-710 (2001).
[CrossRef]

Oleynik, O.

A. Shumelyuk, S. Odoulov, O. Oleynik, G. Brost, and A. Grabar, "Spectral sensitivity of nominally undoped photorefractive Sn2P2S6," Appl. Phys. B 88, 79-82 (2007).
[CrossRef]

Saffman, M.

A. Zozulya, D. Anderson, A. Mamaev, and M. Saffman, "Solitary attractors and low-order filamentation in anisotropic self-focusing media," Phys. Rev. A 57, 522 (1998).
[CrossRef]

Salamo, G.

Salamo, G. J.

Schwartz, T.

Segev, M.

Shih, M. F.

Shumelyuk, A.

A. Shumelyuk, S. Odoulov, O. Oleynik, G. Brost, and A. Grabar, "Spectral sensitivity of nominally undoped photorefractive Sn2P2S6," Appl. Phys. B 88, 79-82 (2007).
[CrossRef]

A. Shumelyuk, S. Odoulov, D. Kip, and E. Kratzig, "Electric-field enhancement of beam coupling in SPS," Appl. Phys. B 72, 707-710 (2001).
[CrossRef]

Shwartz, S.

Uzdin, R.

Valley, G. C.

M. F. Shih, P. Leach, M. Segev, M. H. Garett, G. J. Salamo, and G. C. Valley, "Two-dimensional steady-state photorefractive screening solitons," Opt. Lett. 21, 324 (1996).
[CrossRef] [PubMed]

G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. M. Fejer, and M. C. Bashaw, "Dark and bright photovoltaic spatial solitons," Phys. Rev. A 50, 4457 (1994).
[CrossRef]

Wolfersberger, D.

N. Fressengeas, D. Wolfersberger, J. Maufoy, and G. Kugel, "Experimental study of the self-focusing process temporal behavior in photorefractive Bi12TiO20," App. Phys. 85, 2062 (1999).
[CrossRef]

Yariv, A.

G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. M. Fejer, and M. C. Bashaw, "Dark and bright photovoltaic spatial solitons," Phys. Rev. A 50, 4457 (1994).
[CrossRef]

Zozulya, A.

A. Zozulya, D. Anderson, A. Mamaev, and M. Saffman, "Solitary attractors and low-order filamentation in anisotropic self-focusing media," Phys. Rev. A 57, 522 (1998).
[CrossRef]

Zozulya, A. A.

App. Phys. (1)

N. Fressengeas, D. Wolfersberger, J. Maufoy, and G. Kugel, "Experimental study of the self-focusing process temporal behavior in photorefractive Bi12TiO20," App. Phys. 85, 2062 (1999).
[CrossRef]

Appl. Phys. B (2)

A. Shumelyuk, S. Odoulov, D. Kip, and E. Kratzig, "Electric-field enhancement of beam coupling in SPS," Appl. Phys. B 72, 707-710 (2001).
[CrossRef]

A. Shumelyuk, S. Odoulov, O. Oleynik, G. Brost, and A. Grabar, "Spectral sensitivity of nominally undoped photorefractive Sn2P2S6," Appl. Phys. B 88, 79-82 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (5)

Phys. Rev. A (2)

A. Zozulya, D. Anderson, A. Mamaev, and M. Saffman, "Solitary attractors and low-order filamentation in anisotropic self-focusing media," Phys. Rev. A 57, 522 (1998).
[CrossRef]

G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. M. Fejer, and M. C. Bashaw, "Dark and bright photovoltaic spatial solitons," Phys. Rev. A 50, 4457 (1994).
[CrossRef]

Phys. Rev. E. (1)

N. Fressengeas, J. Maufoy, and G. Kugel, "Temporal behavior of bidimensional photorefractive bright spatial solitons," Phys. Rev. E. 54, 6866-6875 (1996).
[CrossRef]

Other (2)

N. Fressengeas, N. Khelfaoui, C. Dan, D. Wolfersberger, G. Montemezzani, H. Leblond, and M. Chauvet, "Roles of resonance and dark irradiance for infrared photorefractive self-focusing and solitons in bi-polar InP:Fe," Accepted for publication in Phys. Rev. A; available for consultation at arXiv:0705.3521v2.

A. A. Grabar, M. Jazbinsek, A. Shumelyuk, Yu. M. Vysochanskii, G. Montemezzani, and P. Gunter, chapter Photorefractive effect in Sn2P2S6 in Photorefractive Materials and Their Applications, Vol. 2, J. P.Huignard and P. G¨unter, eds., pp. 327-362 (Springer, New York, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a)2D output beam profile; from left to right: no applied field, 300 V/cm, 700 V/cm and 1000 V/cm; the arrow indicates the direction of the applied electric field; (b) Output beam profile along the central horizontal line for different applied electric fields. The input power is 200 μW, corresponding to a 20 W/cm2 peak intensity. The beam waist is 25 μm.

Fig. 2.
Fig. 2.

Steady state self focusing ratio R 1 versus input power for different applied fields measured with the CCD camera. The self focusing ratio is defined as the ratio between output beam radius with and without applied field. The solid curves are guides to the eye.

Fig. 3.
Fig. 3.

Self focusing temporal evolution showing transient regime and steady state;Wi is the initial output beam radius (before the beam starts self focusing), Wp is the minimum radius attained during the self focusing and Ws is the radius at steady state. The beam intensity is 40 W/cm2, beam input waist is 25 μm, the applied field is 1000 V/cm. Inset: Time needed to reach minimum radius as a function of beam peak intensity. The solid line is a guide to the eye, corresponding to an inverse proportionality.

Fig. 4.
Fig. 4.

Self focusing ratio R 2 at minimum radius and at steady state as a function of incident intensity measured with the pinhole-photodiode system. Applied field=1000 V/cm.

Metrics