Abstract

We report on the generation of narrowband photon pairs at telecommunication wavelengths using a periodically poled lithium niobate waveguide that utilizes the nonlinear tensor element d 24 for type-II quasi phase matching. The FWHM bandwidth of the spontaneous parametric downconversion was 1 nm. The brightness of the photon pair source was ∼6×105/s/GHz when the pump power was 1 mW. The indistinguishability of the signal and idler photons generated by the degenerate spontaneous parametric downconversion process was studied in a Hong-Ou-Mandel type interference experiment.

© 2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High performance photon-pair source based on a fiber-coupled periodically poled KTiOPO4 waveguide

Tian Zhong, Franco N. C. Wong, Tony D. Roberts, and Philip Battle
Opt. Express 17(14) 12019-12030 (2009)

Integrated optical source of polarization entangled photons at 1310 nm

A. Martin, V. Cristofori, P. Aboussouan, H. Herrmann, W. Sohler, D.B. Ostrowsky, O. Alibart, and S. Tanzilli
Opt. Express 17(2) 1033-1041 (2009)

References

  • View by:
  • |
  • |
  • |

  1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
    [Crossref]
  2. J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental nonlocality proof of quantum tele-portation and entanglement swapping,” Phys. Rev. Lett. 88, 017903.1℃017903.4 (1998).
  3. D. Bouwmeester, J. W. Pan, K. Mattele, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum tele-portation,” Nature 390, 575–579 (1997).
    [Crossref]
  4. P. G. Kwiat, K. Mattel, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
    [Crossref] [PubMed]
  5. A. Yoshizawa, R. Kaji, and H. Tsuchida, “Two-photon interference at 1550nm using two periodically poled lithium niobate waveguides,” Jpn. J. Appl. Phys. 42, 5652–5653 (2003).
    [Crossref]
  6. H.de Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, and N. Gisin, “Quantum interference with photon pairs created in spatially separated source,” Phys. Rev. A. 67, 022301.1–022301.5 (2003).
    [Crossref]
  7. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
    [Crossref] [PubMed]
  8. H. Y. Shen, H. Xu, Z. D. Zeng, W. X. Lin, R. F. Wu, and G. F. Xu, “Measurement of refractive indices and thermal refractive-index coefficients of LiNbO3 crystal doped with 5 mol.%MgO,” Appl. Opt. 31, 6695–6697 (1992).
    [Crossref] [PubMed]
  9. T. Suhara and H. Kintaka, “Quantum theory analysis of twin-photon beams generated by parametric fluorescence,” IEEE Quantum Electron. 41, 1203–1205 (2005).
    [Crossref]
  10. M. Motoya, S. Kurimura, S. Inoue, Y. Usui, and H. Nakajima, “Type II quasi-phase matching in waveguide parametric down converter for quantum information technologies,” Conference on Lasers and ElectroOptics,Long Beach, USA (2006), CMB5.
  11. N. Namekata, Y. Makino, and S. Inoue, “Single-photon detector for long-distance fiber-optic quantum key distribution,” Opt. Lett. 27, 954–956 (2002).
    [Crossref]
  12. S. Mori, J. SÖderholm, N. Namekata, and S. Inoue, “On the distribution of 1550-nm photon pairs efficiently generated using a periodically poled lithium niobate waveguide,” Opt. Com. 264, 156–162 (2006).
    [Crossref]
  13. H.de Riedmatten, V. Scarani, I. Marcikic, A. Acín, W. Tittel,, H. Zbinden, and N. Gisin, “Two independent photon pairs versus four-photon entangled states in parametric down conversion,” J. Mod. Opt. 51, 1637–1649 (2004).
  14. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNb3 waveguide,” Opt. Lett. 30, 1725, (2005)
    [Crossref] [PubMed]
  15. R. H. Hadfield, J. L. Habif, J. Schlafer, R. E. Schwall, and S. W. Nam, “Quantum key distribution at 1550 nm with twin superconducting single-photon detector,”Appl. Phys. Lett. 89, 241129.1–241129.3 (2006)
    [Crossref]

2006 (2)

S. Mori, J. SÖderholm, N. Namekata, and S. Inoue, “On the distribution of 1550-nm photon pairs efficiently generated using a periodically poled lithium niobate waveguide,” Opt. Com. 264, 156–162 (2006).
[Crossref]

R. H. Hadfield, J. L. Habif, J. Schlafer, R. E. Schwall, and S. W. Nam, “Quantum key distribution at 1550 nm with twin superconducting single-photon detector,”Appl. Phys. Lett. 89, 241129.1–241129.3 (2006)
[Crossref]

2005 (2)

2004 (1)

H.de Riedmatten, V. Scarani, I. Marcikic, A. Acín, W. Tittel,, H. Zbinden, and N. Gisin, “Two independent photon pairs versus four-photon entangled states in parametric down conversion,” J. Mod. Opt. 51, 1637–1649 (2004).

2003 (2)

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Two-photon interference at 1550nm using two periodically poled lithium niobate waveguides,” Jpn. J. Appl. Phys. 42, 5652–5653 (2003).
[Crossref]

H.de Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, and N. Gisin, “Quantum interference with photon pairs created in spatially separated source,” Phys. Rev. A. 67, 022301.1–022301.5 (2003).
[Crossref]

2002 (2)

1998 (1)

J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental nonlocality proof of quantum tele-portation and entanglement swapping,” Phys. Rev. Lett. 88, 017903.1℃017903.4 (1998).

1997 (1)

D. Bouwmeester, J. W. Pan, K. Mattele, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum tele-portation,” Nature 390, 575–579 (1997).
[Crossref]

1995 (1)

P. G. Kwiat, K. Mattel, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref] [PubMed]

1992 (1)

1987 (1)

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Acín, A.

H.de Riedmatten, V. Scarani, I. Marcikic, A. Acín, W. Tittel,, H. Zbinden, and N. Gisin, “Two independent photon pairs versus four-photon entangled states in parametric down conversion,” J. Mod. Opt. 51, 1637–1649 (2004).

Bouwmeester, D.

J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental nonlocality proof of quantum tele-portation and entanglement swapping,” Phys. Rev. Lett. 88, 017903.1℃017903.4 (1998).

D. Bouwmeester, J. W. Pan, K. Mattele, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum tele-portation,” Nature 390, 575–579 (1997).
[Crossref]

Diamanti, E.

Eibl, M.

D. Bouwmeester, J. W. Pan, K. Mattele, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum tele-portation,” Nature 390, 575–579 (1997).
[Crossref]

Fejer, M. M.

Gisin, N.

H.de Riedmatten, V. Scarani, I. Marcikic, A. Acín, W. Tittel,, H. Zbinden, and N. Gisin, “Two independent photon pairs versus four-photon entangled states in parametric down conversion,” J. Mod. Opt. 51, 1637–1649 (2004).

H.de Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, and N. Gisin, “Quantum interference with photon pairs created in spatially separated source,” Phys. Rev. A. 67, 022301.1–022301.5 (2003).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Habif, J. L.

R. H. Hadfield, J. L. Habif, J. Schlafer, R. E. Schwall, and S. W. Nam, “Quantum key distribution at 1550 nm with twin superconducting single-photon detector,”Appl. Phys. Lett. 89, 241129.1–241129.3 (2006)
[Crossref]

Hadfield, R. H.

R. H. Hadfield, J. L. Habif, J. Schlafer, R. E. Schwall, and S. W. Nam, “Quantum key distribution at 1550 nm with twin superconducting single-photon detector,”Appl. Phys. Lett. 89, 241129.1–241129.3 (2006)
[Crossref]

Hong, C. K.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Inoue, S.

S. Mori, J. SÖderholm, N. Namekata, and S. Inoue, “On the distribution of 1550-nm photon pairs efficiently generated using a periodically poled lithium niobate waveguide,” Opt. Com. 264, 156–162 (2006).
[Crossref]

N. Namekata, Y. Makino, and S. Inoue, “Single-photon detector for long-distance fiber-optic quantum key distribution,” Opt. Lett. 27, 954–956 (2002).
[Crossref]

M. Motoya, S. Kurimura, S. Inoue, Y. Usui, and H. Nakajima, “Type II quasi-phase matching in waveguide parametric down converter for quantum information technologies,” Conference on Lasers and ElectroOptics,Long Beach, USA (2006), CMB5.

Kaji, R.

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Two-photon interference at 1550nm using two periodically poled lithium niobate waveguides,” Jpn. J. Appl. Phys. 42, 5652–5653 (2003).
[Crossref]

Kintaka, H.

T. Suhara and H. Kintaka, “Quantum theory analysis of twin-photon beams generated by parametric fluorescence,” IEEE Quantum Electron. 41, 1203–1205 (2005).
[Crossref]

Kurimura, S.

M. Motoya, S. Kurimura, S. Inoue, Y. Usui, and H. Nakajima, “Type II quasi-phase matching in waveguide parametric down converter for quantum information technologies,” Conference on Lasers and ElectroOptics,Long Beach, USA (2006), CMB5.

Kwiat, P. G.

P. G. Kwiat, K. Mattel, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref] [PubMed]

Langrock, C.

Lin, W. X.

Makino, Y.

Mandel, L.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Marcikic, I.

H.de Riedmatten, V. Scarani, I. Marcikic, A. Acín, W. Tittel,, H. Zbinden, and N. Gisin, “Two independent photon pairs versus four-photon entangled states in parametric down conversion,” J. Mod. Opt. 51, 1637–1649 (2004).

H.de Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, and N. Gisin, “Quantum interference with photon pairs created in spatially separated source,” Phys. Rev. A. 67, 022301.1–022301.5 (2003).
[Crossref]

Mattel, K.

P. G. Kwiat, K. Mattel, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref] [PubMed]

Mattele, K.

D. Bouwmeester, J. W. Pan, K. Mattele, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum tele-portation,” Nature 390, 575–579 (1997).
[Crossref]

Mori, S.

S. Mori, J. SÖderholm, N. Namekata, and S. Inoue, “On the distribution of 1550-nm photon pairs efficiently generated using a periodically poled lithium niobate waveguide,” Opt. Com. 264, 156–162 (2006).
[Crossref]

Motoya, M.

M. Motoya, S. Kurimura, S. Inoue, Y. Usui, and H. Nakajima, “Type II quasi-phase matching in waveguide parametric down converter for quantum information technologies,” Conference on Lasers and ElectroOptics,Long Beach, USA (2006), CMB5.

Nakajima, H.

M. Motoya, S. Kurimura, S. Inoue, Y. Usui, and H. Nakajima, “Type II quasi-phase matching in waveguide parametric down converter for quantum information technologies,” Conference on Lasers and ElectroOptics,Long Beach, USA (2006), CMB5.

Nam, S. W.

R. H. Hadfield, J. L. Habif, J. Schlafer, R. E. Schwall, and S. W. Nam, “Quantum key distribution at 1550 nm with twin superconducting single-photon detector,”Appl. Phys. Lett. 89, 241129.1–241129.3 (2006)
[Crossref]

Namekata, N.

S. Mori, J. SÖderholm, N. Namekata, and S. Inoue, “On the distribution of 1550-nm photon pairs efficiently generated using a periodically poled lithium niobate waveguide,” Opt. Com. 264, 156–162 (2006).
[Crossref]

N. Namekata, Y. Makino, and S. Inoue, “Single-photon detector for long-distance fiber-optic quantum key distribution,” Opt. Lett. 27, 954–956 (2002).
[Crossref]

Ou, Z. Y.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Pan, J. W.

J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental nonlocality proof of quantum tele-portation and entanglement swapping,” Phys. Rev. Lett. 88, 017903.1℃017903.4 (1998).

D. Bouwmeester, J. W. Pan, K. Mattele, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum tele-portation,” Nature 390, 575–579 (1997).
[Crossref]

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Riedmatten, H.de

H.de Riedmatten, V. Scarani, I. Marcikic, A. Acín, W. Tittel,, H. Zbinden, and N. Gisin, “Two independent photon pairs versus four-photon entangled states in parametric down conversion,” J. Mod. Opt. 51, 1637–1649 (2004).

H.de Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, and N. Gisin, “Quantum interference with photon pairs created in spatially separated source,” Phys. Rev. A. 67, 022301.1–022301.5 (2003).
[Crossref]

Roussev, R. V.

Scarani, V.

H.de Riedmatten, V. Scarani, I. Marcikic, A. Acín, W. Tittel,, H. Zbinden, and N. Gisin, “Two independent photon pairs versus four-photon entangled states in parametric down conversion,” J. Mod. Opt. 51, 1637–1649 (2004).

Schlafer, J.

R. H. Hadfield, J. L. Habif, J. Schlafer, R. E. Schwall, and S. W. Nam, “Quantum key distribution at 1550 nm with twin superconducting single-photon detector,”Appl. Phys. Lett. 89, 241129.1–241129.3 (2006)
[Crossref]

Schwall, R. E.

R. H. Hadfield, J. L. Habif, J. Schlafer, R. E. Schwall, and S. W. Nam, “Quantum key distribution at 1550 nm with twin superconducting single-photon detector,”Appl. Phys. Lett. 89, 241129.1–241129.3 (2006)
[Crossref]

Sergienko, A. V.

P. G. Kwiat, K. Mattel, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref] [PubMed]

Shen, H. Y.

Shih, Y.

P. G. Kwiat, K. Mattel, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref] [PubMed]

SÖderholm, J.

S. Mori, J. SÖderholm, N. Namekata, and S. Inoue, “On the distribution of 1550-nm photon pairs efficiently generated using a periodically poled lithium niobate waveguide,” Opt. Com. 264, 156–162 (2006).
[Crossref]

Suhara, T.

T. Suhara and H. Kintaka, “Quantum theory analysis of twin-photon beams generated by parametric fluorescence,” IEEE Quantum Electron. 41, 1203–1205 (2005).
[Crossref]

Takesue, H.

Tittel, W.

H.de Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, and N. Gisin, “Quantum interference with photon pairs created in spatially separated source,” Phys. Rev. A. 67, 022301.1–022301.5 (2003).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Tittel,, W.

H.de Riedmatten, V. Scarani, I. Marcikic, A. Acín, W. Tittel,, H. Zbinden, and N. Gisin, “Two independent photon pairs versus four-photon entangled states in parametric down conversion,” J. Mod. Opt. 51, 1637–1649 (2004).

Tsuchida, H.

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Two-photon interference at 1550nm using two periodically poled lithium niobate waveguides,” Jpn. J. Appl. Phys. 42, 5652–5653 (2003).
[Crossref]

Usui, Y.

M. Motoya, S. Kurimura, S. Inoue, Y. Usui, and H. Nakajima, “Type II quasi-phase matching in waveguide parametric down converter for quantum information technologies,” Conference on Lasers and ElectroOptics,Long Beach, USA (2006), CMB5.

Weinfurter, H.

J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental nonlocality proof of quantum tele-portation and entanglement swapping,” Phys. Rev. Lett. 88, 017903.1℃017903.4 (1998).

D. Bouwmeester, J. W. Pan, K. Mattele, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum tele-portation,” Nature 390, 575–579 (1997).
[Crossref]

P. G. Kwiat, K. Mattel, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref] [PubMed]

Wu, R. F.

Xu, G. F.

Xu, H.

Yamamoto, Y.

Yoshizawa, A.

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Two-photon interference at 1550nm using two periodically poled lithium niobate waveguides,” Jpn. J. Appl. Phys. 42, 5652–5653 (2003).
[Crossref]

Zbinden, H.

H.de Riedmatten, V. Scarani, I. Marcikic, A. Acín, W. Tittel,, H. Zbinden, and N. Gisin, “Two independent photon pairs versus four-photon entangled states in parametric down conversion,” J. Mod. Opt. 51, 1637–1649 (2004).

H.de Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, and N. Gisin, “Quantum interference with photon pairs created in spatially separated source,” Phys. Rev. A. 67, 022301.1–022301.5 (2003).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Zeilinger, A.

J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental nonlocality proof of quantum tele-portation and entanglement swapping,” Phys. Rev. Lett. 88, 017903.1℃017903.4 (1998).

D. Bouwmeester, J. W. Pan, K. Mattele, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum tele-portation,” Nature 390, 575–579 (1997).
[Crossref]

P. G. Kwiat, K. Mattel, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref] [PubMed]

Zeng, Z. D.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R. H. Hadfield, J. L. Habif, J. Schlafer, R. E. Schwall, and S. W. Nam, “Quantum key distribution at 1550 nm with twin superconducting single-photon detector,”Appl. Phys. Lett. 89, 241129.1–241129.3 (2006)
[Crossref]

IEEE Quantum Electron. (1)

T. Suhara and H. Kintaka, “Quantum theory analysis of twin-photon beams generated by parametric fluorescence,” IEEE Quantum Electron. 41, 1203–1205 (2005).
[Crossref]

J. Mod. Opt. (1)

H.de Riedmatten, V. Scarani, I. Marcikic, A. Acín, W. Tittel,, H. Zbinden, and N. Gisin, “Two independent photon pairs versus four-photon entangled states in parametric down conversion,” J. Mod. Opt. 51, 1637–1649 (2004).

Jpn. J. Appl. Phys. (1)

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Two-photon interference at 1550nm using two periodically poled lithium niobate waveguides,” Jpn. J. Appl. Phys. 42, 5652–5653 (2003).
[Crossref]

Nature (1)

D. Bouwmeester, J. W. Pan, K. Mattele, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum tele-portation,” Nature 390, 575–579 (1997).
[Crossref]

Opt. Com. (1)

S. Mori, J. SÖderholm, N. Namekata, and S. Inoue, “On the distribution of 1550-nm photon pairs efficiently generated using a periodically poled lithium niobate waveguide,” Opt. Com. 264, 156–162 (2006).
[Crossref]

Opt. Lett. (2)

Phys. Rev. A. (1)

H.de Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, and N. Gisin, “Quantum interference with photon pairs created in spatially separated source,” Phys. Rev. A. 67, 022301.1–022301.5 (2003).
[Crossref]

Phys. Rev. Lett. (3)

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

P. G. Kwiat, K. Mattel, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref] [PubMed]

J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental nonlocality proof of quantum tele-portation and entanglement swapping,” Phys. Rev. Lett. 88, 017903.1℃017903.4 (1998).

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Other (1)

M. Motoya, S. Kurimura, S. Inoue, Y. Usui, and H. Nakajima, “Type II quasi-phase matching in waveguide parametric down converter for quantum information technologies,” Conference on Lasers and ElectroOptics,Long Beach, USA (2006), CMB5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Comparisons between the SPDC bandwidths of type-0 and type-IIQPM devices. The dashed and solid lines show the numerical results using Eqs. (1)(3). (a) the phase mismatch parameters as functions of the pump wavelength. (b) the SPDC bandwidths as functions of the interaction length.

Fig. 2.
Fig. 2.

Experimental setup to measure the generation rate of photon pairs. L: lenses, IF: interference filter, PBS: polarizing beamspliter, SMF: single-mode fiber, Disc.: Discriminator, D1,2: single-photon detectors, S1,2: single-count rate at D1,2, RC: coincidence-counts per second.

Fig. 3.
Fig. 3.

Comparison between the measured spectra of the photon pairs generated by the two different types of QPM devices. The gray and black lines show the spectra of the photon pairs generated by the type-0 and type-II QPM devices, respectively.

Fig. 4.
Fig. 4.

Experimental and theoretical coincidence-count rates. The filled circles show the measured values of the coincidence-count rates, and the solid line shows the theoretical curve.

Fig. 5.
Fig. 5.

Schematic diagram of the HOM type interference experiment. HWP1,2; half-wave plate, CR; corner reflector, PMF; polarization maintaining fiber, PMFC; polarization maintaining 50/50 fiber coupler.

Fig. 6.
Fig. 6.

Experimental results of a Hong-Ou-Mandel type interference experiment. The circles and squares show the measured values of the coincidence-counts and single-counts, respectively as functions of the relative delay between the signal and idler photons. The solid line shows the theoretical curve derived from Eq. (5).

Tables (1)

Tables Icon

Table 1. Measured brightness of the type-0 and type-II QPM devices when the pump power was 1 mW.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

1 λ 3 = 1 λ 1 + 1 λ 2 .
Δ = π [ n 3 λ 3 ( n 1 λ 1 + n 2 λ 2 + 1 Λ ) ] ,
P ω 1 sinh ( l ( ω 1 ω 2 ) κ 2 P 3 Δ 2 ) l ( ω 1 ω 2 ) κ 2 P 3 Δ 2 2 d ω 2 ,
N c = C [ 1 V HOM e ( Δωδτ ) 2 ] ,
N cd = C 0 ( n 3 + n 2 ) l 2 c { 1 ( 2 c n 3 + n 2 ) Lt p } 2 [ 1 e { Δ ω ( δτ 2 ( n 3 n 2 ) n 3 + n 2 t p ) } 2 ] dt p ,

Metrics