Abstract

We report selective metallization on surfaces of insulators (glass slides and lithium niobate crystal) based on femtosecond laser modification combined with electroless plating. The process is mainly composed of four steps: (1) formation of silver nitrate thin films on the surfaces of glass or crystal substrates; (2) generation of silver particles in the irradiated area by femtosecond laser direct writing; (3) removal of unirradiated silver nitrate films; and (4) selective electroless plating in the modified area. We discuss the mechanism of selective metallization on the insulators. Moreover, we investigate the electrical and adhesive properties of the copper microstructures patterned on the insulator surfaces, showing great potential of integrating electrical functions into lab-on-a-chip devices.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, "Ultrafast processes for bulk modification of transparent materials," MRS Bull. 31, 620-625 (2006).
    [CrossRef]
  2. Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, "Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser," Opt. Lett. 28, 1144-1146 (2003).
    [CrossRef] [PubMed]
  3. K. Sugioka, Y. Cheng, and K. Midorikawa, "Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture," Appl. Phys. A 81, 1-10 (2005).
    [CrossRef]
  4. D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature (London) 442, 381-386 (2006).
    [CrossRef]
  5. Y. Cheng, K. Sugioka, and K. Midorikawa, "Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing," Opt. Lett. 29, 2007-2009 (2004).
    [CrossRef] [PubMed]
  6. H. Sun, F. He, Z. Zhou, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, "Fabrication of microfluidic optical waveguides on glass chips with femtosecond laser pulses, " Opt. Lett.,  32, 1536-1538 (2007).
    [CrossRef] [PubMed]
  7. P. Van Zant, Microchip Fabrication: A Practical Guide to Semiconductor Processing, 4th edition (McGraw-Hill Professional Publishing, New York, 2000).
    [PubMed]
  8. M. Datta, T. Osaka, and J. W. Schultze, Microelectronic packaging (CRC Press, Boca Raton, 2005).
  9. K. Sugioka, B. Gu, and A. Holmes, "The state of the art and future prospects for laser direct-write for industrial and commercial applications," MRS Bull. 32, 47-54 (2007).
    [CrossRef]
  10. H. Esrom, J. Zhang, U. Kogelschatz, A. J. Pedraza, "New approach of a laser-induced forward transfer for deposition of patterned thin metal films," Appl. Surf. Sci. 86, 202-207 (1995).
    [CrossRef]
  11. C. Duty, D. Jean, and W. J. Lackey, "Laser chemical vapor deposition: materials, modeling, and process control," Int. Mater. Rev. 46, 271-287 (2001).
    [CrossRef]
  12. L. Mini, C. Giaconia, and C. Arnone, "Copper patterning on dielectrics by laser writing in liquid solution," Appl. Phys. Lett. 64, 3404-3406 (1994).
    [CrossRef]
  13. Y. Hanada, K. Sugioka, Y. Gomi, H. Yamaoka, O. Otsuki, I. Miyamoto, and K. Midorikawa, "Development of practical system for laser-induced plasma-assisted ablation (LIPAA) for micromachining of glass materials," Appl. Phys. A 79, 1001-1003 (2004).
    [CrossRef]
  14. H. Hidai and H. Tokura, "Direct laser writing of aluminum and copper on glass surfaces from metal powder," Appl. Surf. Sci. 174, 118-124 (2001).
    [CrossRef]
  15. K. Sugioka, T. Hongo, H. Takai, and K. Midorikawa, "Selective metallization of internal walls of hollow structures inside glass using femtosecond laser," Appl. Phys. Lett. 86, 171910 (2005).
    [CrossRef]
  16. V. M. Dubin, Y. Shacham-Diamand, B. Zhao, P.K. Vasudev, and C. H. Ting, "Selective and blanket electroless copper deposition for ultralarge scale integration," J. Electrochem. Soc. 144, 898-908(1997).
    [CrossRef]
  17. L. Gui, B. Xi, and T.C. Chong, " Microstructure in lithium niobate by use of focused femtosecond laser pulses," IEEE Photon. Technol. Lett. 16, 1337-1339(2004).
    [CrossRef]
  18. T. Baldacchini, A.-C. Pons, J. Pons, C. N. LaFratta, J. T. Fourkas, Y. Sun, and M. J. Naughton, "Multi-photon laser direct writing of two-dimensional silver structures," Opt. Express 13,1275-1280 (2005).
    [CrossRef] [PubMed]
  19. T. Tanaka, A. Ishikawa, and S. Kawata, "Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure," Appl. Phys. Lett. 88, 081107 (2006).
    [CrossRef]
  20. C. B. Schaffer, J. F. García, and E. Mazur, "Bulk heating of transparent materials using a high-repetition-rate femtosecond laser," Appl. Phys. A 76, 351-354 (2004).
    [CrossRef]
  21. W. Watanabe, S. Onda, T. Tamaki, K. Itoh, and J. Nishii, "Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses," Appl. Phys. Lett. 89, 021106 (2006).
    [CrossRef]
  22. A. A. Mewe, E. S. Kooij, and B. Poelsema, "Seeded-growth approach to selective metallization of microcontact-printed patterns," Langmuir 22, 5584-5587 (2006).
    [CrossRef] [PubMed]
  23. B. R. Harkness, M. Rudolph, and K. Takeuchi, "Site selective copper and silver electroless metallization facilitated by a photolithographically patterned hydrogen silsesquioxane mediated seed layer," Chem. Mater. 14, 1448-1451 (2002).
    [CrossRef]
  24. D. Chen, Q. Lu, and Y. Zhao, "Laser-induced site-selective silver seeding on polyimide for electroless copper plating," Appl. Surf. Sci. 253, 1573-1580 (2006).
    [CrossRef]
  25. G. A. Shafeev, "Laser-assisted activation of dielectrics for electroless metal plating," Appl. Phys. A 67, 303-311 (1998).
    [CrossRef]
  26. T. J. Hirsch, R. F. Miracky, and C. Lin, "Selective-area electroless copper plating on polyimide employing laser patterning of a catalytic film," Appl. Phys. Lett. 57, 1357-1359 (1990).
    [CrossRef]
  27. A. P. Joglekar, H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, "Optics at critical intensity: Applications to nanomorphing," Proc. Natl. Acad. Sci. USA 101, 5856-5861 (2004).
    [CrossRef] [PubMed]
  28. Y. Cheng, K. Sugioka, K. Midorikawa, and Z. Xu. "Integrating 3D photonics and microfluidic using ultrashort laser pulses," SPIE Newsroom (2006), http://spie.org/x8513.xml.

2007 (2)

K. Sugioka, B. Gu, and A. Holmes, "The state of the art and future prospects for laser direct-write for industrial and commercial applications," MRS Bull. 32, 47-54 (2007).
[CrossRef]

H. Sun, F. He, Z. Zhou, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, "Fabrication of microfluidic optical waveguides on glass chips with femtosecond laser pulses, " Opt. Lett.,  32, 1536-1538 (2007).
[CrossRef] [PubMed]

2006 (6)

D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature (London) 442, 381-386 (2006).
[CrossRef]

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, "Ultrafast processes for bulk modification of transparent materials," MRS Bull. 31, 620-625 (2006).
[CrossRef]

T. Tanaka, A. Ishikawa, and S. Kawata, "Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure," Appl. Phys. Lett. 88, 081107 (2006).
[CrossRef]

W. Watanabe, S. Onda, T. Tamaki, K. Itoh, and J. Nishii, "Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses," Appl. Phys. Lett. 89, 021106 (2006).
[CrossRef]

A. A. Mewe, E. S. Kooij, and B. Poelsema, "Seeded-growth approach to selective metallization of microcontact-printed patterns," Langmuir 22, 5584-5587 (2006).
[CrossRef] [PubMed]

D. Chen, Q. Lu, and Y. Zhao, "Laser-induced site-selective silver seeding on polyimide for electroless copper plating," Appl. Surf. Sci. 253, 1573-1580 (2006).
[CrossRef]

2005 (3)

K. Sugioka, T. Hongo, H. Takai, and K. Midorikawa, "Selective metallization of internal walls of hollow structures inside glass using femtosecond laser," Appl. Phys. Lett. 86, 171910 (2005).
[CrossRef]

K. Sugioka, Y. Cheng, and K. Midorikawa, "Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture," Appl. Phys. A 81, 1-10 (2005).
[CrossRef]

T. Baldacchini, A.-C. Pons, J. Pons, C. N. LaFratta, J. T. Fourkas, Y. Sun, and M. J. Naughton, "Multi-photon laser direct writing of two-dimensional silver structures," Opt. Express 13,1275-1280 (2005).
[CrossRef] [PubMed]

2004 (5)

Y. Cheng, K. Sugioka, and K. Midorikawa, "Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing," Opt. Lett. 29, 2007-2009 (2004).
[CrossRef] [PubMed]

Y. Hanada, K. Sugioka, Y. Gomi, H. Yamaoka, O. Otsuki, I. Miyamoto, and K. Midorikawa, "Development of practical system for laser-induced plasma-assisted ablation (LIPAA) for micromachining of glass materials," Appl. Phys. A 79, 1001-1003 (2004).
[CrossRef]

L. Gui, B. Xi, and T.C. Chong, " Microstructure in lithium niobate by use of focused femtosecond laser pulses," IEEE Photon. Technol. Lett. 16, 1337-1339(2004).
[CrossRef]

A. P. Joglekar, H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, "Optics at critical intensity: Applications to nanomorphing," Proc. Natl. Acad. Sci. USA 101, 5856-5861 (2004).
[CrossRef] [PubMed]

C. B. Schaffer, J. F. García, and E. Mazur, "Bulk heating of transparent materials using a high-repetition-rate femtosecond laser," Appl. Phys. A 76, 351-354 (2004).
[CrossRef]

2003 (1)

2002 (1)

B. R. Harkness, M. Rudolph, and K. Takeuchi, "Site selective copper and silver electroless metallization facilitated by a photolithographically patterned hydrogen silsesquioxane mediated seed layer," Chem. Mater. 14, 1448-1451 (2002).
[CrossRef]

2001 (2)

H. Hidai and H. Tokura, "Direct laser writing of aluminum and copper on glass surfaces from metal powder," Appl. Surf. Sci. 174, 118-124 (2001).
[CrossRef]

C. Duty, D. Jean, and W. J. Lackey, "Laser chemical vapor deposition: materials, modeling, and process control," Int. Mater. Rev. 46, 271-287 (2001).
[CrossRef]

1998 (1)

G. A. Shafeev, "Laser-assisted activation of dielectrics for electroless metal plating," Appl. Phys. A 67, 303-311 (1998).
[CrossRef]

1997 (1)

V. M. Dubin, Y. Shacham-Diamand, B. Zhao, P.K. Vasudev, and C. H. Ting, "Selective and blanket electroless copper deposition for ultralarge scale integration," J. Electrochem. Soc. 144, 898-908(1997).
[CrossRef]

1995 (1)

H. Esrom, J. Zhang, U. Kogelschatz, A. J. Pedraza, "New approach of a laser-induced forward transfer for deposition of patterned thin metal films," Appl. Surf. Sci. 86, 202-207 (1995).
[CrossRef]

1994 (1)

L. Mini, C. Giaconia, and C. Arnone, "Copper patterning on dielectrics by laser writing in liquid solution," Appl. Phys. Lett. 64, 3404-3406 (1994).
[CrossRef]

1990 (1)

T. J. Hirsch, R. F. Miracky, and C. Lin, "Selective-area electroless copper plating on polyimide employing laser patterning of a catalytic film," Appl. Phys. Lett. 57, 1357-1359 (1990).
[CrossRef]

Arnone, C.

L. Mini, C. Giaconia, and C. Arnone, "Copper patterning on dielectrics by laser writing in liquid solution," Appl. Phys. Lett. 64, 3404-3406 (1994).
[CrossRef]

Baldacchini, T.

Chen, D.

D. Chen, Q. Lu, and Y. Zhao, "Laser-induced site-selective silver seeding on polyimide for electroless copper plating," Appl. Surf. Sci. 253, 1573-1580 (2006).
[CrossRef]

Cheng, Y.

Chong, T.C.

L. Gui, B. Xi, and T.C. Chong, " Microstructure in lithium niobate by use of focused femtosecond laser pulses," IEEE Photon. Technol. Lett. 16, 1337-1339(2004).
[CrossRef]

Dubin, V. M.

V. M. Dubin, Y. Shacham-Diamand, B. Zhao, P.K. Vasudev, and C. H. Ting, "Selective and blanket electroless copper deposition for ultralarge scale integration," J. Electrochem. Soc. 144, 898-908(1997).
[CrossRef]

Duty, C.

C. Duty, D. Jean, and W. J. Lackey, "Laser chemical vapor deposition: materials, modeling, and process control," Int. Mater. Rev. 46, 271-287 (2001).
[CrossRef]

Esrom, H.

H. Esrom, J. Zhang, U. Kogelschatz, A. J. Pedraza, "New approach of a laser-induced forward transfer for deposition of patterned thin metal films," Appl. Surf. Sci. 86, 202-207 (1995).
[CrossRef]

Fourkas, J. T.

García, J. F.

C. B. Schaffer, J. F. García, and E. Mazur, "Bulk heating of transparent materials using a high-repetition-rate femtosecond laser," Appl. Phys. A 76, 351-354 (2004).
[CrossRef]

Giaconia, C.

L. Mini, C. Giaconia, and C. Arnone, "Copper patterning on dielectrics by laser writing in liquid solution," Appl. Phys. Lett. 64, 3404-3406 (1994).
[CrossRef]

Gomi, Y.

Y. Hanada, K. Sugioka, Y. Gomi, H. Yamaoka, O. Otsuki, I. Miyamoto, and K. Midorikawa, "Development of practical system for laser-induced plasma-assisted ablation (LIPAA) for micromachining of glass materials," Appl. Phys. A 79, 1001-1003 (2004).
[CrossRef]

Gu, B.

K. Sugioka, B. Gu, and A. Holmes, "The state of the art and future prospects for laser direct-write for industrial and commercial applications," MRS Bull. 32, 47-54 (2007).
[CrossRef]

Gui, L.

L. Gui, B. Xi, and T.C. Chong, " Microstructure in lithium niobate by use of focused femtosecond laser pulses," IEEE Photon. Technol. Lett. 16, 1337-1339(2004).
[CrossRef]

Hanada, Y.

Y. Hanada, K. Sugioka, Y. Gomi, H. Yamaoka, O. Otsuki, I. Miyamoto, and K. Midorikawa, "Development of practical system for laser-induced plasma-assisted ablation (LIPAA) for micromachining of glass materials," Appl. Phys. A 79, 1001-1003 (2004).
[CrossRef]

Harkness, B. R.

B. R. Harkness, M. Rudolph, and K. Takeuchi, "Site selective copper and silver electroless metallization facilitated by a photolithographically patterned hydrogen silsesquioxane mediated seed layer," Chem. Mater. 14, 1448-1451 (2002).
[CrossRef]

He, F.

Hidai, H.

H. Hidai and H. Tokura, "Direct laser writing of aluminum and copper on glass surfaces from metal powder," Appl. Surf. Sci. 174, 118-124 (2001).
[CrossRef]

Hirsch, T. J.

T. J. Hirsch, R. F. Miracky, and C. Lin, "Selective-area electroless copper plating on polyimide employing laser patterning of a catalytic film," Appl. Phys. Lett. 57, 1357-1359 (1990).
[CrossRef]

Holmes, A.

K. Sugioka, B. Gu, and A. Holmes, "The state of the art and future prospects for laser direct-write for industrial and commercial applications," MRS Bull. 32, 47-54 (2007).
[CrossRef]

Hongo, T.

K. Sugioka, T. Hongo, H. Takai, and K. Midorikawa, "Selective metallization of internal walls of hollow structures inside glass using femtosecond laser," Appl. Phys. Lett. 86, 171910 (2005).
[CrossRef]

Hunt, A. J.

A. P. Joglekar, H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, "Optics at critical intensity: Applications to nanomorphing," Proc. Natl. Acad. Sci. USA 101, 5856-5861 (2004).
[CrossRef] [PubMed]

Ishikawa, A.

T. Tanaka, A. Ishikawa, and S. Kawata, "Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure," Appl. Phys. Lett. 88, 081107 (2006).
[CrossRef]

Itoh, K.

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, "Ultrafast processes for bulk modification of transparent materials," MRS Bull. 31, 620-625 (2006).
[CrossRef]

W. Watanabe, S. Onda, T. Tamaki, K. Itoh, and J. Nishii, "Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses," Appl. Phys. Lett. 89, 021106 (2006).
[CrossRef]

Jean, D.

C. Duty, D. Jean, and W. J. Lackey, "Laser chemical vapor deposition: materials, modeling, and process control," Int. Mater. Rev. 46, 271-287 (2001).
[CrossRef]

Joglekar, A. P.

A. P. Joglekar, H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, "Optics at critical intensity: Applications to nanomorphing," Proc. Natl. Acad. Sci. USA 101, 5856-5861 (2004).
[CrossRef] [PubMed]

Kawachi, M.

Kawata, S.

T. Tanaka, A. Ishikawa, and S. Kawata, "Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure," Appl. Phys. Lett. 88, 081107 (2006).
[CrossRef]

Kogelschatz, U.

H. Esrom, J. Zhang, U. Kogelschatz, A. J. Pedraza, "New approach of a laser-induced forward transfer for deposition of patterned thin metal films," Appl. Surf. Sci. 86, 202-207 (1995).
[CrossRef]

Kooij, E. S.

A. A. Mewe, E. S. Kooij, and B. Poelsema, "Seeded-growth approach to selective metallization of microcontact-printed patterns," Langmuir 22, 5584-5587 (2006).
[CrossRef] [PubMed]

Lackey, W.J.

C. Duty, D. Jean, and W. J. Lackey, "Laser chemical vapor deposition: materials, modeling, and process control," Int. Mater. Rev. 46, 271-287 (2001).
[CrossRef]

LaFratta, C. N.

Lin, C.

T. J. Hirsch, R. F. Miracky, and C. Lin, "Selective-area electroless copper plating on polyimide employing laser patterning of a catalytic film," Appl. Phys. Lett. 57, 1357-1359 (1990).
[CrossRef]

Liu, H.

A. P. Joglekar, H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, "Optics at critical intensity: Applications to nanomorphing," Proc. Natl. Acad. Sci. USA 101, 5856-5861 (2004).
[CrossRef] [PubMed]

Lu, Q.

D. Chen, Q. Lu, and Y. Zhao, "Laser-induced site-selective silver seeding on polyimide for electroless copper plating," Appl. Surf. Sci. 253, 1573-1580 (2006).
[CrossRef]

Masuda, M.

Mazur, E.

C. B. Schaffer, J. F. García, and E. Mazur, "Bulk heating of transparent materials using a high-repetition-rate femtosecond laser," Appl. Phys. A 76, 351-354 (2004).
[CrossRef]

Mewe, A. A.

A. A. Mewe, E. S. Kooij, and B. Poelsema, "Seeded-growth approach to selective metallization of microcontact-printed patterns," Langmuir 22, 5584-5587 (2006).
[CrossRef] [PubMed]

Meyhöfer, E.

A. P. Joglekar, H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, "Optics at critical intensity: Applications to nanomorphing," Proc. Natl. Acad. Sci. USA 101, 5856-5861 (2004).
[CrossRef] [PubMed]

Midorikawa, K.

H. Sun, F. He, Z. Zhou, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, "Fabrication of microfluidic optical waveguides on glass chips with femtosecond laser pulses, " Opt. Lett.,  32, 1536-1538 (2007).
[CrossRef] [PubMed]

K. Sugioka, Y. Cheng, and K. Midorikawa, "Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture," Appl. Phys. A 81, 1-10 (2005).
[CrossRef]

K. Sugioka, T. Hongo, H. Takai, and K. Midorikawa, "Selective metallization of internal walls of hollow structures inside glass using femtosecond laser," Appl. Phys. Lett. 86, 171910 (2005).
[CrossRef]

Y. Cheng, K. Sugioka, and K. Midorikawa, "Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing," Opt. Lett. 29, 2007-2009 (2004).
[CrossRef] [PubMed]

Y. Hanada, K. Sugioka, Y. Gomi, H. Yamaoka, O. Otsuki, I. Miyamoto, and K. Midorikawa, "Development of practical system for laser-induced plasma-assisted ablation (LIPAA) for micromachining of glass materials," Appl. Phys. A 79, 1001-1003 (2004).
[CrossRef]

Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, "Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser," Opt. Lett. 28, 1144-1146 (2003).
[CrossRef] [PubMed]

Mini, L.

L. Mini, C. Giaconia, and C. Arnone, "Copper patterning on dielectrics by laser writing in liquid solution," Appl. Phys. Lett. 64, 3404-3406 (1994).
[CrossRef]

Miracky, R. F.

T. J. Hirsch, R. F. Miracky, and C. Lin, "Selective-area electroless copper plating on polyimide employing laser patterning of a catalytic film," Appl. Phys. Lett. 57, 1357-1359 (1990).
[CrossRef]

Miyamoto, I.

Y. Hanada, K. Sugioka, Y. Gomi, H. Yamaoka, O. Otsuki, I. Miyamoto, and K. Midorikawa, "Development of practical system for laser-induced plasma-assisted ablation (LIPAA) for micromachining of glass materials," Appl. Phys. A 79, 1001-1003 (2004).
[CrossRef]

Mourou, G.

A. P. Joglekar, H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, "Optics at critical intensity: Applications to nanomorphing," Proc. Natl. Acad. Sci. USA 101, 5856-5861 (2004).
[CrossRef] [PubMed]

Naughton, M. J.

Nishii, J.

W. Watanabe, S. Onda, T. Tamaki, K. Itoh, and J. Nishii, "Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses," Appl. Phys. Lett. 89, 021106 (2006).
[CrossRef]

Nolte, S.

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, "Ultrafast processes for bulk modification of transparent materials," MRS Bull. 31, 620-625 (2006).
[CrossRef]

Onda, S.

W. Watanabe, S. Onda, T. Tamaki, K. Itoh, and J. Nishii, "Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses," Appl. Phys. Lett. 89, 021106 (2006).
[CrossRef]

Otsuki, O.

Y. Hanada, K. Sugioka, Y. Gomi, H. Yamaoka, O. Otsuki, I. Miyamoto, and K. Midorikawa, "Development of practical system for laser-induced plasma-assisted ablation (LIPAA) for micromachining of glass materials," Appl. Phys. A 79, 1001-1003 (2004).
[CrossRef]

Pedraza, A. J.

H. Esrom, J. Zhang, U. Kogelschatz, A. J. Pedraza, "New approach of a laser-induced forward transfer for deposition of patterned thin metal films," Appl. Surf. Sci. 86, 202-207 (1995).
[CrossRef]

Poelsema, B.

A. A. Mewe, E. S. Kooij, and B. Poelsema, "Seeded-growth approach to selective metallization of microcontact-printed patterns," Langmuir 22, 5584-5587 (2006).
[CrossRef] [PubMed]

Pons, A.-C.

Pons, J.

Psaltis, D.

D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature (London) 442, 381-386 (2006).
[CrossRef]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature (London) 442, 381-386 (2006).
[CrossRef]

Rudolph, M.

B. R. Harkness, M. Rudolph, and K. Takeuchi, "Site selective copper and silver electroless metallization facilitated by a photolithographically patterned hydrogen silsesquioxane mediated seed layer," Chem. Mater. 14, 1448-1451 (2002).
[CrossRef]

Schaffer, C. B.

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, "Ultrafast processes for bulk modification of transparent materials," MRS Bull. 31, 620-625 (2006).
[CrossRef]

C. B. Schaffer, J. F. García, and E. Mazur, "Bulk heating of transparent materials using a high-repetition-rate femtosecond laser," Appl. Phys. A 76, 351-354 (2004).
[CrossRef]

Shacham-Diamand, Y.

V. M. Dubin, Y. Shacham-Diamand, B. Zhao, P.K. Vasudev, and C. H. Ting, "Selective and blanket electroless copper deposition for ultralarge scale integration," J. Electrochem. Soc. 144, 898-908(1997).
[CrossRef]

Shafeev, G. A.

G. A. Shafeev, "Laser-assisted activation of dielectrics for electroless metal plating," Appl. Phys. A 67, 303-311 (1998).
[CrossRef]

Shihoyama, K.

Sugioka, K.

K. Sugioka, B. Gu, and A. Holmes, "The state of the art and future prospects for laser direct-write for industrial and commercial applications," MRS Bull. 32, 47-54 (2007).
[CrossRef]

H. Sun, F. He, Z. Zhou, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, "Fabrication of microfluidic optical waveguides on glass chips with femtosecond laser pulses, " Opt. Lett.,  32, 1536-1538 (2007).
[CrossRef] [PubMed]

K. Sugioka, Y. Cheng, and K. Midorikawa, "Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture," Appl. Phys. A 81, 1-10 (2005).
[CrossRef]

K. Sugioka, T. Hongo, H. Takai, and K. Midorikawa, "Selective metallization of internal walls of hollow structures inside glass using femtosecond laser," Appl. Phys. Lett. 86, 171910 (2005).
[CrossRef]

Y. Cheng, K. Sugioka, and K. Midorikawa, "Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing," Opt. Lett. 29, 2007-2009 (2004).
[CrossRef] [PubMed]

Y. Hanada, K. Sugioka, Y. Gomi, H. Yamaoka, O. Otsuki, I. Miyamoto, and K. Midorikawa, "Development of practical system for laser-induced plasma-assisted ablation (LIPAA) for micromachining of glass materials," Appl. Phys. A 79, 1001-1003 (2004).
[CrossRef]

Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, "Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser," Opt. Lett. 28, 1144-1146 (2003).
[CrossRef] [PubMed]

Sun, H.

Sun, Y.

Takai, H.

K. Sugioka, T. Hongo, H. Takai, and K. Midorikawa, "Selective metallization of internal walls of hollow structures inside glass using femtosecond laser," Appl. Phys. Lett. 86, 171910 (2005).
[CrossRef]

Takeuchi, K.

B. R. Harkness, M. Rudolph, and K. Takeuchi, "Site selective copper and silver electroless metallization facilitated by a photolithographically patterned hydrogen silsesquioxane mediated seed layer," Chem. Mater. 14, 1448-1451 (2002).
[CrossRef]

Tamaki, T.

W. Watanabe, S. Onda, T. Tamaki, K. Itoh, and J. Nishii, "Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses," Appl. Phys. Lett. 89, 021106 (2006).
[CrossRef]

Tanaka, T.

T. Tanaka, A. Ishikawa, and S. Kawata, "Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure," Appl. Phys. Lett. 88, 081107 (2006).
[CrossRef]

Ting, C. H.

V. M. Dubin, Y. Shacham-Diamand, B. Zhao, P.K. Vasudev, and C. H. Ting, "Selective and blanket electroless copper deposition for ultralarge scale integration," J. Electrochem. Soc. 144, 898-908(1997).
[CrossRef]

Tokura, H.

H. Hidai and H. Tokura, "Direct laser writing of aluminum and copper on glass surfaces from metal powder," Appl. Surf. Sci. 174, 118-124 (2001).
[CrossRef]

Toyoda, K.

Vasudev, P.K.

V. M. Dubin, Y. Shacham-Diamand, B. Zhao, P.K. Vasudev, and C. H. Ting, "Selective and blanket electroless copper deposition for ultralarge scale integration," J. Electrochem. Soc. 144, 898-908(1997).
[CrossRef]

Watanabe, W.

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, "Ultrafast processes for bulk modification of transparent materials," MRS Bull. 31, 620-625 (2006).
[CrossRef]

W. Watanabe, S. Onda, T. Tamaki, K. Itoh, and J. Nishii, "Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses," Appl. Phys. Lett. 89, 021106 (2006).
[CrossRef]

Xi, B.

L. Gui, B. Xi, and T.C. Chong, " Microstructure in lithium niobate by use of focused femtosecond laser pulses," IEEE Photon. Technol. Lett. 16, 1337-1339(2004).
[CrossRef]

Xu, Z.

Yamaoka, H.

Y. Hanada, K. Sugioka, Y. Gomi, H. Yamaoka, O. Otsuki, I. Miyamoto, and K. Midorikawa, "Development of practical system for laser-induced plasma-assisted ablation (LIPAA) for micromachining of glass materials," Appl. Phys. A 79, 1001-1003 (2004).
[CrossRef]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature (London) 442, 381-386 (2006).
[CrossRef]

Zhang, J.

H. Esrom, J. Zhang, U. Kogelschatz, A. J. Pedraza, "New approach of a laser-induced forward transfer for deposition of patterned thin metal films," Appl. Surf. Sci. 86, 202-207 (1995).
[CrossRef]

Zhao, B.

V. M. Dubin, Y. Shacham-Diamand, B. Zhao, P.K. Vasudev, and C. H. Ting, "Selective and blanket electroless copper deposition for ultralarge scale integration," J. Electrochem. Soc. 144, 898-908(1997).
[CrossRef]

Zhao, Y.

D. Chen, Q. Lu, and Y. Zhao, "Laser-induced site-selective silver seeding on polyimide for electroless copper plating," Appl. Surf. Sci. 253, 1573-1580 (2006).
[CrossRef]

Zhou, Z.

Appl. Phys. A (4)

Y. Hanada, K. Sugioka, Y. Gomi, H. Yamaoka, O. Otsuki, I. Miyamoto, and K. Midorikawa, "Development of practical system for laser-induced plasma-assisted ablation (LIPAA) for micromachining of glass materials," Appl. Phys. A 79, 1001-1003 (2004).
[CrossRef]

C. B. Schaffer, J. F. García, and E. Mazur, "Bulk heating of transparent materials using a high-repetition-rate femtosecond laser," Appl. Phys. A 76, 351-354 (2004).
[CrossRef]

G. A. Shafeev, "Laser-assisted activation of dielectrics for electroless metal plating," Appl. Phys. A 67, 303-311 (1998).
[CrossRef]

K. Sugioka, Y. Cheng, and K. Midorikawa, "Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture," Appl. Phys. A 81, 1-10 (2005).
[CrossRef]

Appl. Phys. Lett. (5)

T. J. Hirsch, R. F. Miracky, and C. Lin, "Selective-area electroless copper plating on polyimide employing laser patterning of a catalytic film," Appl. Phys. Lett. 57, 1357-1359 (1990).
[CrossRef]

W. Watanabe, S. Onda, T. Tamaki, K. Itoh, and J. Nishii, "Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses," Appl. Phys. Lett. 89, 021106 (2006).
[CrossRef]

K. Sugioka, T. Hongo, H. Takai, and K. Midorikawa, "Selective metallization of internal walls of hollow structures inside glass using femtosecond laser," Appl. Phys. Lett. 86, 171910 (2005).
[CrossRef]

T. Tanaka, A. Ishikawa, and S. Kawata, "Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure," Appl. Phys. Lett. 88, 081107 (2006).
[CrossRef]

L. Mini, C. Giaconia, and C. Arnone, "Copper patterning on dielectrics by laser writing in liquid solution," Appl. Phys. Lett. 64, 3404-3406 (1994).
[CrossRef]

Appl. Surf. Sci. (3)

H. Hidai and H. Tokura, "Direct laser writing of aluminum and copper on glass surfaces from metal powder," Appl. Surf. Sci. 174, 118-124 (2001).
[CrossRef]

H. Esrom, J. Zhang, U. Kogelschatz, A. J. Pedraza, "New approach of a laser-induced forward transfer for deposition of patterned thin metal films," Appl. Surf. Sci. 86, 202-207 (1995).
[CrossRef]

D. Chen, Q. Lu, and Y. Zhao, "Laser-induced site-selective silver seeding on polyimide for electroless copper plating," Appl. Surf. Sci. 253, 1573-1580 (2006).
[CrossRef]

Chem. Mater. (1)

B. R. Harkness, M. Rudolph, and K. Takeuchi, "Site selective copper and silver electroless metallization facilitated by a photolithographically patterned hydrogen silsesquioxane mediated seed layer," Chem. Mater. 14, 1448-1451 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

L. Gui, B. Xi, and T.C. Chong, " Microstructure in lithium niobate by use of focused femtosecond laser pulses," IEEE Photon. Technol. Lett. 16, 1337-1339(2004).
[CrossRef]

Int. Mater. Rev. (1)

C. Duty, D. Jean, and W. J. Lackey, "Laser chemical vapor deposition: materials, modeling, and process control," Int. Mater. Rev. 46, 271-287 (2001).
[CrossRef]

J. Electrochem. Soc. (1)

V. M. Dubin, Y. Shacham-Diamand, B. Zhao, P.K. Vasudev, and C. H. Ting, "Selective and blanket electroless copper deposition for ultralarge scale integration," J. Electrochem. Soc. 144, 898-908(1997).
[CrossRef]

Langmuir (1)

A. A. Mewe, E. S. Kooij, and B. Poelsema, "Seeded-growth approach to selective metallization of microcontact-printed patterns," Langmuir 22, 5584-5587 (2006).
[CrossRef] [PubMed]

MRS Bull. (2)

K. Sugioka, B. Gu, and A. Holmes, "The state of the art and future prospects for laser direct-write for industrial and commercial applications," MRS Bull. 32, 47-54 (2007).
[CrossRef]

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, "Ultrafast processes for bulk modification of transparent materials," MRS Bull. 31, 620-625 (2006).
[CrossRef]

Nature (London) (1)

D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature (London) 442, 381-386 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Proc. Natl. Acad. Sci. USA (1)

A. P. Joglekar, H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, "Optics at critical intensity: Applications to nanomorphing," Proc. Natl. Acad. Sci. USA 101, 5856-5861 (2004).
[CrossRef] [PubMed]

Other (3)

Y. Cheng, K. Sugioka, K. Midorikawa, and Z. Xu. "Integrating 3D photonics and microfluidic using ultrashort laser pulses," SPIE Newsroom (2006), http://spie.org/x8513.xml.

P. Van Zant, Microchip Fabrication: A Practical Guide to Semiconductor Processing, 4th edition (McGraw-Hill Professional Publishing, New York, 2000).
[PubMed]

M. Datta, T. Osaka, and J. W. Schultze, Microelectronic packaging (CRC Press, Boca Raton, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic illustration of the fabrication process for the selective metallization of insulators: (1) formation of silver nitrate thin films on insulator substrates, (2) modification of insulator surfaces by femtosecond laser direct writing, (3) removal of unirradiated silver nitrate films by acetone, and (4) copper coating by selective electroless plating.

Fig. 2.
Fig. 2.

Optical micrographs of deposited copper microstructures on the glass substrates at the scanning speed of 60μm/s: (a) Laser power: 5 mW. (b) Laser power: 3 mW.

Fig. 3.
Fig. 3.

Photographs of metal patterning on the glass when laser power is 8mW: (a) Electric circuits fabricated on glass surface. (b) Cu lines in pattern (I). (c) Cu lines in pattern (II).

Fig. 4.
Fig. 4.

Optical micrographs of micro-electrodes embedded in LiNbO3 crystal. (a) Top view; (b) end view.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

2 AgN O 3 2 Ag + 2 N O 2 + O 2

Metrics