Abstract

We demonstrate an opto-fluidic ring resonator dye laser using highly efficient energy transfer. The active lasing material consists of a donor and acceptor mixture and flows in a fused silica capillary whose circular cross section forms a ring resonator and supports the whispering gallery modes (WGMs) of high Q-factors (>107). The excited states are created in the donor and transferred to the acceptor through the fluorescence resonant energy transfer (FRET), whose emission is coupled into the WGM. Due to the high energy transfer efficiency and high Q-factors, the acceptor exhibits a lasing threshold as low as 0.3 μJ/mm2. We further analyze the energy transfer mechanisms and find that non-radiative Förster transfer is the dominant effect to support the acceptor lasing. FRET lasers using cascade energy transfer and using quantum dots (QDs) as the donor are also presented. Our study will not only lead to development of novel microfluidic lasers with low lasing thresholds and excitation/emission flexibility, but also open an avenue for future laser intra-cavity bio/chemical sensing.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
    [CrossRef] [PubMed]
  2. C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photonics 1, 106-114 (2007).
    [CrossRef]
  3. Q. Kou, I. Yesilyurt, and Y. Chen, "Collinear dual-color laser emission from a microfluidic dye laser," Appl. Phys. Lett. 88, 091101 (2006).
    [CrossRef]
  4. B. Helbo, A. Kristensen, and A. Menon, "A micro-cavity fluidic dye laser," J. Micromech. Microeng. 13, 307-311 (2003).
    [CrossRef]
  5. Z. Li, Z. Zhang, T. Emery, A. Scherer, and D. Psaltis, "Single mode optofluidic distributed feedback dye laser," Opt. Express 14, 696-701 (2006).
    [CrossRef] [PubMed]
  6. Z. Li, Z. Zhang, A. Scherer, and D. Psaltis, "Mechanically tunable optofluidic distributed feedback dye laser," Opt. Express 14, 10494-10499 (2006).
    [CrossRef] [PubMed]
  7. M. Gersborg-Hansen and A. Kristensen, "Tunability of optofluidic distributed feedback dye lasers," Opt. Express 15, 137-142 (2007).
    [CrossRef] [PubMed]
  8. Z. Li and D. Psaltis, "Optofluidic Distributed Feedback Dye Lasers," J. Sel. Top. Quantum Electron. 13, 185-193 (2007).
    [CrossRef]
  9. H.-M. Tzeng, K. F. Wall, M. B. Long, and R. K. Chang, "Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances," Opt. Lett. 9, 499 - 501 (1984).
    [CrossRef] [PubMed]
  10. H. Azzouz, L. Alkhafadiji, S. Balslev, Johansson, N. A. Mortensen, S. Nilsson, and A. Kristensen, "Levitated droplet dye laser," Opt. Express 14, 4374-4379 (2006).
    [CrossRef] [PubMed]
  11. A. Sennaroglu, A. Kiraz, M. A. Dündar, A. Kurt, and A. L. Demirel, "Raman lasing near 630 nm from stationary glycerol-water microdroplets on a superhydrophobic surface," Opt. Lett. 32, 2197-2199 (2007).
    [CrossRef] [PubMed]
  12. J. C. Knight, H. S. T. Driver, R. J. Hutcheon, and G. N. Robertson, "Core-resonance capillary-fiber whispering-gallery-mode laser," Opt. Lett. 17, 1280-1282 (1992).
    [CrossRef] [PubMed]
  13. H.-J. Moon, Y.-T. Chough, and K. An, "Cylindrical Microcavity Laser Based on the Evanescent-Wave-Coupled Gain," Phys. Rev. Lett. 85, 3161-3164 (2000).
    [CrossRef] [PubMed]
  14. J. C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, "Microfluidic tunable dye laser with integrated mixer and ring resonator," Appl. Phys. Lett. 86, 264101 (2005).
    [CrossRef]
  15. I. M. White, H. Oveys, and X. Fan, "Liquid Core Optical Ring Resonator Sensors," Opt. Lett. 31, 1319-1321 (2006).
    [CrossRef] [PubMed]
  16. S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, "Optofluidic ring resonator based dye laser," Appl. Phys. Lett. 90, 221101 (2007).
    [CrossRef]
  17. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, (Kluwer Academic/Plenum Publishers, New York City, New York, 1999).
  18. T. Förster, "Transfer mechanisms of electronic excitation," Discuss. Faraday Soc. 27, 7-17 (1959).
  19. C. E. Moeller, C. M. Verber, and A. H. Adelman, "Laser pumping by excitation transfer in dye mixtures," Appl. Phys. Lett. 18, 278-280 (1971).
    [CrossRef]
  20. M. Berggren, A. Dodabalapur, R. E. Slusher, and Z. Bao, "Light amplification in organic thin films using cascade energy transfer," Nature 389, 466-469 (1997).
    [CrossRef]
  21. M. Berggren, A. Dodabalapur, and R. E. Slusher, "Stimulated emission and lasing in dye-doped organic thin films with Förster transfer," Appl. Phys. Lett. 71, 2230-2232 (1997).
    [CrossRef]
  22. M. I. Savadatti, S. R. Inamdar, N. N. Math, and A. D. Mulla, "Energy-transfer dye lasers," J. Chem. Soc. Faraday Trans. 82, 2417-2422 (1986).
    [CrossRef]
  23. S. Arnold and L. M. Folan, "Energy transfer and the photon lifetime within an aerosol particle," Opt. Lett. 14, 387-389 (1989).
    [CrossRef] [PubMed]
  24. S. Gotzinger, L. D. S. Menezes, A. Mazzei, S. Kuhn, V. Sandoghdar, and O. Benson, "Controlled Photon Transfer between Two Individual Nanoemitters via Shared High- Q Modes of a Microsphere Resonator," Nano Lett. 6, 1151-1154 (2006).
    [CrossRef] [PubMed]
  25. I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, and H. Mattoussi, "Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates," Nat. Mater. 5, 581-589 (2006).
    [CrossRef] [PubMed]
  26. A. R. Clapp, I. L. Medintz, and H. Mattoussi, "Förster Resonance Energy Transfer Investigations Using Quantum-Dot Fluorophores," ChemPhysChem 7, 47-57 (2006).
    [CrossRef]
  27. C.-Y. Zhang, H.-C. Yeh, M. T. Kuroki, and T.-H. Wang, "Single-quantum-dot-based DNA nanosensor," Nat. Mater. 4, 826-831 (2005).
    [CrossRef] [PubMed]
  28. S. Hohng and T. Ha, "Single-Molecule Quantum-Dot Fluorescence Resonance Energy Transfer," ChemPhysChem 6, 956 - 960 (2005).
    [CrossRef] [PubMed]
  29. R. Gill, I. Willner, I. Shweky, and U. Banin, "Fluorescence Resonance Energy Transfer in CdSe/ZnS-DNA Conjugates: Probing Hybridization and DNA Cleavage," J. Phys. Chem. B 109, 23715-23719 (2005).
    [CrossRef] [PubMed]
  30. C. A. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, "On the Absorption Cross Section of CdSe Nanocrystal Quantum Dots," J. Phys. Chem. B 106, 7619-7622 (2002).
    [CrossRef]
  31. A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulovi, "Sensitivity gains in chemosensing by lasing action in organic polymers," Nature 434, 876-879 (2005).
    [CrossRef] [PubMed]
  32. A. W. Wun, P. T. Snee, Y. Chan, M. G. Bawendi, and D. G. Nocera, "Non-linear transduction strategies for chemo/biosensing on small length scales," J. Mater. Chem. 15, 2697-2706 (2005).
    [CrossRef]

2007 (5)

C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photonics 1, 106-114 (2007).
[CrossRef]

M. Gersborg-Hansen and A. Kristensen, "Tunability of optofluidic distributed feedback dye lasers," Opt. Express 15, 137-142 (2007).
[CrossRef] [PubMed]

Z. Li and D. Psaltis, "Optofluidic Distributed Feedback Dye Lasers," J. Sel. Top. Quantum Electron. 13, 185-193 (2007).
[CrossRef]

A. Sennaroglu, A. Kiraz, M. A. Dündar, A. Kurt, and A. L. Demirel, "Raman lasing near 630 nm from stationary glycerol-water microdroplets on a superhydrophobic surface," Opt. Lett. 32, 2197-2199 (2007).
[CrossRef] [PubMed]

S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, "Optofluidic ring resonator based dye laser," Appl. Phys. Lett. 90, 221101 (2007).
[CrossRef]

2006 (9)

I. M. White, H. Oveys, and X. Fan, "Liquid Core Optical Ring Resonator Sensors," Opt. Lett. 31, 1319-1321 (2006).
[CrossRef] [PubMed]

D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
[CrossRef] [PubMed]

H. Azzouz, L. Alkhafadiji, S. Balslev, Johansson, N. A. Mortensen, S. Nilsson, and A. Kristensen, "Levitated droplet dye laser," Opt. Express 14, 4374-4379 (2006).
[CrossRef] [PubMed]

Q. Kou, I. Yesilyurt, and Y. Chen, "Collinear dual-color laser emission from a microfluidic dye laser," Appl. Phys. Lett. 88, 091101 (2006).
[CrossRef]

Z. Li, Z. Zhang, T. Emery, A. Scherer, and D. Psaltis, "Single mode optofluidic distributed feedback dye laser," Opt. Express 14, 696-701 (2006).
[CrossRef] [PubMed]

Z. Li, Z. Zhang, A. Scherer, and D. Psaltis, "Mechanically tunable optofluidic distributed feedback dye laser," Opt. Express 14, 10494-10499 (2006).
[CrossRef] [PubMed]

S. Gotzinger, L. D. S. Menezes, A. Mazzei, S. Kuhn, V. Sandoghdar, and O. Benson, "Controlled Photon Transfer between Two Individual Nanoemitters via Shared High- Q Modes of a Microsphere Resonator," Nano Lett. 6, 1151-1154 (2006).
[CrossRef] [PubMed]

I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, and H. Mattoussi, "Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates," Nat. Mater. 5, 581-589 (2006).
[CrossRef] [PubMed]

A. R. Clapp, I. L. Medintz, and H. Mattoussi, "Förster Resonance Energy Transfer Investigations Using Quantum-Dot Fluorophores," ChemPhysChem 7, 47-57 (2006).
[CrossRef]

2005 (6)

C.-Y. Zhang, H.-C. Yeh, M. T. Kuroki, and T.-H. Wang, "Single-quantum-dot-based DNA nanosensor," Nat. Mater. 4, 826-831 (2005).
[CrossRef] [PubMed]

S. Hohng and T. Ha, "Single-Molecule Quantum-Dot Fluorescence Resonance Energy Transfer," ChemPhysChem 6, 956 - 960 (2005).
[CrossRef] [PubMed]

R. Gill, I. Willner, I. Shweky, and U. Banin, "Fluorescence Resonance Energy Transfer in CdSe/ZnS-DNA Conjugates: Probing Hybridization and DNA Cleavage," J. Phys. Chem. B 109, 23715-23719 (2005).
[CrossRef] [PubMed]

A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulovi, "Sensitivity gains in chemosensing by lasing action in organic polymers," Nature 434, 876-879 (2005).
[CrossRef] [PubMed]

A. W. Wun, P. T. Snee, Y. Chan, M. G. Bawendi, and D. G. Nocera, "Non-linear transduction strategies for chemo/biosensing on small length scales," J. Mater. Chem. 15, 2697-2706 (2005).
[CrossRef]

J. C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, "Microfluidic tunable dye laser with integrated mixer and ring resonator," Appl. Phys. Lett. 86, 264101 (2005).
[CrossRef]

2003 (1)

B. Helbo, A. Kristensen, and A. Menon, "A micro-cavity fluidic dye laser," J. Micromech. Microeng. 13, 307-311 (2003).
[CrossRef]

2002 (1)

C. A. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, "On the Absorption Cross Section of CdSe Nanocrystal Quantum Dots," J. Phys. Chem. B 106, 7619-7622 (2002).
[CrossRef]

2000 (1)

H.-J. Moon, Y.-T. Chough, and K. An, "Cylindrical Microcavity Laser Based on the Evanescent-Wave-Coupled Gain," Phys. Rev. Lett. 85, 3161-3164 (2000).
[CrossRef] [PubMed]

1997 (2)

M. Berggren, A. Dodabalapur, R. E. Slusher, and Z. Bao, "Light amplification in organic thin films using cascade energy transfer," Nature 389, 466-469 (1997).
[CrossRef]

M. Berggren, A. Dodabalapur, and R. E. Slusher, "Stimulated emission and lasing in dye-doped organic thin films with Förster transfer," Appl. Phys. Lett. 71, 2230-2232 (1997).
[CrossRef]

1992 (1)

1989 (1)

1986 (1)

M. I. Savadatti, S. R. Inamdar, N. N. Math, and A. D. Mulla, "Energy-transfer dye lasers," J. Chem. Soc. Faraday Trans. 82, 2417-2422 (1986).
[CrossRef]

1984 (1)

1971 (1)

C. E. Moeller, C. M. Verber, and A. H. Adelman, "Laser pumping by excitation transfer in dye mixtures," Appl. Phys. Lett. 18, 278-280 (1971).
[CrossRef]

1959 (1)

T. Förster, "Transfer mechanisms of electronic excitation," Discuss. Faraday Soc. 27, 7-17 (1959).

Adelman, A. H.

C. E. Moeller, C. M. Verber, and A. H. Adelman, "Laser pumping by excitation transfer in dye mixtures," Appl. Phys. Lett. 18, 278-280 (1971).
[CrossRef]

Alkhafadiji, L.

An, K.

H.-J. Moon, Y.-T. Chough, and K. An, "Cylindrical Microcavity Laser Based on the Evanescent-Wave-Coupled Gain," Phys. Rev. Lett. 85, 3161-3164 (2000).
[CrossRef] [PubMed]

Arnold, S.

Azzouz, H.

Balslev, S.

Banin, U.

R. Gill, I. Willner, I. Shweky, and U. Banin, "Fluorescence Resonance Energy Transfer in CdSe/ZnS-DNA Conjugates: Probing Hybridization and DNA Cleavage," J. Phys. Chem. B 109, 23715-23719 (2005).
[CrossRef] [PubMed]

Bao, Z.

M. Berggren, A. Dodabalapur, R. E. Slusher, and Z. Bao, "Light amplification in organic thin films using cascade energy transfer," Nature 389, 466-469 (1997).
[CrossRef]

Bawendi, M. G.

A. W. Wun, P. T. Snee, Y. Chan, M. G. Bawendi, and D. G. Nocera, "Non-linear transduction strategies for chemo/biosensing on small length scales," J. Mater. Chem. 15, 2697-2706 (2005).
[CrossRef]

C. A. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, "On the Absorption Cross Section of CdSe Nanocrystal Quantum Dots," J. Phys. Chem. B 106, 7619-7622 (2002).
[CrossRef]

Belotti, M.

J. C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, "Microfluidic tunable dye laser with integrated mixer and ring resonator," Appl. Phys. Lett. 86, 264101 (2005).
[CrossRef]

Benson, O.

S. Gotzinger, L. D. S. Menezes, A. Mazzei, S. Kuhn, V. Sandoghdar, and O. Benson, "Controlled Photon Transfer between Two Individual Nanoemitters via Shared High- Q Modes of a Microsphere Resonator," Nano Lett. 6, 1151-1154 (2006).
[CrossRef] [PubMed]

Berggren, M.

M. Berggren, A. Dodabalapur, and R. E. Slusher, "Stimulated emission and lasing in dye-doped organic thin films with Förster transfer," Appl. Phys. Lett. 71, 2230-2232 (1997).
[CrossRef]

M. Berggren, A. Dodabalapur, R. E. Slusher, and Z. Bao, "Light amplification in organic thin films using cascade energy transfer," Nature 389, 466-469 (1997).
[CrossRef]

Brunel, F. M.

I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, and H. Mattoussi, "Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates," Nat. Mater. 5, 581-589 (2006).
[CrossRef] [PubMed]

Bulovi, V.

A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulovi, "Sensitivity gains in chemosensing by lasing action in organic polymers," Nature 434, 876-879 (2005).
[CrossRef] [PubMed]

Chan, Y.

A. W. Wun, P. T. Snee, Y. Chan, M. G. Bawendi, and D. G. Nocera, "Non-linear transduction strategies for chemo/biosensing on small length scales," J. Mater. Chem. 15, 2697-2706 (2005).
[CrossRef]

Chang, E. L.

I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, and H. Mattoussi, "Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates," Nat. Mater. 5, 581-589 (2006).
[CrossRef] [PubMed]

Chang, R. K.

Chen, Y.

Q. Kou, I. Yesilyurt, and Y. Chen, "Collinear dual-color laser emission from a microfluidic dye laser," Appl. Phys. Lett. 88, 091101 (2006).
[CrossRef]

J. C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, "Microfluidic tunable dye laser with integrated mixer and ring resonator," Appl. Phys. Lett. 86, 264101 (2005).
[CrossRef]

Chough, Y.-T.

H.-J. Moon, Y.-T. Chough, and K. An, "Cylindrical Microcavity Laser Based on the Evanescent-Wave-Coupled Gain," Phys. Rev. Lett. 85, 3161-3164 (2000).
[CrossRef] [PubMed]

Clapp, A. R.

I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, and H. Mattoussi, "Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates," Nat. Mater. 5, 581-589 (2006).
[CrossRef] [PubMed]

A. R. Clapp, I. L. Medintz, and H. Mattoussi, "Förster Resonance Energy Transfer Investigations Using Quantum-Dot Fluorophores," ChemPhysChem 7, 47-57 (2006).
[CrossRef]

Dawson, P. E.

I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, and H. Mattoussi, "Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates," Nat. Mater. 5, 581-589 (2006).
[CrossRef] [PubMed]

Demirel, A. L.

Deschamps, J. R.

I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, and H. Mattoussi, "Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates," Nat. Mater. 5, 581-589 (2006).
[CrossRef] [PubMed]

Dodabalapur, A.

M. Berggren, A. Dodabalapur, R. E. Slusher, and Z. Bao, "Light amplification in organic thin films using cascade energy transfer," Nature 389, 466-469 (1997).
[CrossRef]

M. Berggren, A. Dodabalapur, and R. E. Slusher, "Stimulated emission and lasing in dye-doped organic thin films with Förster transfer," Appl. Phys. Lett. 71, 2230-2232 (1997).
[CrossRef]

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photonics 1, 106-114 (2007).
[CrossRef]

Driver, H. S. T.

Dündar, M. A.

Eggleton, B. J.

C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photonics 1, 106-114 (2007).
[CrossRef]

Emery, T.

Fan, X.

S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, "Optofluidic ring resonator based dye laser," Appl. Phys. Lett. 90, 221101 (2007).
[CrossRef]

I. M. White, H. Oveys, and X. Fan, "Liquid Core Optical Ring Resonator Sensors," Opt. Lett. 31, 1319-1321 (2006).
[CrossRef] [PubMed]

Folan, L. M.

Förster, T.

T. Förster, "Transfer mechanisms of electronic excitation," Discuss. Faraday Soc. 27, 7-17 (1959).

Galas, J. C.

J. C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, "Microfluidic tunable dye laser with integrated mixer and ring resonator," Appl. Phys. Lett. 86, 264101 (2005).
[CrossRef]

Gersborg-Hansen, M.

Gill, R.

R. Gill, I. Willner, I. Shweky, and U. Banin, "Fluorescence Resonance Energy Transfer in CdSe/ZnS-DNA Conjugates: Probing Hybridization and DNA Cleavage," J. Phys. Chem. B 109, 23715-23719 (2005).
[CrossRef] [PubMed]

Gotzinger, S.

S. Gotzinger, L. D. S. Menezes, A. Mazzei, S. Kuhn, V. Sandoghdar, and O. Benson, "Controlled Photon Transfer between Two Individual Nanoemitters via Shared High- Q Modes of a Microsphere Resonator," Nano Lett. 6, 1151-1154 (2006).
[CrossRef] [PubMed]

Ha, T.

S. Hohng and T. Ha, "Single-Molecule Quantum-Dot Fluorescence Resonance Energy Transfer," ChemPhysChem 6, 956 - 960 (2005).
[CrossRef] [PubMed]

Helbo, B.

B. Helbo, A. Kristensen, and A. Menon, "A micro-cavity fluidic dye laser," J. Micromech. Microeng. 13, 307-311 (2003).
[CrossRef]

Hohng, S.

S. Hohng and T. Ha, "Single-Molecule Quantum-Dot Fluorescence Resonance Energy Transfer," ChemPhysChem 6, 956 - 960 (2005).
[CrossRef] [PubMed]

Hutcheon, R. J.

Inamdar, S. R.

M. I. Savadatti, S. R. Inamdar, N. N. Math, and A. D. Mulla, "Energy-transfer dye lasers," J. Chem. Soc. Faraday Trans. 82, 2417-2422 (1986).
[CrossRef]

Johansson, S.

Kiraz, A.

Knight, J. C.

Kou, Q.

Q. Kou, I. Yesilyurt, and Y. Chen, "Collinear dual-color laser emission from a microfluidic dye laser," Appl. Phys. Lett. 88, 091101 (2006).
[CrossRef]

J. C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, "Microfluidic tunable dye laser with integrated mixer and ring resonator," Appl. Phys. Lett. 86, 264101 (2005).
[CrossRef]

Kristensen, A.

M. Gersborg-Hansen and A. Kristensen, "Tunability of optofluidic distributed feedback dye lasers," Opt. Express 15, 137-142 (2007).
[CrossRef] [PubMed]

B. Helbo, A. Kristensen, and A. Menon, "A micro-cavity fluidic dye laser," J. Micromech. Microeng. 13, 307-311 (2003).
[CrossRef]

Kuhn, S.

S. Gotzinger, L. D. S. Menezes, A. Mazzei, S. Kuhn, V. Sandoghdar, and O. Benson, "Controlled Photon Transfer between Two Individual Nanoemitters via Shared High- Q Modes of a Microsphere Resonator," Nano Lett. 6, 1151-1154 (2006).
[CrossRef] [PubMed]

Kuroki, M. T.

C.-Y. Zhang, H.-C. Yeh, M. T. Kuroki, and T.-H. Wang, "Single-quantum-dot-based DNA nanosensor," Nat. Mater. 4, 826-831 (2005).
[CrossRef] [PubMed]

Kurt, A.

Leatherdale, C. A.

C. A. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, "On the Absorption Cross Section of CdSe Nanocrystal Quantum Dots," J. Phys. Chem. B 106, 7619-7622 (2002).
[CrossRef]

Li, Z.

Long, M. B.

Madigan, C. F.

A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulovi, "Sensitivity gains in chemosensing by lasing action in organic polymers," Nature 434, 876-879 (2005).
[CrossRef] [PubMed]

Math, N. N.

M. I. Savadatti, S. R. Inamdar, N. N. Math, and A. D. Mulla, "Energy-transfer dye lasers," J. Chem. Soc. Faraday Trans. 82, 2417-2422 (1986).
[CrossRef]

Mattoussi, H.

A. R. Clapp, I. L. Medintz, and H. Mattoussi, "Förster Resonance Energy Transfer Investigations Using Quantum-Dot Fluorophores," ChemPhysChem 7, 47-57 (2006).
[CrossRef]

I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, and H. Mattoussi, "Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates," Nat. Mater. 5, 581-589 (2006).
[CrossRef] [PubMed]

Mazzei, A.

S. Gotzinger, L. D. S. Menezes, A. Mazzei, S. Kuhn, V. Sandoghdar, and O. Benson, "Controlled Photon Transfer between Two Individual Nanoemitters via Shared High- Q Modes of a Microsphere Resonator," Nano Lett. 6, 1151-1154 (2006).
[CrossRef] [PubMed]

Medintz, I. L.

I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, and H. Mattoussi, "Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates," Nat. Mater. 5, 581-589 (2006).
[CrossRef] [PubMed]

A. R. Clapp, I. L. Medintz, and H. Mattoussi, "Förster Resonance Energy Transfer Investigations Using Quantum-Dot Fluorophores," ChemPhysChem 7, 47-57 (2006).
[CrossRef]

Menezes, L. D. S.

S. Gotzinger, L. D. S. Menezes, A. Mazzei, S. Kuhn, V. Sandoghdar, and O. Benson, "Controlled Photon Transfer between Two Individual Nanoemitters via Shared High- Q Modes of a Microsphere Resonator," Nano Lett. 6, 1151-1154 (2006).
[CrossRef] [PubMed]

Menon, A.

B. Helbo, A. Kristensen, and A. Menon, "A micro-cavity fluidic dye laser," J. Micromech. Microeng. 13, 307-311 (2003).
[CrossRef]

Mikulec, F. V.

C. A. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, "On the Absorption Cross Section of CdSe Nanocrystal Quantum Dots," J. Phys. Chem. B 106, 7619-7622 (2002).
[CrossRef]

Moeller, C. E.

C. E. Moeller, C. M. Verber, and A. H. Adelman, "Laser pumping by excitation transfer in dye mixtures," Appl. Phys. Lett. 18, 278-280 (1971).
[CrossRef]

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photonics 1, 106-114 (2007).
[CrossRef]

Moon, H.-J.

H.-J. Moon, Y.-T. Chough, and K. An, "Cylindrical Microcavity Laser Based on the Evanescent-Wave-Coupled Gain," Phys. Rev. Lett. 85, 3161-3164 (2000).
[CrossRef] [PubMed]

Mulla, A. D.

M. I. Savadatti, S. R. Inamdar, N. N. Math, and A. D. Mulla, "Energy-transfer dye lasers," J. Chem. Soc. Faraday Trans. 82, 2417-2422 (1986).
[CrossRef]

Nocera, D. G.

A. W. Wun, P. T. Snee, Y. Chan, M. G. Bawendi, and D. G. Nocera, "Non-linear transduction strategies for chemo/biosensing on small length scales," J. Mater. Chem. 15, 2697-2706 (2005).
[CrossRef]

Oveys, H.

Psaltis, D.

Z. Li and D. Psaltis, "Optofluidic Distributed Feedback Dye Lasers," J. Sel. Top. Quantum Electron. 13, 185-193 (2007).
[CrossRef]

Z. Li, Z. Zhang, A. Scherer, and D. Psaltis, "Mechanically tunable optofluidic distributed feedback dye laser," Opt. Express 14, 10494-10499 (2006).
[CrossRef] [PubMed]

Z. Li, Z. Zhang, T. Emery, A. Scherer, and D. Psaltis, "Single mode optofluidic distributed feedback dye laser," Opt. Express 14, 696-701 (2006).
[CrossRef] [PubMed]

D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
[CrossRef] [PubMed]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
[CrossRef] [PubMed]

Robertson, G. N.

Rose, A.

A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulovi, "Sensitivity gains in chemosensing by lasing action in organic polymers," Nature 434, 876-879 (2005).
[CrossRef] [PubMed]

Sandoghdar, V.

S. Gotzinger, L. D. S. Menezes, A. Mazzei, S. Kuhn, V. Sandoghdar, and O. Benson, "Controlled Photon Transfer between Two Individual Nanoemitters via Shared High- Q Modes of a Microsphere Resonator," Nano Lett. 6, 1151-1154 (2006).
[CrossRef] [PubMed]

Savadatti, M. I.

M. I. Savadatti, S. R. Inamdar, N. N. Math, and A. D. Mulla, "Energy-transfer dye lasers," J. Chem. Soc. Faraday Trans. 82, 2417-2422 (1986).
[CrossRef]

Scherer, A.

Sennaroglu, A.

Shopova, S. I.

S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, "Optofluidic ring resonator based dye laser," Appl. Phys. Lett. 90, 221101 (2007).
[CrossRef]

Shweky, I.

R. Gill, I. Willner, I. Shweky, and U. Banin, "Fluorescence Resonance Energy Transfer in CdSe/ZnS-DNA Conjugates: Probing Hybridization and DNA Cleavage," J. Phys. Chem. B 109, 23715-23719 (2005).
[CrossRef] [PubMed]

Slusher, R. E.

M. Berggren, A. Dodabalapur, and R. E. Slusher, "Stimulated emission and lasing in dye-doped organic thin films with Förster transfer," Appl. Phys. Lett. 71, 2230-2232 (1997).
[CrossRef]

M. Berggren, A. Dodabalapur, R. E. Slusher, and Z. Bao, "Light amplification in organic thin films using cascade energy transfer," Nature 389, 466-469 (1997).
[CrossRef]

Snee, P. T.

A. W. Wun, P. T. Snee, Y. Chan, M. G. Bawendi, and D. G. Nocera, "Non-linear transduction strategies for chemo/biosensing on small length scales," J. Mater. Chem. 15, 2697-2706 (2005).
[CrossRef]

Swager, T. M.

A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulovi, "Sensitivity gains in chemosensing by lasing action in organic polymers," Nature 434, 876-879 (2005).
[CrossRef] [PubMed]

Tiefenbrunn, T.

I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, and H. Mattoussi, "Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates," Nat. Mater. 5, 581-589 (2006).
[CrossRef] [PubMed]

Torres, J.

J. C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, "Microfluidic tunable dye laser with integrated mixer and ring resonator," Appl. Phys. Lett. 86, 264101 (2005).
[CrossRef]

Tzeng, H.-M.

Uyeda, H. T.

I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, and H. Mattoussi, "Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates," Nat. Mater. 5, 581-589 (2006).
[CrossRef] [PubMed]

Verber, C. M.

C. E. Moeller, C. M. Verber, and A. H. Adelman, "Laser pumping by excitation transfer in dye mixtures," Appl. Phys. Lett. 18, 278-280 (1971).
[CrossRef]

Wall, K. F.

Wang, T.-H.

C.-Y. Zhang, H.-C. Yeh, M. T. Kuroki, and T.-H. Wang, "Single-quantum-dot-based DNA nanosensor," Nat. Mater. 4, 826-831 (2005).
[CrossRef] [PubMed]

White, I. M.

Willner, I.

R. Gill, I. Willner, I. Shweky, and U. Banin, "Fluorescence Resonance Energy Transfer in CdSe/ZnS-DNA Conjugates: Probing Hybridization and DNA Cleavage," J. Phys. Chem. B 109, 23715-23719 (2005).
[CrossRef] [PubMed]

Woo, W.-K.

C. A. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, "On the Absorption Cross Section of CdSe Nanocrystal Quantum Dots," J. Phys. Chem. B 106, 7619-7622 (2002).
[CrossRef]

Wun, A. W.

A. W. Wun, P. T. Snee, Y. Chan, M. G. Bawendi, and D. G. Nocera, "Non-linear transduction strategies for chemo/biosensing on small length scales," J. Mater. Chem. 15, 2697-2706 (2005).
[CrossRef]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
[CrossRef] [PubMed]

Yeh, H.-C.

C.-Y. Zhang, H.-C. Yeh, M. T. Kuroki, and T.-H. Wang, "Single-quantum-dot-based DNA nanosensor," Nat. Mater. 4, 826-831 (2005).
[CrossRef] [PubMed]

Yesilyurt, I.

Q. Kou, I. Yesilyurt, and Y. Chen, "Collinear dual-color laser emission from a microfluidic dye laser," Appl. Phys. Lett. 88, 091101 (2006).
[CrossRef]

Zhang, C.-Y.

C.-Y. Zhang, H.-C. Yeh, M. T. Kuroki, and T.-H. Wang, "Single-quantum-dot-based DNA nanosensor," Nat. Mater. 4, 826-831 (2005).
[CrossRef] [PubMed]

Zhang, P.

S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, "Optofluidic ring resonator based dye laser," Appl. Phys. Lett. 90, 221101 (2007).
[CrossRef]

Zhang, Z.

Zhou, H.

S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, "Optofluidic ring resonator based dye laser," Appl. Phys. Lett. 90, 221101 (2007).
[CrossRef]

Zhu, Z.

A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulovi, "Sensitivity gains in chemosensing by lasing action in organic polymers," Nature 434, 876-879 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (5)

Q. Kou, I. Yesilyurt, and Y. Chen, "Collinear dual-color laser emission from a microfluidic dye laser," Appl. Phys. Lett. 88, 091101 (2006).
[CrossRef]

J. C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, "Microfluidic tunable dye laser with integrated mixer and ring resonator," Appl. Phys. Lett. 86, 264101 (2005).
[CrossRef]

S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, "Optofluidic ring resonator based dye laser," Appl. Phys. Lett. 90, 221101 (2007).
[CrossRef]

C. E. Moeller, C. M. Verber, and A. H. Adelman, "Laser pumping by excitation transfer in dye mixtures," Appl. Phys. Lett. 18, 278-280 (1971).
[CrossRef]

M. Berggren, A. Dodabalapur, and R. E. Slusher, "Stimulated emission and lasing in dye-doped organic thin films with Förster transfer," Appl. Phys. Lett. 71, 2230-2232 (1997).
[CrossRef]

ChemPhysChem (2)

A. R. Clapp, I. L. Medintz, and H. Mattoussi, "Förster Resonance Energy Transfer Investigations Using Quantum-Dot Fluorophores," ChemPhysChem 7, 47-57 (2006).
[CrossRef]

S. Hohng and T. Ha, "Single-Molecule Quantum-Dot Fluorescence Resonance Energy Transfer," ChemPhysChem 6, 956 - 960 (2005).
[CrossRef] [PubMed]

Discuss. Faraday Soc. (1)

T. Förster, "Transfer mechanisms of electronic excitation," Discuss. Faraday Soc. 27, 7-17 (1959).

J. Chem. Soc. Faraday Trans. (1)

M. I. Savadatti, S. R. Inamdar, N. N. Math, and A. D. Mulla, "Energy-transfer dye lasers," J. Chem. Soc. Faraday Trans. 82, 2417-2422 (1986).
[CrossRef]

J. Mater. Chem. (1)

A. W. Wun, P. T. Snee, Y. Chan, M. G. Bawendi, and D. G. Nocera, "Non-linear transduction strategies for chemo/biosensing on small length scales," J. Mater. Chem. 15, 2697-2706 (2005).
[CrossRef]

J. Micromech. Microeng. (1)

B. Helbo, A. Kristensen, and A. Menon, "A micro-cavity fluidic dye laser," J. Micromech. Microeng. 13, 307-311 (2003).
[CrossRef]

J. Phys. Chem. B (2)

R. Gill, I. Willner, I. Shweky, and U. Banin, "Fluorescence Resonance Energy Transfer in CdSe/ZnS-DNA Conjugates: Probing Hybridization and DNA Cleavage," J. Phys. Chem. B 109, 23715-23719 (2005).
[CrossRef] [PubMed]

C. A. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, "On the Absorption Cross Section of CdSe Nanocrystal Quantum Dots," J. Phys. Chem. B 106, 7619-7622 (2002).
[CrossRef]

J. Sel. Top. Quantum Electron. (1)

Z. Li and D. Psaltis, "Optofluidic Distributed Feedback Dye Lasers," J. Sel. Top. Quantum Electron. 13, 185-193 (2007).
[CrossRef]

Nano Lett. (1)

S. Gotzinger, L. D. S. Menezes, A. Mazzei, S. Kuhn, V. Sandoghdar, and O. Benson, "Controlled Photon Transfer between Two Individual Nanoemitters via Shared High- Q Modes of a Microsphere Resonator," Nano Lett. 6, 1151-1154 (2006).
[CrossRef] [PubMed]

Nat. Mater. (2)

I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, and H. Mattoussi, "Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates," Nat. Mater. 5, 581-589 (2006).
[CrossRef] [PubMed]

C.-Y. Zhang, H.-C. Yeh, M. T. Kuroki, and T.-H. Wang, "Single-quantum-dot-based DNA nanosensor," Nat. Mater. 4, 826-831 (2005).
[CrossRef] [PubMed]

Nat. Photonics (1)

C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photonics 1, 106-114 (2007).
[CrossRef]

Nature (3)

D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
[CrossRef] [PubMed]

M. Berggren, A. Dodabalapur, R. E. Slusher, and Z. Bao, "Light amplification in organic thin films using cascade energy transfer," Nature 389, 466-469 (1997).
[CrossRef]

A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulovi, "Sensitivity gains in chemosensing by lasing action in organic polymers," Nature 434, 876-879 (2005).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (5)

Phys. Rev. Lett. (1)

H.-J. Moon, Y.-T. Chough, and K. An, "Cylindrical Microcavity Laser Based on the Evanescent-Wave-Coupled Gain," Phys. Rev. Lett. 85, 3161-3164 (2000).
[CrossRef] [PubMed]

Other (1)

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, (Kluwer Academic/Plenum Publishers, New York City, New York, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Concept of the LCORR FRET laser. (A) Cross section of the LCORR filled with donor and acceptor molecules. The LCORR wall supports the WGMs whose evanescent field in the core provides the optical feedback for lasing. (B) SEM image of the LCORR made from a computer-controlled pulling station. Outer diameter: 75 μm. Wall thickness: 5 μm.

Fig. 2.
Fig. 2.

(A). Normalized spectra of FRET in free space for R6G (donor) and LDS 722 (acceptor). The first curve (A/D = 1/0 mM) is acquired in the absence of the donor. The donor concentration for the remaining curves is fixed at 0.1 mM. The CW pump wavelength: 532 nm. A/D: acceptor-to-donor ratio. (B) Energy transfer efficiency, η, calculated from (A). Solid line is the theoretical curve using Eq. (1). C0= 1.7 mM, corresponding to R0 = 6.2 nm.

Fig. 3.
Fig. 3.

(A). LCORR-FRET laser spectra for various acceptor concentrations. Donor concentration is fixed at 0.1 mM. The pulsed laser wavelength is 526 nm. (B) Lasing peak intensity vs. pump power density. Donor peak is at 562 nm. Acceptor peak is at 724 nm and its lasing threshold is approximately 0.3 μJ/mm2 and 0.5 μJ/mm2 for 2 mM and 1.5 mM, respectively. The lasing threshold for R6G is approximately 6 μJ/mm2.

Fig. 4.
Fig. 4.

Characteristics of the non-radiative Förster transfer. (A) FRET spectra show that γ = 100%, 91%, and 63%, respectively, when the pump intensity is below, near, and above the R6G lasing threshold. (B) FRET spectra show a decreased γ (61%, 41%, and 34%) when R6G concentration increases while LDS 722 concentration and the pump power remain the same.

Fig. 5.
Fig. 5.

Lasing of 2 mM LDS 722 through cascade FRET from Coumarin 480 (0.2 mM) and R6G (0.4 mM).

Fig. 6.
Fig. 6.

(A) Normalized absorption (red: QD. blue: Nile blue) and emission (black: QD. pink: Nile blue) spectra. (B) Lasing of 0.125 mM Nile blue in methanol through FRET from 200 nM CdSe/ZnS core/shell QDs. The pump laser is at 485 nm. Inset: no emission from Nile blue is observed in the absence of QDs.

Fig. 7.
Fig. 7.

Comparison of conventional FRET detection in free space (square) and LCORR intra-cavity FRET detection (circle). Data are extracted from Fig. 2(A) and Fig. 3(A), respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η = 1 exp ( 1.42 c c 0 ) ,
η = I A ϕ I A ϕ + I D = 1 1 + ϕ I D I A ,

Metrics