Abstract

Three-dimensionally (3-D) integrated photonic structures in multiple layers of silicon are reported. Implantation of oxygen ions into a silicon-on-insulator substrate with a patterned thermal oxide mask, followed by a high temperature anneal, creates photonic structures on 3-D integrated layers of silicon. This process is combined with epitaxial growth to achieve devices on three vertically integrated layers of silicon. As a demonstration vehicle, we report a multistage optical filter that comprises of coupled microdisks on two subsurface silicon layers with bus waveguides on the surface (3rd) layer. The optical filter shows extinction ratios in excess of 14 dB, with excess insertion loss of less than 1 dB.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Boyraz and B. Jalali, "Demonstration of a Silicon Raman Laser," Opt. Express 12, 5269-5273 (2004).
    [CrossRef] [PubMed]
  2. H. Rong,  et al, "Low-threshold continuous-wave Raman silicon laser," Nat. Photonics 1, 232 - 237 (2007).
    [CrossRef]
  3. Q. Xu, B. Schmidt, S. Pradhan and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435,325-327 (2005).
    [CrossRef] [PubMed]
  4. X. Chen, N. C. Panoiu, and R. M. Osgood, "Theory of Raman-mediated pulse amplification in silicon wire waveguides," IEEE J. of Quantum Electron. 42, 160-170 (2006).
    [CrossRef]
  5. F. Xia, L. Sekaric and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nat. Photonics 1, 65-71 (2006).
    [CrossRef]
  6. K. Jia,  et al, "Silicon-on-insulator-based optical demultiplexer employing turning-mirror-integrated arrayed-waveguide grating," IEEE Photon. Technol. Lett. 17, 378-380 (2005).
    [CrossRef]
  7. A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, and K. Vahala, "Ultralow-threshold erbium-implanted toroidal microlaser on silicon," Appl. Phys. Lett. 84, 1037-1039 (2004).
    [CrossRef]
  8. M. Borselli, K. Srinivasan, P. Barclay, and O. Painter, "Rayleigh scattering, mode coupling, and optical loss in silicon microdisks," Appl. Phys. Lett. 85, 3693-3695 (2004).
    [CrossRef]
  9. Y. Kuo,  et al, "Strong quantum-confined stark effect in germanium quantum-well structures on silicon," Nature 437, 1334-1336 (2005).
    [CrossRef] [PubMed]
  10. P. Dumon,  et al. "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004).
    [CrossRef]
  11. M. Hochberg,  et al., "Terahertz All-Optical Modulation in Silicon-Polymer Hybrid System," Nat. Mater. 5, 703 - 709 (2006).
    [CrossRef] [PubMed]
  12. T. K. Liang and H. K. Hsang, "Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Letts. 84, 2745-2747 (2004).
    [CrossRef]
  13. S. Tyagi,  et al. "A 65nm ultra low power logic platform technology using Uni-axial strained silicon transistors," IEEE IEDM Tech. Digest 245-247 (2005).
    [CrossRef]
  14. T. Tsuchizawa,  et al., "Microphotonics devices based on silicon microfabrication technology," EEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
    [CrossRef]
  15. Y. A. Vlasov and S. J. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt. Express 21, 1622-1631 (2004).
    [CrossRef]
  16. A. Fazio, "A high density high performance 180nm generation Etox™ flash memory technology," IEEE IEDM Tech. Digest 267-270 (1999).
  17. W. R. Davis,  et al., "Demystifying 3D ICs: The pros and cons of going vertical," IEEE Design and Test of Computers 22, 498-510 (2005).
    [CrossRef]
  18. P. Koonath, K. Kishima, T. Indukuri and B. Jalali, "Sculpting of three-dimensional nano-optical structures in silicon," Appl. Phys. Letts. 83, 4909-4911 (2003).
    [CrossRef]
  19. M. Chen,  et al, "Dose-energy match for the formation of high-integrity buried oxide layers in low-dose separation-by-implantation-of-oxygen materials," Appl. Phys. Letts. 80, 880-82 (2002).
    [CrossRef]
  20. H. Ono and A. Ogura, "Evaulation of buried oxide formation in low dose SIMOX," Appl. Surf. Sci. 159-160, 104-110(2000).
  21. R. A. Soref, F. Namavar, E. Cortesi, L. Friedman, and R. Lareau, "Vertical 3D integration of silicon waveguides in a Si-SiO2-Si-SiO2-Si structure," Proc SPIE 1389, 408-421 (1990).
    [CrossRef]
  22. L. C. Kimerling,  et al, "Electronic-Photonic integrated circuits on the CMOS platform," Proc. SPIE 6125, 612502-1-10 (2006).
    [CrossRef]
  23. T. Indukuri, P. Koonath, and B. Jalali, "Three-dimensional integration of metal-oxide-semiconductor transistor with subterranean photonics in silicon," Appl. Phys. Lett. 88, 121108 (2006).
    [CrossRef]

2007

H. Rong,  et al, "Low-threshold continuous-wave Raman silicon laser," Nat. Photonics 1, 232 - 237 (2007).
[CrossRef]

2006

X. Chen, N. C. Panoiu, and R. M. Osgood, "Theory of Raman-mediated pulse amplification in silicon wire waveguides," IEEE J. of Quantum Electron. 42, 160-170 (2006).
[CrossRef]

F. Xia, L. Sekaric and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nat. Photonics 1, 65-71 (2006).
[CrossRef]

M. Hochberg,  et al., "Terahertz All-Optical Modulation in Silicon-Polymer Hybrid System," Nat. Mater. 5, 703 - 709 (2006).
[CrossRef] [PubMed]

T. Indukuri, P. Koonath, and B. Jalali, "Three-dimensional integration of metal-oxide-semiconductor transistor with subterranean photonics in silicon," Appl. Phys. Lett. 88, 121108 (2006).
[CrossRef]

2005

T. Tsuchizawa,  et al., "Microphotonics devices based on silicon microfabrication technology," EEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

W. R. Davis,  et al., "Demystifying 3D ICs: The pros and cons of going vertical," IEEE Design and Test of Computers 22, 498-510 (2005).
[CrossRef]

K. Jia,  et al, "Silicon-on-insulator-based optical demultiplexer employing turning-mirror-integrated arrayed-waveguide grating," IEEE Photon. Technol. Lett. 17, 378-380 (2005).
[CrossRef]

Q. Xu, B. Schmidt, S. Pradhan and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435,325-327 (2005).
[CrossRef] [PubMed]

Y. Kuo,  et al, "Strong quantum-confined stark effect in germanium quantum-well structures on silicon," Nature 437, 1334-1336 (2005).
[CrossRef] [PubMed]

2004

P. Dumon,  et al. "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004).
[CrossRef]

A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, and K. Vahala, "Ultralow-threshold erbium-implanted toroidal microlaser on silicon," Appl. Phys. Lett. 84, 1037-1039 (2004).
[CrossRef]

M. Borselli, K. Srinivasan, P. Barclay, and O. Painter, "Rayleigh scattering, mode coupling, and optical loss in silicon microdisks," Appl. Phys. Lett. 85, 3693-3695 (2004).
[CrossRef]

Y. A. Vlasov and S. J. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt. Express 21, 1622-1631 (2004).
[CrossRef]

T. K. Liang and H. K. Hsang, "Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Letts. 84, 2745-2747 (2004).
[CrossRef]

O. Boyraz and B. Jalali, "Demonstration of a Silicon Raman Laser," Opt. Express 12, 5269-5273 (2004).
[CrossRef] [PubMed]

2003

P. Koonath, K. Kishima, T. Indukuri and B. Jalali, "Sculpting of three-dimensional nano-optical structures in silicon," Appl. Phys. Letts. 83, 4909-4911 (2003).
[CrossRef]

2002

M. Chen,  et al, "Dose-energy match for the formation of high-integrity buried oxide layers in low-dose separation-by-implantation-of-oxygen materials," Appl. Phys. Letts. 80, 880-82 (2002).
[CrossRef]

2000

H. Ono and A. Ogura, "Evaulation of buried oxide formation in low dose SIMOX," Appl. Surf. Sci. 159-160, 104-110(2000).

1990

R. A. Soref, F. Namavar, E. Cortesi, L. Friedman, and R. Lareau, "Vertical 3D integration of silicon waveguides in a Si-SiO2-Si-SiO2-Si structure," Proc SPIE 1389, 408-421 (1990).
[CrossRef]

Barclay, P.

M. Borselli, K. Srinivasan, P. Barclay, and O. Painter, "Rayleigh scattering, mode coupling, and optical loss in silicon microdisks," Appl. Phys. Lett. 85, 3693-3695 (2004).
[CrossRef]

Borselli, M.

M. Borselli, K. Srinivasan, P. Barclay, and O. Painter, "Rayleigh scattering, mode coupling, and optical loss in silicon microdisks," Appl. Phys. Lett. 85, 3693-3695 (2004).
[CrossRef]

Boyraz, O.

Chen, M.

M. Chen,  et al, "Dose-energy match for the formation of high-integrity buried oxide layers in low-dose separation-by-implantation-of-oxygen materials," Appl. Phys. Letts. 80, 880-82 (2002).
[CrossRef]

Chen, X.

X. Chen, N. C. Panoiu, and R. M. Osgood, "Theory of Raman-mediated pulse amplification in silicon wire waveguides," IEEE J. of Quantum Electron. 42, 160-170 (2006).
[CrossRef]

Cortesi, E.

R. A. Soref, F. Namavar, E. Cortesi, L. Friedman, and R. Lareau, "Vertical 3D integration of silicon waveguides in a Si-SiO2-Si-SiO2-Si structure," Proc SPIE 1389, 408-421 (1990).
[CrossRef]

Davis, W. R.

W. R. Davis,  et al., "Demystifying 3D ICs: The pros and cons of going vertical," IEEE Design and Test of Computers 22, 498-510 (2005).
[CrossRef]

Dumon, P.

P. Dumon,  et al. "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004).
[CrossRef]

Friedman, L.

R. A. Soref, F. Namavar, E. Cortesi, L. Friedman, and R. Lareau, "Vertical 3D integration of silicon waveguides in a Si-SiO2-Si-SiO2-Si structure," Proc SPIE 1389, 408-421 (1990).
[CrossRef]

Hochberg, M.

M. Hochberg,  et al., "Terahertz All-Optical Modulation in Silicon-Polymer Hybrid System," Nat. Mater. 5, 703 - 709 (2006).
[CrossRef] [PubMed]

Hsang, H. K.

T. K. Liang and H. K. Hsang, "Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Letts. 84, 2745-2747 (2004).
[CrossRef]

Indukuri, T.

T. Indukuri, P. Koonath, and B. Jalali, "Three-dimensional integration of metal-oxide-semiconductor transistor with subterranean photonics in silicon," Appl. Phys. Lett. 88, 121108 (2006).
[CrossRef]

P. Koonath, K. Kishima, T. Indukuri and B. Jalali, "Sculpting of three-dimensional nano-optical structures in silicon," Appl. Phys. Letts. 83, 4909-4911 (2003).
[CrossRef]

Jalali, B.

T. Indukuri, P. Koonath, and B. Jalali, "Three-dimensional integration of metal-oxide-semiconductor transistor with subterranean photonics in silicon," Appl. Phys. Lett. 88, 121108 (2006).
[CrossRef]

O. Boyraz and B. Jalali, "Demonstration of a Silicon Raman Laser," Opt. Express 12, 5269-5273 (2004).
[CrossRef] [PubMed]

P. Koonath, K. Kishima, T. Indukuri and B. Jalali, "Sculpting of three-dimensional nano-optical structures in silicon," Appl. Phys. Letts. 83, 4909-4911 (2003).
[CrossRef]

Jia, K.

K. Jia,  et al, "Silicon-on-insulator-based optical demultiplexer employing turning-mirror-integrated arrayed-waveguide grating," IEEE Photon. Technol. Lett. 17, 378-380 (2005).
[CrossRef]

Kalkman, J.

A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, and K. Vahala, "Ultralow-threshold erbium-implanted toroidal microlaser on silicon," Appl. Phys. Lett. 84, 1037-1039 (2004).
[CrossRef]

Kippenberg, T. J.

A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, and K. Vahala, "Ultralow-threshold erbium-implanted toroidal microlaser on silicon," Appl. Phys. Lett. 84, 1037-1039 (2004).
[CrossRef]

Kishima, K.

P. Koonath, K. Kishima, T. Indukuri and B. Jalali, "Sculpting of three-dimensional nano-optical structures in silicon," Appl. Phys. Letts. 83, 4909-4911 (2003).
[CrossRef]

Koonath, P.

T. Indukuri, P. Koonath, and B. Jalali, "Three-dimensional integration of metal-oxide-semiconductor transistor with subterranean photonics in silicon," Appl. Phys. Lett. 88, 121108 (2006).
[CrossRef]

P. Koonath, K. Kishima, T. Indukuri and B. Jalali, "Sculpting of three-dimensional nano-optical structures in silicon," Appl. Phys. Letts. 83, 4909-4911 (2003).
[CrossRef]

Kuo, Y.

Y. Kuo,  et al, "Strong quantum-confined stark effect in germanium quantum-well structures on silicon," Nature 437, 1334-1336 (2005).
[CrossRef] [PubMed]

Lareau, R.

R. A. Soref, F. Namavar, E. Cortesi, L. Friedman, and R. Lareau, "Vertical 3D integration of silicon waveguides in a Si-SiO2-Si-SiO2-Si structure," Proc SPIE 1389, 408-421 (1990).
[CrossRef]

Liang, T. K.

T. K. Liang and H. K. Hsang, "Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Letts. 84, 2745-2747 (2004).
[CrossRef]

Lipson, M.

Q. Xu, B. Schmidt, S. Pradhan and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435,325-327 (2005).
[CrossRef] [PubMed]

McNab, S. J.

Y. A. Vlasov and S. J. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt. Express 21, 1622-1631 (2004).
[CrossRef]

Min, B.

A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, and K. Vahala, "Ultralow-threshold erbium-implanted toroidal microlaser on silicon," Appl. Phys. Lett. 84, 1037-1039 (2004).
[CrossRef]

Namavar, F.

R. A. Soref, F. Namavar, E. Cortesi, L. Friedman, and R. Lareau, "Vertical 3D integration of silicon waveguides in a Si-SiO2-Si-SiO2-Si structure," Proc SPIE 1389, 408-421 (1990).
[CrossRef]

Ogura, A.

H. Ono and A. Ogura, "Evaulation of buried oxide formation in low dose SIMOX," Appl. Surf. Sci. 159-160, 104-110(2000).

Ono, H.

H. Ono and A. Ogura, "Evaulation of buried oxide formation in low dose SIMOX," Appl. Surf. Sci. 159-160, 104-110(2000).

Osgood, R. M.

X. Chen, N. C. Panoiu, and R. M. Osgood, "Theory of Raman-mediated pulse amplification in silicon wire waveguides," IEEE J. of Quantum Electron. 42, 160-170 (2006).
[CrossRef]

Painter, O.

M. Borselli, K. Srinivasan, P. Barclay, and O. Painter, "Rayleigh scattering, mode coupling, and optical loss in silicon microdisks," Appl. Phys. Lett. 85, 3693-3695 (2004).
[CrossRef]

Panoiu, N. C.

X. Chen, N. C. Panoiu, and R. M. Osgood, "Theory of Raman-mediated pulse amplification in silicon wire waveguides," IEEE J. of Quantum Electron. 42, 160-170 (2006).
[CrossRef]

Polman, A.

A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, and K. Vahala, "Ultralow-threshold erbium-implanted toroidal microlaser on silicon," Appl. Phys. Lett. 84, 1037-1039 (2004).
[CrossRef]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435,325-327 (2005).
[CrossRef] [PubMed]

Rong, H.

H. Rong,  et al, "Low-threshold continuous-wave Raman silicon laser," Nat. Photonics 1, 232 - 237 (2007).
[CrossRef]

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435,325-327 (2005).
[CrossRef] [PubMed]

Sekaric, L.

F. Xia, L. Sekaric and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nat. Photonics 1, 65-71 (2006).
[CrossRef]

Soref, R. A.

R. A. Soref, F. Namavar, E. Cortesi, L. Friedman, and R. Lareau, "Vertical 3D integration of silicon waveguides in a Si-SiO2-Si-SiO2-Si structure," Proc SPIE 1389, 408-421 (1990).
[CrossRef]

Srinivasan, K.

M. Borselli, K. Srinivasan, P. Barclay, and O. Painter, "Rayleigh scattering, mode coupling, and optical loss in silicon microdisks," Appl. Phys. Lett. 85, 3693-3695 (2004).
[CrossRef]

Tsuchizawa, T.

T. Tsuchizawa,  et al., "Microphotonics devices based on silicon microfabrication technology," EEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

Vahala, K.

A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, and K. Vahala, "Ultralow-threshold erbium-implanted toroidal microlaser on silicon," Appl. Phys. Lett. 84, 1037-1039 (2004).
[CrossRef]

Vlasov, Y.

F. Xia, L. Sekaric and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nat. Photonics 1, 65-71 (2006).
[CrossRef]

Vlasov, Y. A.

Y. A. Vlasov and S. J. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt. Express 21, 1622-1631 (2004).
[CrossRef]

Xia, F.

F. Xia, L. Sekaric and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nat. Photonics 1, 65-71 (2006).
[CrossRef]

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435,325-327 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett.

A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, and K. Vahala, "Ultralow-threshold erbium-implanted toroidal microlaser on silicon," Appl. Phys. Lett. 84, 1037-1039 (2004).
[CrossRef]

M. Borselli, K. Srinivasan, P. Barclay, and O. Painter, "Rayleigh scattering, mode coupling, and optical loss in silicon microdisks," Appl. Phys. Lett. 85, 3693-3695 (2004).
[CrossRef]

T. Indukuri, P. Koonath, and B. Jalali, "Three-dimensional integration of metal-oxide-semiconductor transistor with subterranean photonics in silicon," Appl. Phys. Lett. 88, 121108 (2006).
[CrossRef]

Appl. Phys. Letts.

T. K. Liang and H. K. Hsang, "Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Letts. 84, 2745-2747 (2004).
[CrossRef]

P. Koonath, K. Kishima, T. Indukuri and B. Jalali, "Sculpting of three-dimensional nano-optical structures in silicon," Appl. Phys. Letts. 83, 4909-4911 (2003).
[CrossRef]

M. Chen,  et al, "Dose-energy match for the formation of high-integrity buried oxide layers in low-dose separation-by-implantation-of-oxygen materials," Appl. Phys. Letts. 80, 880-82 (2002).
[CrossRef]

Appl. Surf. Sci.

H. Ono and A. Ogura, "Evaulation of buried oxide formation in low dose SIMOX," Appl. Surf. Sci. 159-160, 104-110(2000).

EEE J. Sel. Top. Quantum Electron.

T. Tsuchizawa,  et al., "Microphotonics devices based on silicon microfabrication technology," EEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

IEEE Design and Test of Computers

W. R. Davis,  et al., "Demystifying 3D ICs: The pros and cons of going vertical," IEEE Design and Test of Computers 22, 498-510 (2005).
[CrossRef]

IEEE J. of Quantum Electron.

X. Chen, N. C. Panoiu, and R. M. Osgood, "Theory of Raman-mediated pulse amplification in silicon wire waveguides," IEEE J. of Quantum Electron. 42, 160-170 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

P. Dumon,  et al. "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004).
[CrossRef]

K. Jia,  et al, "Silicon-on-insulator-based optical demultiplexer employing turning-mirror-integrated arrayed-waveguide grating," IEEE Photon. Technol. Lett. 17, 378-380 (2005).
[CrossRef]

Nat. Mater.

M. Hochberg,  et al., "Terahertz All-Optical Modulation in Silicon-Polymer Hybrid System," Nat. Mater. 5, 703 - 709 (2006).
[CrossRef] [PubMed]

Nat. Photonics

F. Xia, L. Sekaric and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nat. Photonics 1, 65-71 (2006).
[CrossRef]

H. Rong,  et al, "Low-threshold continuous-wave Raman silicon laser," Nat. Photonics 1, 232 - 237 (2007).
[CrossRef]

Nature

Q. Xu, B. Schmidt, S. Pradhan and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435,325-327 (2005).
[CrossRef] [PubMed]

Y. Kuo,  et al, "Strong quantum-confined stark effect in germanium quantum-well structures on silicon," Nature 437, 1334-1336 (2005).
[CrossRef] [PubMed]

Opt. Express

Y. A. Vlasov and S. J. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt. Express 21, 1622-1631 (2004).
[CrossRef]

O. Boyraz and B. Jalali, "Demonstration of a Silicon Raman Laser," Opt. Express 12, 5269-5273 (2004).
[CrossRef] [PubMed]

Proc SPIE

R. A. Soref, F. Namavar, E. Cortesi, L. Friedman, and R. Lareau, "Vertical 3D integration of silicon waveguides in a Si-SiO2-Si-SiO2-Si structure," Proc SPIE 1389, 408-421 (1990).
[CrossRef]

Other

L. C. Kimerling,  et al, "Electronic-Photonic integrated circuits on the CMOS platform," Proc. SPIE 6125, 612502-1-10 (2006).
[CrossRef]

A. Fazio, "A high density high performance 180nm generation Etox™ flash memory technology," IEEE IEDM Tech. Digest 267-270 (1999).

S. Tyagi,  et al. "A 65nm ultra low power logic platform technology using Uni-axial strained silicon transistors," IEEE IEDM Tech. Digest 245-247 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the process flow for the fabrication of multilayer structures using SIMOX 3-D sculpting. (a) Starting SOI wafer, with a semitransparent silicon oxide mask on it, is implanted with oxygen ions. (b) High temperature anneal after the implantation results in the formation of a continuous buried oxide layer. (c) Epitaxial growth of silicon. (d) Silicon dioxide is grown thermally and patterned using photolithography to create a semitransparent oxide mask. This wafer then undergoes oxygen ion implantation as in step a. (e) High temperature annealing results in the realization of the second layer of sub-surface waveguides separated from a surface silicon layer. (f) Photolithography and reactive ion etching performed on the surface silicon layer to create devices on the surface silicon layer.

Fig. 2.
Fig. 2.

Cross-sectional Scanning Electron Microscope (SEM) pictures of devices fabricated in a multilayer structure. a) Sub-surface waveguides in the first layer of the structure after oxygen implantation and high temperature anneal. Two layers of silicon are seen above the waveguide structure.b) Sub- surface waveguides in the second layer of the structure. A layer of silicon above and another layer of silicon below the waveguides in this layer are also seen.c) Rib waveguides in the surface silicon realized by photolithography and etching. Two layers of silicon below this surface layer are also seen in the picture.

Fig. 3.
Fig. 3.

The electric field profile of the fundamental mode of a waveguide in the second silicon layer. a) Fundamental mode field profile of the waveguides defined in the second silicon layer, calculated using a finite element mode solver. b) Waveguide structure used for the simulation results shown in part a, which closely matches the experimentally observed structure, with a discontinuous oxide layer, shown in Fig. 2.

Fig. 4
Fig. 4

Three-dimensionally integrated microcavity structures in multilayer silicon structure. a) Schematic of the three-dimensionally coupled microcavities realized using SIMOX 3-D sculpting, where the blue features represent silicon. Microdisk resonators are realized in two sub-surface silicon layers that are coupled to each other and to bus waveguides fabricated on the surface silicon layer. b) The optical micrograph of the top view of the fabricated device where the arrows indicate the direction of flow of optical energy through the multilayer structure. Resonant wavelengths are transmitted to the drop port after traversing through the vertically coupled silicon layer structure. Non-resonant wavelengths appear at the thru port.

Fig. 5.
Fig. 5.

Spectral characteristics of the drop port of the multistage microdisk filter device. Wavelengths that are resonant with the microdisk structure travel through the multilayer structure and get collected at the drop port of the device. Non-resonant wavelengths are collected at the thru port of the device.

Fig. 6.
Fig. 6.

Spectral characteristics of the thru port of the multistage microdisk filter device. Non-resonant wavelengths are collected at the thru port of the device. By comparing with Fig. 5, it may be seen that every peak in Fig. 5 corresponds to a dip in Fig. 6.

Metrics