Abstract

We report a multifocal multiphoton time-correlated single photon counting (TCSPC) fluorescence lifetime imaging (FLIM) microscope system that uses a 16 channel multi-anode PMT detector. Multiphoton excitation minimizes out-of-focus photobleaching, multifocal excitation reduces non-linear in-plane photobleaching effects and TCSPC electronics provide photon-efficient detection of the fluorescence decay profile. TCSPC detection is less prone to bleaching- and movement-induced artefacts compared to wide-field time-gated or frequency-domain FLIM. This microscope is therefore capable of acquiring 3-D FLIM images at significantly increased speeds compared to single beam multiphoton microscopy and we demonstrate this with live cells expressing a GFP tagged protein. We also apply this system to time-lapse FLIM of NAD(P)H autofluorescence in single live cells and report measurements on the change in the fluorescence decay profile following the application of a known metabolic inhibitor.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, “2-Photon Laser Scanning Fluorescence Microscopy,” Science 248, 73–76 (1990).
    [CrossRef] [PubMed]
  2. K. Konig, “Multiphoton microscopy in life sciences,” J. Microscopy-Oxford. 200, 83–104 (2000).
    [CrossRef]
  3. D. W. Piston, B. R. Masters, and W. W. Webb, “3-Dimensionally Resolved NAD(P)H Cellular Metabolic Redox Imaging of the in-Situ Cornea with 2-Photon Excitation Laser-Scanning Microscopy,” J. Microsc. 178, 20–27 (1995).
    [CrossRef] [PubMed]
  4. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, New York, 2006).
    [CrossRef]
  5. R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, and G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D-Appl. Phys. 35, R61–R76 (2002).
    [CrossRef]
  6. K. Suhling, P. M. W. French, and D. Phillips, “Time-resolved fluorescence microscopy,” Photochem. Photobiol. 4, 13–22 (2005).
    [CrossRef]
  7. E. A. Jares-Erijman and T. M. Jovin, “FRET imaging,” Nat. Biotechnol. 21, 1387–1395 (2003).
    [CrossRef] [PubMed]
  8. M. Peter and S. M. Ameer-Beg, “Imaging molecular interactions by multiphoton FLIM,” Biol. Cell 96, 231–236 (2004).
    [CrossRef] [PubMed]
  9. B. Treanor, P. M. P. Lanigan, S. Kumar, C. Dunsby, I. Munro, E. Auksorius, F. J. Culley, M. A. Purbhoo, D. Phillips, M. A. A. Neil, D. N. Burshtyn, P. M. W. French, and D. M. Davis, “Microclusters of inhibitory killer immunoglobulin like receptor signaling at natural killer cell immunological synapses,” J. Cell Biol. 174, 153–161 (2006).
    [CrossRef] [PubMed]
  10. G. H. Patterson and D. W. Piston, “Photobleaching in two-photon excitation microscopy,” Biophys. J. 78, 2159–2162 (2000).
    [CrossRef] [PubMed]
  11. D. R. Drummond, N. Carter, and R. A. Cross, “Multiphoton versus confocal high resolution z-sectioning of enhanced green fluorescent microtubules: increased multiphoton photobleaching within the focal plane can be compensated using a Pockels cell and dual widefield detectors,” J. Microsc. 206, 161–169 (2002).
    [CrossRef] [PubMed]
  12. L. M. Tiede and M. G. Nichols, “Photobleaching of reduced nicotinamide adenine dinucleotide and the development of highly fluorescent lesions in rat basophilic leukemia cells during multiphoton microscopy,” Photochem. Photobiol. 82, 656–664 (2006).
    [CrossRef] [PubMed]
  13. C. Eggeling, A. Volkmer, and C. A. M. Seidel, “Molecular photobleaching kinetics of rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy,” Chemphyschem 6, 791–804 (2005).
    [CrossRef] [PubMed]
  14. V. E. Centonze and J. B. Pawley, “Tutorial on Practical Confocal Microscopy and Use of the Confocal Test Specimen,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum Press, New York, 1995), pp. 549–570.
  15. J. A. Conchello and J. W. Lichtman, “Optical sectioning microscopy,” Nature Methods 2, 920–931 (2005).
    [CrossRef] [PubMed]
  16. Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, “Evidence for Localized Cell Heating Induced by Infrared Optical Tweezers,” Biophys. J. 68, 2137–2144 (1995).
    [CrossRef] [PubMed]
  17. A. Schonle and S. W. Hell, “Heating by absorption in the focus of an objective lens,” Opt. Lett. 23, 325–327 (1998).
    [CrossRef]
  18. K. Konig, T. W. Becker, P. Fischer, I. Riemann, and K. J. Halbhuber, “Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes,” Opt. Lett. 24, 113–115 (1999).
    [CrossRef]
  19. J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17, 763–767 (1999).
    [CrossRef] [PubMed]
  20. A. Hopt and E. Neher, “Highly nonlinear photodamage in two-photon fluorescence microscopy,” Biophys. J. 80, 2029–2036 (2001).
    [CrossRef] [PubMed]
  21. H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, “Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: Signal and photodamage,” Biophys. J. 77, 2226–2236 (1999).
    [CrossRef] [PubMed]
  22. A. H. Buist, M. Muller, J. Squier, and G. J. Brakenhoff, “Real time two-photon absorption microscopy using multi point excitation,” J. Microsc. 192, 217–226 (1998).
    [CrossRef]
  23. J. Bewersdorf, R. Pick, and S. W. Hell, “Multifocal multiphoton microscopy,” Opt. Lett. 23, 655–657 (1998).
    [CrossRef]
  24. T. Nielsen, M. Frick, D. Hellweg, and P. Andresen, “High efficiency beam splitter for multifocal multiphoton microscopy,” J. Microsc. 201, 368–376 (2001).
    [CrossRef] [PubMed]
  25. G. C. Cianci, J. R. Wu, and K. M. Berland, “Saturation modified point spread functions in two-photon microscopy,” Microsc. Res. Tech. 64, 135–141 (2004).
    [CrossRef] [PubMed]
  26. D. V. O’Connor and D. Phillips, Time-correlated single-photon counting (Academic press, London, 1984).
  27. H. C. Gerritsen, M. A. H. Asselbergs, A. V. Agronskaia, and W. Van Sark, “Fluorescence lifetime imaging in scanning microscopes: acquisition speed, photon economy and lifetime resolution,” J. Microsc. 206, 218–224 (2002).
    [CrossRef] [PubMed]
  28. W. Becker, A. Bergmann, M. A. Hink, K. Konig, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63, 58–66 (2004).
    [CrossRef]
  29. R. V. Krishnan, H. Saitoh, H. Terada, V. E. Centonze, and B. Herman, “Development of a multiphoton fluorescence lifetime imaging microscopy system using a streak camera,” Rev. Sci. Instrum. 74, 2714–2721 (2003).
    [CrossRef]
  30. J. L. Qu, L. X. Liu, D. N. Chen, Z. Y. Lin, G. X. Xu, B. P. Guo, and H. B. Niu, “Temporally and spectrally resolved sampling imaging with a specially designed streak camera,” Opt. Lett. 31, 368–370 (2006).
    [CrossRef] [PubMed]
  31. D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intensifier,” New J. Phys. 6, 13 (2004).
    [CrossRef]
  32. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer, Berlin, 2005).
    [CrossRef]
  33. C. J. de Grauw and H. C. Gerritsen, “Multiple time-gate module for fluorescence lifetime imaging,” Appl. Spectrosc. 55, 670–678 (2001).
    [CrossRef]
  34. M. Straub and S. W. Hell, “Fluorescence lifetime three-dimensional microscopy with picosecond precision using a multifocal multiphoton microscope,” Appl. Phys. Lett. 73, 1769–1771 (1998).
    [CrossRef]
  35. S. Leveque-Fort, M. P. Fontaine-Aupart, G. Roger, and P. Georges, “Fluorescence-lifetime imaging with a multifocal two-photon microscope,” Opt. Lett. 29, 2884–2886 (2004).
    [CrossRef]
  36. R. K. P. Benninger, O. Hofmann, J. McGinty, J. Requejo-Isidro, I. Munro, M. A. A. Neil, A. J. deMello, and P. M. W. French, “Time-resolved fluorescence imaging of solvent interactions in microfluidic devices,” Opt. Express 13, 6275–6285 (2005).
    [CrossRef] [PubMed]
  37. L. Liu, J. Qu, Z. Lin, L. Wang, Z. Fu, B. Guo, and H. Niu, “Simultaneous time- and spectrum-resolved multifocal multiphoton microscopy,” Appl. Phys. B-Lasers and Optics 84, 379–383 (2006).
    [CrossRef]
  38. A. Egner and S. W. Hell, “Time multiplexing and parallelization in multifocal multiphoton microscopy,” J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 17, 1192–1201 (2000).
    [CrossRef] [PubMed]
  39. P. D. Borszcz, M. Peterson, L. Standeven, S. Kirwan, M. Sandusky, A. Shaw, E. O. Long, and D. N. Burshtyn, “KIR enrichment at the effector-target cell interface is more sensitive than signaling to the strength of ligand binding,” Eur. J. Immunol. 33, 1084–1093 (2003).
    [CrossRef] [PubMed]
  40. B. R. Masters, P. T. C. So, and E. Gratton, “Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin,” Biophys. J. 72, 2405–2412 (1997).
    [CrossRef] [PubMed]
  41. G. H. Patterson, S. M. Knobel, P. Arkhammar, O. Thastrup, and D. W. Piston, “Separation of the glucose-stimulated cytoplasmic mitochondrial NAD(P)H responses in pancreatic islet beta cells,” Proc. Natl. Acad. Sci. U. S. A. 97, 5203–5207 (2000).
    [CrossRef] [PubMed]
  42. S. H. Huang, A. A. Heikal, and W. W. Webb, “Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein,” Biophys. J. 82, 2811–2825 (2002).
    [CrossRef] [PubMed]
  43. M. G. Nichols, E. E. Barth, and J. A. Nichols, “Reduction in DNA synthesis during two-photon microscopy of intrinsic reduced nicotinamide adenine dinucleotide fluorescence,” Photochem. Photobiol. 81, 259–269 (2005).
    [CrossRef] [PubMed]
  44. H. Schneckenburger and K. Konig, “Fluorescence Decay Kinetics and Imaging of Nad(P)H and Flavins as Metabolic Indicators,” Opt. Eng. 31, 1447–1451 (1992).
    [CrossRef]
  45. H. D. Vishwasrao, A. A. Heikal, K. A. Kasischke, and W. W. Webb, “Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy,” J. Biol. Chem. 280, 25119–25126 (2005).
    [CrossRef] [PubMed]
  46. D. K. Bird, L. Yan, K. M. Vrotsos, K. W. Eliceiri, E. M. Vaughan, P. J. Keely, J. G. White, and N. Ramanujam, “Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH,” Cancer Res. 65, 8766–8773 (2005).
    [CrossRef] [PubMed]
  47. Y. C. Wu, W. Zheng, and J. N. Y. Qu, “Sensing cell metabolism by time-resolved autofluorescence,” Opt. Lett. 31, 3122–3124 (2006).
    [CrossRef] [PubMed]
  48. A. Pradhan, P. Pal, G. Durocher, L. Villeneuve, A. Balassy, F. Babai, L. Gaboury, and L. Blanchard, “Steady state and time-resolved fluorescence properties of metastatic and non-metastatic malignant cells from different species,” J. Photochem. Photobiol. B-Biol. 31, 101–112 (1995).
    [CrossRef]
  49. M. C. Skala, K. M. Riching, D. K. Bird, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, P. J. Keely, and N. Ramanujam, “In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia,” J. Biomed. Opt. 12, 024014-024011-024010 (2007).
    [CrossRef] [PubMed]
  50. A. Mayevsky and G. G. Rogatsky, “Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies,” Am. J. Physiol.-Cell Physiol. 292, C615–C640 (2007).
    [CrossRef]
  51. B. Chance, P. Cohen, F. Jobsis, and B. Schoener, “Intracellular Oxidation-Reduction States in Vivo,” Science 137, 499–508 (1962).
    [CrossRef] [PubMed]
  52. A. Gafni and L. Brand, “Fluorescence Decay Studies of Reduced Nicotinamide Adenine Dinucleotide in Solution and Bound to Liver Alcohol Dehydrogenase,” Biochemistry 15, 3165–3171 (1976).
    [CrossRef] [PubMed]
  53. A. J. W. G. Visser and A. van Hoek, “The fluorescence decay of reduced nicotinamides in aqueous solution after exciation with a UV-mode locked Ar Ion Laser,” Photochem. Photobiol. 33, 35–40 (1981).
    [CrossRef]
  54. M. Wakita, G. Nishimura, and M. Tamura, “Some Characteristics of the Fluorescence Lifetime of Reduced Pyridine-Nucleotides in Isolated-Mitochondria, Isolated Hepatocytes, and Perfused-Rat-Liver in-Situ,” J. Biochem.(Tokyo) 118, 1151–1160 (1995).
  55. J. C. Brochon, P. Wahl, M. O. Monneuse-Doublet, and A. Olomucki, “Pulse Fluorimetry Study of Octopine Dehydrogenase-Reduced Nicotinamide Adenine Dinucleotide Complexes,” Biochemistry 16, 4594–4599 (1977).
    [CrossRef] [PubMed]
  56. J. Martini, V. Andresen, and D. Anselmetti, “Scattering suppression and confocal detection in multifocal multiphoton microscopy,” J. Biomed. Opt. 12, 034010–034016 (2007).
    [CrossRef] [PubMed]
  57. T. Ragan, J. D. Sylvan, K. H. Kim, H. Huang, K. Bahlmann, R. T. Lee, and P. T. C. So, “High-resolution whole organ imaging using two-photon tissue cytometry,” J. Biomed. Opt. 12, 9 (2007).
    [CrossRef]

2007 (4)

M. C. Skala, K. M. Riching, D. K. Bird, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, P. J. Keely, and N. Ramanujam, “In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia,” J. Biomed. Opt. 12, 024014-024011-024010 (2007).
[CrossRef] [PubMed]

A. Mayevsky and G. G. Rogatsky, “Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies,” Am. J. Physiol.-Cell Physiol. 292, C615–C640 (2007).
[CrossRef]

J. Martini, V. Andresen, and D. Anselmetti, “Scattering suppression and confocal detection in multifocal multiphoton microscopy,” J. Biomed. Opt. 12, 034010–034016 (2007).
[CrossRef] [PubMed]

T. Ragan, J. D. Sylvan, K. H. Kim, H. Huang, K. Bahlmann, R. T. Lee, and P. T. C. So, “High-resolution whole organ imaging using two-photon tissue cytometry,” J. Biomed. Opt. 12, 9 (2007).
[CrossRef]

2006 (5)

J. L. Qu, L. X. Liu, D. N. Chen, Z. Y. Lin, G. X. Xu, B. P. Guo, and H. B. Niu, “Temporally and spectrally resolved sampling imaging with a specially designed streak camera,” Opt. Lett. 31, 368–370 (2006).
[CrossRef] [PubMed]

Y. C. Wu, W. Zheng, and J. N. Y. Qu, “Sensing cell metabolism by time-resolved autofluorescence,” Opt. Lett. 31, 3122–3124 (2006).
[CrossRef] [PubMed]

B. Treanor, P. M. P. Lanigan, S. Kumar, C. Dunsby, I. Munro, E. Auksorius, F. J. Culley, M. A. Purbhoo, D. Phillips, M. A. A. Neil, D. N. Burshtyn, P. M. W. French, and D. M. Davis, “Microclusters of inhibitory killer immunoglobulin like receptor signaling at natural killer cell immunological synapses,” J. Cell Biol. 174, 153–161 (2006).
[CrossRef] [PubMed]

L. M. Tiede and M. G. Nichols, “Photobleaching of reduced nicotinamide adenine dinucleotide and the development of highly fluorescent lesions in rat basophilic leukemia cells during multiphoton microscopy,” Photochem. Photobiol. 82, 656–664 (2006).
[CrossRef] [PubMed]

L. Liu, J. Qu, Z. Lin, L. Wang, Z. Fu, B. Guo, and H. Niu, “Simultaneous time- and spectrum-resolved multifocal multiphoton microscopy,” Appl. Phys. B-Lasers and Optics 84, 379–383 (2006).
[CrossRef]

2005 (7)

M. G. Nichols, E. E. Barth, and J. A. Nichols, “Reduction in DNA synthesis during two-photon microscopy of intrinsic reduced nicotinamide adenine dinucleotide fluorescence,” Photochem. Photobiol. 81, 259–269 (2005).
[CrossRef] [PubMed]

H. D. Vishwasrao, A. A. Heikal, K. A. Kasischke, and W. W. Webb, “Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy,” J. Biol. Chem. 280, 25119–25126 (2005).
[CrossRef] [PubMed]

D. K. Bird, L. Yan, K. M. Vrotsos, K. W. Eliceiri, E. M. Vaughan, P. J. Keely, J. G. White, and N. Ramanujam, “Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH,” Cancer Res. 65, 8766–8773 (2005).
[CrossRef] [PubMed]

C. Eggeling, A. Volkmer, and C. A. M. Seidel, “Molecular photobleaching kinetics of rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy,” Chemphyschem 6, 791–804 (2005).
[CrossRef] [PubMed]

J. A. Conchello and J. W. Lichtman, “Optical sectioning microscopy,” Nature Methods 2, 920–931 (2005).
[CrossRef] [PubMed]

K. Suhling, P. M. W. French, and D. Phillips, “Time-resolved fluorescence microscopy,” Photochem. Photobiol. 4, 13–22 (2005).
[CrossRef]

R. K. P. Benninger, O. Hofmann, J. McGinty, J. Requejo-Isidro, I. Munro, M. A. A. Neil, A. J. deMello, and P. M. W. French, “Time-resolved fluorescence imaging of solvent interactions in microfluidic devices,” Opt. Express 13, 6275–6285 (2005).
[CrossRef] [PubMed]

2004 (5)

S. Leveque-Fort, M. P. Fontaine-Aupart, G. Roger, and P. Georges, “Fluorescence-lifetime imaging with a multifocal two-photon microscope,” Opt. Lett. 29, 2884–2886 (2004).
[CrossRef]

D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intensifier,” New J. Phys. 6, 13 (2004).
[CrossRef]

M. Peter and S. M. Ameer-Beg, “Imaging molecular interactions by multiphoton FLIM,” Biol. Cell 96, 231–236 (2004).
[CrossRef] [PubMed]

W. Becker, A. Bergmann, M. A. Hink, K. Konig, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63, 58–66 (2004).
[CrossRef]

G. C. Cianci, J. R. Wu, and K. M. Berland, “Saturation modified point spread functions in two-photon microscopy,” Microsc. Res. Tech. 64, 135–141 (2004).
[CrossRef] [PubMed]

2003 (3)

R. V. Krishnan, H. Saitoh, H. Terada, V. E. Centonze, and B. Herman, “Development of a multiphoton fluorescence lifetime imaging microscopy system using a streak camera,” Rev. Sci. Instrum. 74, 2714–2721 (2003).
[CrossRef]

P. D. Borszcz, M. Peterson, L. Standeven, S. Kirwan, M. Sandusky, A. Shaw, E. O. Long, and D. N. Burshtyn, “KIR enrichment at the effector-target cell interface is more sensitive than signaling to the strength of ligand binding,” Eur. J. Immunol. 33, 1084–1093 (2003).
[CrossRef] [PubMed]

E. A. Jares-Erijman and T. M. Jovin, “FRET imaging,” Nat. Biotechnol. 21, 1387–1395 (2003).
[CrossRef] [PubMed]

2002 (4)

R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, and G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D-Appl. Phys. 35, R61–R76 (2002).
[CrossRef]

D. R. Drummond, N. Carter, and R. A. Cross, “Multiphoton versus confocal high resolution z-sectioning of enhanced green fluorescent microtubules: increased multiphoton photobleaching within the focal plane can be compensated using a Pockels cell and dual widefield detectors,” J. Microsc. 206, 161–169 (2002).
[CrossRef] [PubMed]

S. H. Huang, A. A. Heikal, and W. W. Webb, “Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein,” Biophys. J. 82, 2811–2825 (2002).
[CrossRef] [PubMed]

H. C. Gerritsen, M. A. H. Asselbergs, A. V. Agronskaia, and W. Van Sark, “Fluorescence lifetime imaging in scanning microscopes: acquisition speed, photon economy and lifetime resolution,” J. Microsc. 206, 218–224 (2002).
[CrossRef] [PubMed]

2001 (3)

T. Nielsen, M. Frick, D. Hellweg, and P. Andresen, “High efficiency beam splitter for multifocal multiphoton microscopy,” J. Microsc. 201, 368–376 (2001).
[CrossRef] [PubMed]

A. Hopt and E. Neher, “Highly nonlinear photodamage in two-photon fluorescence microscopy,” Biophys. J. 80, 2029–2036 (2001).
[CrossRef] [PubMed]

C. J. de Grauw and H. C. Gerritsen, “Multiple time-gate module for fluorescence lifetime imaging,” Appl. Spectrosc. 55, 670–678 (2001).
[CrossRef]

2000 (4)

K. Konig, “Multiphoton microscopy in life sciences,” J. Microscopy-Oxford. 200, 83–104 (2000).
[CrossRef]

G. H. Patterson and D. W. Piston, “Photobleaching in two-photon excitation microscopy,” Biophys. J. 78, 2159–2162 (2000).
[CrossRef] [PubMed]

A. Egner and S. W. Hell, “Time multiplexing and parallelization in multifocal multiphoton microscopy,” J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 17, 1192–1201 (2000).
[CrossRef] [PubMed]

G. H. Patterson, S. M. Knobel, P. Arkhammar, O. Thastrup, and D. W. Piston, “Separation of the glucose-stimulated cytoplasmic mitochondrial NAD(P)H responses in pancreatic islet beta cells,” Proc. Natl. Acad. Sci. U. S. A. 97, 5203–5207 (2000).
[CrossRef] [PubMed]

1999 (3)

J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17, 763–767 (1999).
[CrossRef] [PubMed]

H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, “Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: Signal and photodamage,” Biophys. J. 77, 2226–2236 (1999).
[CrossRef] [PubMed]

K. Konig, T. W. Becker, P. Fischer, I. Riemann, and K. J. Halbhuber, “Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes,” Opt. Lett. 24, 113–115 (1999).
[CrossRef]

1998 (4)

M. Straub and S. W. Hell, “Fluorescence lifetime three-dimensional microscopy with picosecond precision using a multifocal multiphoton microscope,” Appl. Phys. Lett. 73, 1769–1771 (1998).
[CrossRef]

A. Schonle and S. W. Hell, “Heating by absorption in the focus of an objective lens,” Opt. Lett. 23, 325–327 (1998).
[CrossRef]

J. Bewersdorf, R. Pick, and S. W. Hell, “Multifocal multiphoton microscopy,” Opt. Lett. 23, 655–657 (1998).
[CrossRef]

A. H. Buist, M. Muller, J. Squier, and G. J. Brakenhoff, “Real time two-photon absorption microscopy using multi point excitation,” J. Microsc. 192, 217–226 (1998).
[CrossRef]

1997 (1)

B. R. Masters, P. T. C. So, and E. Gratton, “Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin,” Biophys. J. 72, 2405–2412 (1997).
[CrossRef] [PubMed]

1995 (5)

A. Pradhan, P. Pal, G. Durocher, L. Villeneuve, A. Balassy, F. Babai, L. Gaboury, and L. Blanchard, “Steady state and time-resolved fluorescence properties of metastatic and non-metastatic malignant cells from different species,” J. Photochem. Photobiol. B-Biol. 31, 101–112 (1995).
[CrossRef]

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, “Evidence for Localized Cell Heating Induced by Infrared Optical Tweezers,” Biophys. J. 68, 2137–2144 (1995).
[CrossRef] [PubMed]

V. E. Centonze and J. B. Pawley, “Tutorial on Practical Confocal Microscopy and Use of the Confocal Test Specimen,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum Press, New York, 1995), pp. 549–570.

D. W. Piston, B. R. Masters, and W. W. Webb, “3-Dimensionally Resolved NAD(P)H Cellular Metabolic Redox Imaging of the in-Situ Cornea with 2-Photon Excitation Laser-Scanning Microscopy,” J. Microsc. 178, 20–27 (1995).
[CrossRef] [PubMed]

M. Wakita, G. Nishimura, and M. Tamura, “Some Characteristics of the Fluorescence Lifetime of Reduced Pyridine-Nucleotides in Isolated-Mitochondria, Isolated Hepatocytes, and Perfused-Rat-Liver in-Situ,” J. Biochem.(Tokyo) 118, 1151–1160 (1995).

1992 (1)

H. Schneckenburger and K. Konig, “Fluorescence Decay Kinetics and Imaging of Nad(P)H and Flavins as Metabolic Indicators,” Opt. Eng. 31, 1447–1451 (1992).
[CrossRef]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “2-Photon Laser Scanning Fluorescence Microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

1981 (1)

A. J. W. G. Visser and A. van Hoek, “The fluorescence decay of reduced nicotinamides in aqueous solution after exciation with a UV-mode locked Ar Ion Laser,” Photochem. Photobiol. 33, 35–40 (1981).
[CrossRef]

1977 (1)

J. C. Brochon, P. Wahl, M. O. Monneuse-Doublet, and A. Olomucki, “Pulse Fluorimetry Study of Octopine Dehydrogenase-Reduced Nicotinamide Adenine Dinucleotide Complexes,” Biochemistry 16, 4594–4599 (1977).
[CrossRef] [PubMed]

1976 (1)

A. Gafni and L. Brand, “Fluorescence Decay Studies of Reduced Nicotinamide Adenine Dinucleotide in Solution and Bound to Liver Alcohol Dehydrogenase,” Biochemistry 15, 3165–3171 (1976).
[CrossRef] [PubMed]

1962 (1)

B. Chance, P. Cohen, F. Jobsis, and B. Schoener, “Intracellular Oxidation-Reduction States in Vivo,” Science 137, 499–508 (1962).
[CrossRef] [PubMed]

Agronskaia, A. V.

H. C. Gerritsen, M. A. H. Asselbergs, A. V. Agronskaia, and W. Van Sark, “Fluorescence lifetime imaging in scanning microscopes: acquisition speed, photon economy and lifetime resolution,” J. Microsc. 206, 218–224 (2002).
[CrossRef] [PubMed]

Ameer-Beg, S. M.

M. Peter and S. M. Ameer-Beg, “Imaging molecular interactions by multiphoton FLIM,” Biol. Cell 96, 231–236 (2004).
[CrossRef] [PubMed]

Andresen, P.

T. Nielsen, M. Frick, D. Hellweg, and P. Andresen, “High efficiency beam splitter for multifocal multiphoton microscopy,” J. Microsc. 201, 368–376 (2001).
[CrossRef] [PubMed]

Andresen, V.

J. Martini, V. Andresen, and D. Anselmetti, “Scattering suppression and confocal detection in multifocal multiphoton microscopy,” J. Biomed. Opt. 12, 034010–034016 (2007).
[CrossRef] [PubMed]

Anselmetti, D.

J. Martini, V. Andresen, and D. Anselmetti, “Scattering suppression and confocal detection in multifocal multiphoton microscopy,” J. Biomed. Opt. 12, 034010–034016 (2007).
[CrossRef] [PubMed]

Arkhammar, P.

G. H. Patterson, S. M. Knobel, P. Arkhammar, O. Thastrup, and D. W. Piston, “Separation of the glucose-stimulated cytoplasmic mitochondrial NAD(P)H responses in pancreatic islet beta cells,” Proc. Natl. Acad. Sci. U. S. A. 97, 5203–5207 (2000).
[CrossRef] [PubMed]

Asselbergs, M. A. H.

H. C. Gerritsen, M. A. H. Asselbergs, A. V. Agronskaia, and W. Van Sark, “Fluorescence lifetime imaging in scanning microscopes: acquisition speed, photon economy and lifetime resolution,” J. Microsc. 206, 218–224 (2002).
[CrossRef] [PubMed]

Auksorius, E.

B. Treanor, P. M. P. Lanigan, S. Kumar, C. Dunsby, I. Munro, E. Auksorius, F. J. Culley, M. A. Purbhoo, D. Phillips, M. A. A. Neil, D. N. Burshtyn, P. M. W. French, and D. M. Davis, “Microclusters of inhibitory killer immunoglobulin like receptor signaling at natural killer cell immunological synapses,” J. Cell Biol. 174, 153–161 (2006).
[CrossRef] [PubMed]

Babai, F.

A. Pradhan, P. Pal, G. Durocher, L. Villeneuve, A. Balassy, F. Babai, L. Gaboury, and L. Blanchard, “Steady state and time-resolved fluorescence properties of metastatic and non-metastatic malignant cells from different species,” J. Photochem. Photobiol. B-Biol. 31, 101–112 (1995).
[CrossRef]

Bahlmann, K.

T. Ragan, J. D. Sylvan, K. H. Kim, H. Huang, K. Bahlmann, R. T. Lee, and P. T. C. So, “High-resolution whole organ imaging using two-photon tissue cytometry,” J. Biomed. Opt. 12, 9 (2007).
[CrossRef]

Balassy, A.

A. Pradhan, P. Pal, G. Durocher, L. Villeneuve, A. Balassy, F. Babai, L. Gaboury, and L. Blanchard, “Steady state and time-resolved fluorescence properties of metastatic and non-metastatic malignant cells from different species,” J. Photochem. Photobiol. B-Biol. 31, 101–112 (1995).
[CrossRef]

Barth, E. E.

M. G. Nichols, E. E. Barth, and J. A. Nichols, “Reduction in DNA synthesis during two-photon microscopy of intrinsic reduced nicotinamide adenine dinucleotide fluorescence,” Photochem. Photobiol. 81, 259–269 (2005).
[CrossRef] [PubMed]

Baur, D.

H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, “Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: Signal and photodamage,” Biophys. J. 77, 2226–2236 (1999).
[CrossRef] [PubMed]

Bavister, B. D.

J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17, 763–767 (1999).
[CrossRef] [PubMed]

Becker, T. W.

Becker, W.

W. Becker, A. Bergmann, M. A. Hink, K. Konig, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63, 58–66 (2004).
[CrossRef]

W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer, Berlin, 2005).
[CrossRef]

Benndorf, K.

W. Becker, A. Bergmann, M. A. Hink, K. Konig, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63, 58–66 (2004).
[CrossRef]

Benninger, R. K. P.

Bergmann, A.

W. Becker, A. Bergmann, M. A. Hink, K. Konig, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63, 58–66 (2004).
[CrossRef]

Berland, K. M.

G. C. Cianci, J. R. Wu, and K. M. Berland, “Saturation modified point spread functions in two-photon microscopy,” Microsc. Res. Tech. 64, 135–141 (2004).
[CrossRef] [PubMed]

Berns, M. W.

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, “Evidence for Localized Cell Heating Induced by Infrared Optical Tweezers,” Biophys. J. 68, 2137–2144 (1995).
[CrossRef] [PubMed]

Bewersdorf, J.

Bird, D. K.

M. C. Skala, K. M. Riching, D. K. Bird, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, P. J. Keely, and N. Ramanujam, “In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia,” J. Biomed. Opt. 12, 024014-024011-024010 (2007).
[CrossRef] [PubMed]

D. K. Bird, L. Yan, K. M. Vrotsos, K. W. Eliceiri, E. M. Vaughan, P. J. Keely, J. G. White, and N. Ramanujam, “Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH,” Cancer Res. 65, 8766–8773 (2005).
[CrossRef] [PubMed]

Biskup, C.

W. Becker, A. Bergmann, M. A. Hink, K. Konig, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63, 58–66 (2004).
[CrossRef]

Blanchard, L.

A. Pradhan, P. Pal, G. Durocher, L. Villeneuve, A. Balassy, F. Babai, L. Gaboury, and L. Blanchard, “Steady state and time-resolved fluorescence properties of metastatic and non-metastatic malignant cells from different species,” J. Photochem. Photobiol. B-Biol. 31, 101–112 (1995).
[CrossRef]

Borszcz, P. D.

P. D. Borszcz, M. Peterson, L. Standeven, S. Kirwan, M. Sandusky, A. Shaw, E. O. Long, and D. N. Burshtyn, “KIR enrichment at the effector-target cell interface is more sensitive than signaling to the strength of ligand binding,” Eur. J. Immunol. 33, 1084–1093 (2003).
[CrossRef] [PubMed]

Brakenhoff, G. J.

A. H. Buist, M. Muller, J. Squier, and G. J. Brakenhoff, “Real time two-photon absorption microscopy using multi point excitation,” J. Microsc. 192, 217–226 (1998).
[CrossRef]

Brand, L.

A. Gafni and L. Brand, “Fluorescence Decay Studies of Reduced Nicotinamide Adenine Dinucleotide in Solution and Bound to Liver Alcohol Dehydrogenase,” Biochemistry 15, 3165–3171 (1976).
[CrossRef] [PubMed]

Brochon, J. C.

J. C. Brochon, P. Wahl, M. O. Monneuse-Doublet, and A. Olomucki, “Pulse Fluorimetry Study of Octopine Dehydrogenase-Reduced Nicotinamide Adenine Dinucleotide Complexes,” Biochemistry 16, 4594–4599 (1977).
[CrossRef] [PubMed]

Buist, A. H.

A. H. Buist, M. Muller, J. Squier, and G. J. Brakenhoff, “Real time two-photon absorption microscopy using multi point excitation,” J. Microsc. 192, 217–226 (1998).
[CrossRef]

Burshtyn, D. N.

B. Treanor, P. M. P. Lanigan, S. Kumar, C. Dunsby, I. Munro, E. Auksorius, F. J. Culley, M. A. Purbhoo, D. Phillips, M. A. A. Neil, D. N. Burshtyn, P. M. W. French, and D. M. Davis, “Microclusters of inhibitory killer immunoglobulin like receptor signaling at natural killer cell immunological synapses,” J. Cell Biol. 174, 153–161 (2006).
[CrossRef] [PubMed]

P. D. Borszcz, M. Peterson, L. Standeven, S. Kirwan, M. Sandusky, A. Shaw, E. O. Long, and D. N. Burshtyn, “KIR enrichment at the effector-target cell interface is more sensitive than signaling to the strength of ligand binding,” Eur. J. Immunol. 33, 1084–1093 (2003).
[CrossRef] [PubMed]

Carter, N.

D. R. Drummond, N. Carter, and R. A. Cross, “Multiphoton versus confocal high resolution z-sectioning of enhanced green fluorescent microtubules: increased multiphoton photobleaching within the focal plane can be compensated using a Pockels cell and dual widefield detectors,” J. Microsc. 206, 161–169 (2002).
[CrossRef] [PubMed]

Centonze, V. E.

R. V. Krishnan, H. Saitoh, H. Terada, V. E. Centonze, and B. Herman, “Development of a multiphoton fluorescence lifetime imaging microscopy system using a streak camera,” Rev. Sci. Instrum. 74, 2714–2721 (2003).
[CrossRef]

V. E. Centonze and J. B. Pawley, “Tutorial on Practical Confocal Microscopy and Use of the Confocal Test Specimen,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum Press, New York, 1995), pp. 549–570.

Chance, B.

B. Chance, P. Cohen, F. Jobsis, and B. Schoener, “Intracellular Oxidation-Reduction States in Vivo,” Science 137, 499–508 (1962).
[CrossRef] [PubMed]

Chapman, C. F.

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, “Evidence for Localized Cell Heating Induced by Infrared Optical Tweezers,” Biophys. J. 68, 2137–2144 (1995).
[CrossRef] [PubMed]

Chen, D. N.

Cheng, D. K.

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, “Evidence for Localized Cell Heating Induced by Infrared Optical Tweezers,” Biophys. J. 68, 2137–2144 (1995).
[CrossRef] [PubMed]

Cianci, G. C.

G. C. Cianci, J. R. Wu, and K. M. Berland, “Saturation modified point spread functions in two-photon microscopy,” Microsc. Res. Tech. 64, 135–141 (2004).
[CrossRef] [PubMed]

Cohen, P.

B. Chance, P. Cohen, F. Jobsis, and B. Schoener, “Intracellular Oxidation-Reduction States in Vivo,” Science 137, 499–508 (1962).
[CrossRef] [PubMed]

Comelli, D.

R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, and G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D-Appl. Phys. 35, R61–R76 (2002).
[CrossRef]

Conchello, J. A.

J. A. Conchello and J. W. Lichtman, “Optical sectioning microscopy,” Nature Methods 2, 920–931 (2005).
[CrossRef] [PubMed]

Cross, R. A.

D. R. Drummond, N. Carter, and R. A. Cross, “Multiphoton versus confocal high resolution z-sectioning of enhanced green fluorescent microtubules: increased multiphoton photobleaching within the focal plane can be compensated using a Pockels cell and dual widefield detectors,” J. Microsc. 206, 161–169 (2002).
[CrossRef] [PubMed]

Cubeddu, R.

R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, and G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D-Appl. Phys. 35, R61–R76 (2002).
[CrossRef]

Culley, F. J.

B. Treanor, P. M. P. Lanigan, S. Kumar, C. Dunsby, I. Munro, E. Auksorius, F. J. Culley, M. A. Purbhoo, D. Phillips, M. A. A. Neil, D. N. Burshtyn, P. M. W. French, and D. M. Davis, “Microclusters of inhibitory killer immunoglobulin like receptor signaling at natural killer cell immunological synapses,” J. Cell Biol. 174, 153–161 (2006).
[CrossRef] [PubMed]

D’Andrea, C.

R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, and G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D-Appl. Phys. 35, R61–R76 (2002).
[CrossRef]

Davis, D. M.

B. Treanor, P. M. P. Lanigan, S. Kumar, C. Dunsby, I. Munro, E. Auksorius, F. J. Culley, M. A. Purbhoo, D. Phillips, M. A. A. Neil, D. N. Burshtyn, P. M. W. French, and D. M. Davis, “Microclusters of inhibitory killer immunoglobulin like receptor signaling at natural killer cell immunological synapses,” J. Cell Biol. 174, 153–161 (2006).
[CrossRef] [PubMed]

deMello, A. J.

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “2-Photon Laser Scanning Fluorescence Microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Drummond, D. R.

D. R. Drummond, N. Carter, and R. A. Cross, “Multiphoton versus confocal high resolution z-sectioning of enhanced green fluorescent microtubules: increased multiphoton photobleaching within the focal plane can be compensated using a Pockels cell and dual widefield detectors,” J. Microsc. 206, 161–169 (2002).
[CrossRef] [PubMed]

Dunsby, C.

B. Treanor, P. M. P. Lanigan, S. Kumar, C. Dunsby, I. Munro, E. Auksorius, F. J. Culley, M. A. Purbhoo, D. Phillips, M. A. A. Neil, D. N. Burshtyn, P. M. W. French, and D. M. Davis, “Microclusters of inhibitory killer immunoglobulin like receptor signaling at natural killer cell immunological synapses,” J. Cell Biol. 174, 153–161 (2006).
[CrossRef] [PubMed]

D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intensifier,” New J. Phys. 6, 13 (2004).
[CrossRef]

Durocher, G.

A. Pradhan, P. Pal, G. Durocher, L. Villeneuve, A. Balassy, F. Babai, L. Gaboury, and L. Blanchard, “Steady state and time-resolved fluorescence properties of metastatic and non-metastatic malignant cells from different species,” J. Photochem. Photobiol. B-Biol. 31, 101–112 (1995).
[CrossRef]

Dymoke-Bradshaw, A.

D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intensifier,” New J. Phys. 6, 13 (2004).
[CrossRef]

Eggeling, C.

C. Eggeling, A. Volkmer, and C. A. M. Seidel, “Molecular photobleaching kinetics of rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy,” Chemphyschem 6, 791–804 (2005).
[CrossRef] [PubMed]

Egner, A.

A. Egner and S. W. Hell, “Time multiplexing and parallelization in multifocal multiphoton microscopy,” J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 17, 1192–1201 (2000).
[CrossRef] [PubMed]

Eickhoff, J.

M. C. Skala, K. M. Riching, D. K. Bird, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, P. J. Keely, and N. Ramanujam, “In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia,” J. Biomed. Opt. 12, 024014-024011-024010 (2007).
[CrossRef] [PubMed]

Eliceiri, K. W.

M. C. Skala, K. M. Riching, D. K. Bird, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, P. J. Keely, and N. Ramanujam, “In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia,” J. Biomed. Opt. 12, 024014-024011-024010 (2007).
[CrossRef] [PubMed]

D. K. Bird, L. Yan, K. M. Vrotsos, K. W. Eliceiri, E. M. Vaughan, P. J. Keely, J. G. White, and N. Ramanujam, “Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH,” Cancer Res. 65, 8766–8773 (2005).
[CrossRef] [PubMed]

Elson, D. S.

D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intensifier,” New J. Phys. 6, 13 (2004).
[CrossRef]

Fischer, P.

Fontaine-Aupart, M. P.

French, P. M. W.

B. Treanor, P. M. P. Lanigan, S. Kumar, C. Dunsby, I. Munro, E. Auksorius, F. J. Culley, M. A. Purbhoo, D. Phillips, M. A. A. Neil, D. N. Burshtyn, P. M. W. French, and D. M. Davis, “Microclusters of inhibitory killer immunoglobulin like receptor signaling at natural killer cell immunological synapses,” J. Cell Biol. 174, 153–161 (2006).
[CrossRef] [PubMed]

K. Suhling, P. M. W. French, and D. Phillips, “Time-resolved fluorescence microscopy,” Photochem. Photobiol. 4, 13–22 (2005).
[CrossRef]

R. K. P. Benninger, O. Hofmann, J. McGinty, J. Requejo-Isidro, I. Munro, M. A. A. Neil, A. J. deMello, and P. M. W. French, “Time-resolved fluorescence imaging of solvent interactions in microfluidic devices,” Opt. Express 13, 6275–6285 (2005).
[CrossRef] [PubMed]

D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intensifier,” New J. Phys. 6, 13 (2004).
[CrossRef]

Frick, M.

T. Nielsen, M. Frick, D. Hellweg, and P. Andresen, “High efficiency beam splitter for multifocal multiphoton microscopy,” J. Microsc. 201, 368–376 (2001).
[CrossRef] [PubMed]

Fu, Z.

L. Liu, J. Qu, Z. Lin, L. Wang, Z. Fu, B. Guo, and H. Niu, “Simultaneous time- and spectrum-resolved multifocal multiphoton microscopy,” Appl. Phys. B-Lasers and Optics 84, 379–383 (2006).
[CrossRef]

Gaboury, L.

A. Pradhan, P. Pal, G. Durocher, L. Villeneuve, A. Balassy, F. Babai, L. Gaboury, and L. Blanchard, “Steady state and time-resolved fluorescence properties of metastatic and non-metastatic malignant cells from different species,” J. Photochem. Photobiol. B-Biol. 31, 101–112 (1995).
[CrossRef]

Gafni, A.

A. Gafni and L. Brand, “Fluorescence Decay Studies of Reduced Nicotinamide Adenine Dinucleotide in Solution and Bound to Liver Alcohol Dehydrogenase,” Biochemistry 15, 3165–3171 (1976).
[CrossRef] [PubMed]

Galletly, N.

D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intensifier,” New J. Phys. 6, 13 (2004).
[CrossRef]

Gendron-Fitzpatrick, A.

M. C. Skala, K. M. Riching, D. K. Bird, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, P. J. Keely, and N. Ramanujam, “In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia,” J. Biomed. Opt. 12, 024014-024011-024010 (2007).
[CrossRef] [PubMed]

Georges, P.

Gerritsen, H. C.

H. C. Gerritsen, M. A. H. Asselbergs, A. V. Agronskaia, and W. Van Sark, “Fluorescence lifetime imaging in scanning microscopes: acquisition speed, photon economy and lifetime resolution,” J. Microsc. 206, 218–224 (2002).
[CrossRef] [PubMed]

C. J. de Grauw and H. C. Gerritsen, “Multiple time-gate module for fluorescence lifetime imaging,” Appl. Spectrosc. 55, 670–678 (2001).
[CrossRef]

Gratton, E.

B. R. Masters, P. T. C. So, and E. Gratton, “Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin,” Biophys. J. 72, 2405–2412 (1997).
[CrossRef] [PubMed]

Grauw, C. J. de

Guo, B.

L. Liu, J. Qu, Z. Lin, L. Wang, Z. Fu, B. Guo, and H. Niu, “Simultaneous time- and spectrum-resolved multifocal multiphoton microscopy,” Appl. Phys. B-Lasers and Optics 84, 379–383 (2006).
[CrossRef]

Guo, B. P.

Halbhuber, K. J.

Hares, J.

D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intensifier,” New J. Phys. 6, 13 (2004).
[CrossRef]

Heikal, A. A.

H. D. Vishwasrao, A. A. Heikal, K. A. Kasischke, and W. W. Webb, “Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy,” J. Biol. Chem. 280, 25119–25126 (2005).
[CrossRef] [PubMed]

S. H. Huang, A. A. Heikal, and W. W. Webb, “Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein,” Biophys. J. 82, 2811–2825 (2002).
[CrossRef] [PubMed]

Hell, S. W.

A. Egner and S. W. Hell, “Time multiplexing and parallelization in multifocal multiphoton microscopy,” J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 17, 1192–1201 (2000).
[CrossRef] [PubMed]

H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, “Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: Signal and photodamage,” Biophys. J. 77, 2226–2236 (1999).
[CrossRef] [PubMed]

A. Schonle and S. W. Hell, “Heating by absorption in the focus of an objective lens,” Opt. Lett. 23, 325–327 (1998).
[CrossRef]

M. Straub and S. W. Hell, “Fluorescence lifetime three-dimensional microscopy with picosecond precision using a multifocal multiphoton microscope,” Appl. Phys. Lett. 73, 1769–1771 (1998).
[CrossRef]

J. Bewersdorf, R. Pick, and S. W. Hell, “Multifocal multiphoton microscopy,” Opt. Lett. 23, 655–657 (1998).
[CrossRef]

Hellweg, D.

T. Nielsen, M. Frick, D. Hellweg, and P. Andresen, “High efficiency beam splitter for multifocal multiphoton microscopy,” J. Microsc. 201, 368–376 (2001).
[CrossRef] [PubMed]

Herman, B.

R. V. Krishnan, H. Saitoh, H. Terada, V. E. Centonze, and B. Herman, “Development of a multiphoton fluorescence lifetime imaging microscopy system using a streak camera,” Rev. Sci. Instrum. 74, 2714–2721 (2003).
[CrossRef]

Hink, M. A.

W. Becker, A. Bergmann, M. A. Hink, K. Konig, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63, 58–66 (2004).
[CrossRef]

Hoek, A. van

A. J. W. G. Visser and A. van Hoek, “The fluorescence decay of reduced nicotinamides in aqueous solution after exciation with a UV-mode locked Ar Ion Laser,” Photochem. Photobiol. 33, 35–40 (1981).
[CrossRef]

Hofmann, O.

Hopt, A.

A. Hopt and E. Neher, “Highly nonlinear photodamage in two-photon fluorescence microscopy,” Biophys. J. 80, 2029–2036 (2001).
[CrossRef] [PubMed]

Huang, H.

T. Ragan, J. D. Sylvan, K. H. Kim, H. Huang, K. Bahlmann, R. T. Lee, and P. T. C. So, “High-resolution whole organ imaging using two-photon tissue cytometry,” J. Biomed. Opt. 12, 9 (2007).
[CrossRef]

Huang, S. H.

S. H. Huang, A. A. Heikal, and W. W. Webb, “Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein,” Biophys. J. 82, 2811–2825 (2002).
[CrossRef] [PubMed]

Jares-Erijman, E. A.

E. A. Jares-Erijman and T. M. Jovin, “FRET imaging,” Nat. Biotechnol. 21, 1387–1395 (2003).
[CrossRef] [PubMed]

Jobsis, F.

B. Chance, P. Cohen, F. Jobsis, and B. Schoener, “Intracellular Oxidation-Reduction States in Vivo,” Science 137, 499–508 (1962).
[CrossRef] [PubMed]

Jovin, T. M.

E. A. Jares-Erijman and T. M. Jovin, “FRET imaging,” Nat. Biotechnol. 21, 1387–1395 (2003).
[CrossRef] [PubMed]

Kasischke, K. A.

H. D. Vishwasrao, A. A. Heikal, K. A. Kasischke, and W. W. Webb, “Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy,” J. Biol. Chem. 280, 25119–25126 (2005).
[CrossRef] [PubMed]

Keely, P. J.

M. C. Skala, K. M. Riching, D. K. Bird, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, P. J. Keely, and N. Ramanujam, “In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia,” J. Biomed. Opt. 12, 024014-024011-024010 (2007).
[CrossRef] [PubMed]

D. K. Bird, L. Yan, K. M. Vrotsos, K. W. Eliceiri, E. M. Vaughan, P. J. Keely, J. G. White, and N. Ramanujam, “Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH,” Cancer Res. 65, 8766–8773 (2005).
[CrossRef] [PubMed]

Kellett, P. A.

D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intensifier,” New J. Phys. 6, 13 (2004).
[CrossRef]

Kim, K. H.

T. Ragan, J. D. Sylvan, K. H. Kim, H. Huang, K. Bahlmann, R. T. Lee, and P. T. C. So, “High-resolution whole organ imaging using two-photon tissue cytometry,” J. Biomed. Opt. 12, 9 (2007).
[CrossRef]

Kirwan, S.

P. D. Borszcz, M. Peterson, L. Standeven, S. Kirwan, M. Sandusky, A. Shaw, E. O. Long, and D. N. Burshtyn, “KIR enrichment at the effector-target cell interface is more sensitive than signaling to the strength of ligand binding,” Eur. J. Immunol. 33, 1084–1093 (2003).
[CrossRef] [PubMed]

Knobel, S. M.

G. H. Patterson, S. M. Knobel, P. Arkhammar, O. Thastrup, and D. W. Piston, “Separation of the glucose-stimulated cytoplasmic mitochondrial NAD(P)H responses in pancreatic islet beta cells,” Proc. Natl. Acad. Sci. U. S. A. 97, 5203–5207 (2000).
[CrossRef] [PubMed]

Koester, H. J.

H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, “Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: Signal and photodamage,” Biophys. J. 77, 2226–2236 (1999).
[CrossRef] [PubMed]

Konig, K.

W. Becker, A. Bergmann, M. A. Hink, K. Konig, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63, 58–66 (2004).
[CrossRef]

K. Konig, “Multiphoton microscopy in life sciences,” J. Microscopy-Oxford. 200, 83–104 (2000).
[CrossRef]

K. Konig, T. W. Becker, P. Fischer, I. Riemann, and K. J. Halbhuber, “Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes,” Opt. Lett. 24, 113–115 (1999).
[CrossRef]

H. Schneckenburger and K. Konig, “Fluorescence Decay Kinetics and Imaging of Nad(P)H and Flavins as Metabolic Indicators,” Opt. Eng. 31, 1447–1451 (1992).
[CrossRef]

Krishnan, R. V.

R. V. Krishnan, H. Saitoh, H. Terada, V. E. Centonze, and B. Herman, “Development of a multiphoton fluorescence lifetime imaging microscopy system using a streak camera,” Rev. Sci. Instrum. 74, 2714–2721 (2003).
[CrossRef]

Kumar, S.

B. Treanor, P. M. P. Lanigan, S. Kumar, C. Dunsby, I. Munro, E. Auksorius, F. J. Culley, M. A. Purbhoo, D. Phillips, M. A. A. Neil, D. N. Burshtyn, P. M. W. French, and D. M. Davis, “Microclusters of inhibitory killer immunoglobulin like receptor signaling at natural killer cell immunological synapses,” J. Cell Biol. 174, 153–161 (2006).
[CrossRef] [PubMed]

Lakowicz, J. R.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, New York, 2006).
[CrossRef]

Lanigan, P. M. P.

B. Treanor, P. M. P. Lanigan, S. Kumar, C. Dunsby, I. Munro, E. Auksorius, F. J. Culley, M. A. Purbhoo, D. Phillips, M. A. A. Neil, D. N. Burshtyn, P. M. W. French, and D. M. Davis, “Microclusters of inhibitory killer immunoglobulin like receptor signaling at natural killer cell immunological synapses,” J. Cell Biol. 174, 153–161 (2006).
[CrossRef] [PubMed]

Lee, R. T.

T. Ragan, J. D. Sylvan, K. H. Kim, H. Huang, K. Bahlmann, R. T. Lee, and P. T. C. So, “High-resolution whole organ imaging using two-photon tissue cytometry,” J. Biomed. Opt. 12, 9 (2007).
[CrossRef]

Leveque-Fort, S.

Lever, M. J.

D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intensifier,” New J. Phys. 6, 13 (2004).
[CrossRef]

Lichtman, J. W.

J. A. Conchello and J. W. Lichtman, “Optical sectioning microscopy,” Nature Methods 2, 920–931 (2005).
[CrossRef] [PubMed]

Lin, Z.

L. Liu, J. Qu, Z. Lin, L. Wang, Z. Fu, B. Guo, and H. Niu, “Simultaneous time- and spectrum-resolved multifocal multiphoton microscopy,” Appl. Phys. B-Lasers and Optics 84, 379–383 (2006).
[CrossRef]

Lin, Z. Y.

Liu, L.

L. Liu, J. Qu, Z. Lin, L. Wang, Z. Fu, B. Guo, and H. Niu, “Simultaneous time- and spectrum-resolved multifocal multiphoton microscopy,” Appl. Phys. B-Lasers and Optics 84, 379–383 (2006).
[CrossRef]

Liu, L. X.

Liu, Y.

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, “Evidence for Localized Cell Heating Induced by Infrared Optical Tweezers,” Biophys. J. 68, 2137–2144 (1995).
[CrossRef] [PubMed]

Long, E. O.

P. D. Borszcz, M. Peterson, L. Standeven, S. Kirwan, M. Sandusky, A. Shaw, E. O. Long, and D. N. Burshtyn, “KIR enrichment at the effector-target cell interface is more sensitive than signaling to the strength of ligand binding,” Eur. J. Immunol. 33, 1084–1093 (2003).
[CrossRef] [PubMed]

Martini, J.

J. Martini, V. Andresen, and D. Anselmetti, “Scattering suppression and confocal detection in multifocal multiphoton microscopy,” J. Biomed. Opt. 12, 034010–034016 (2007).
[CrossRef] [PubMed]

Masters, B. R.

B. R. Masters, P. T. C. So, and E. Gratton, “Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin,” Biophys. J. 72, 2405–2412 (1997).
[CrossRef] [PubMed]

D. W. Piston, B. R. Masters, and W. W. Webb, “3-Dimensionally Resolved NAD(P)H Cellular Metabolic Redox Imaging of the in-Situ Cornea with 2-Photon Excitation Laser-Scanning Microscopy,” J. Microsc. 178, 20–27 (1995).
[CrossRef] [PubMed]

Mayevsky, A.

A. Mayevsky and G. G. Rogatsky, “Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies,” Am. J. Physiol.-Cell Physiol. 292, C615–C640 (2007).
[CrossRef]

McGinty, J.

R. K. P. Benninger, O. Hofmann, J. McGinty, J. Requejo-Isidro, I. Munro, M. A. A. Neil, A. J. deMello, and P. M. W. French, “Time-resolved fluorescence imaging of solvent interactions in microfluidic devices,” Opt. Express 13, 6275–6285 (2005).
[CrossRef] [PubMed]

D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intensifier,” New J. Phys. 6, 13 (2004).
[CrossRef]

Monneuse-Doublet, M. O.

J. C. Brochon, P. Wahl, M. O. Monneuse-Doublet, and A. Olomucki, “Pulse Fluorimetry Study of Octopine Dehydrogenase-Reduced Nicotinamide Adenine Dinucleotide Complexes,” Biochemistry 16, 4594–4599 (1977).
[CrossRef] [PubMed]

Muller, M.

A. H. Buist, M. Muller, J. Squier, and G. J. Brakenhoff, “Real time two-photon absorption microscopy using multi point excitation,” J. Microsc. 192, 217–226 (1998).
[CrossRef]

Munro, I.

B. Treanor, P. M. P. Lanigan, S. Kumar, C. Dunsby, I. Munro, E. Auksorius, F. J. Culley, M. A. Purbhoo, D. Phillips, M. A. A. Neil, D. N. Burshtyn, P. M. W. French, and D. M. Davis, “Microclusters of inhibitory killer immunoglobulin like receptor signaling at natural killer cell immunological synapses,” J. Cell Biol. 174, 153–161 (2006).
[CrossRef] [PubMed]

R. K. P. Benninger, O. Hofmann, J. McGinty, J. Requejo-Isidro, I. Munro, M. A. A. Neil, A. J. deMello, and P. M. W. French, “Time-resolved fluorescence imaging of solvent interactions in microfluidic devices,” Opt. Express 13, 6275–6285 (2005).
[CrossRef] [PubMed]

D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intensifier,” New J. Phys. 6, 13 (2004).
[CrossRef]

Neher, E.

A. Hopt and E. Neher, “Highly nonlinear photodamage in two-photon fluorescence microscopy,” Biophys. J. 80, 2029–2036 (2001).
[CrossRef] [PubMed]

Neil, M. A. A.

B. Treanor, P. M. P. Lanigan, S. Kumar, C. Dunsby, I. Munro, E. Auksorius, F. J. Culley, M. A. Purbhoo, D. Phillips, M. A. A. Neil, D. N. Burshtyn, P. M. W. French, and D. M. Davis, “Microclusters of inhibitory killer immunoglobulin like receptor signaling at natural killer cell immunological synapses,” J. Cell Biol. 174, 153–161 (2006).
[CrossRef] [PubMed]

R. K. P. Benninger, O. Hofmann, J. McGinty, J. Requejo-Isidro, I. Munro, M. A. A. Neil, A. J. deMello, and P. M. W. French, “Time-resolved fluorescence imaging of solvent interactions in microfluidic devices,” Opt. Express 13, 6275–6285 (2005).
[CrossRef] [PubMed]

D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intensifier,” New J. Phys. 6, 13 (2004).
[CrossRef]

Nichols, J. A.

M. G. Nichols, E. E. Barth, and J. A. Nichols, “Reduction in DNA synthesis during two-photon microscopy of intrinsic reduced nicotinamide adenine dinucleotide fluorescence,” Photochem. Photobiol. 81, 259–269 (2005).
[CrossRef] [PubMed]

Nichols, M. G.

L. M. Tiede and M. G. Nichols, “Photobleaching of reduced nicotinamide adenine dinucleotide and the development of highly fluorescent lesions in rat basophilic leukemia cells during multiphoton microscopy,” Photochem. Photobiol. 82, 656–664 (2006).
[CrossRef] [PubMed]

M. G. Nichols, E. E. Barth, and J. A. Nichols, “Reduction in DNA synthesis during two-photon microscopy of intrinsic reduced nicotinamide adenine dinucleotide fluorescence,” Photochem. Photobiol. 81, 259–269 (2005).
[CrossRef] [PubMed]

Nielsen, T.

T. Nielsen, M. Frick, D. Hellweg, and P. Andresen, “High efficiency beam splitter for multifocal multiphoton microscopy,” J. Microsc. 201, 368–376 (2001).
[CrossRef] [PubMed]

Nishimura, G.

M. Wakita, G. Nishimura, and M. Tamura, “Some Characteristics of the Fluorescence Lifetime of Reduced Pyridine-Nucleotides in Isolated-Mitochondria, Isolated Hepatocytes, and Perfused-Rat-Liver in-Situ,” J. Biochem.(Tokyo) 118, 1151–1160 (1995).

Niu, H.

L. Liu, J. Qu, Z. Lin, L. Wang, Z. Fu, B. Guo, and H. Niu, “Simultaneous time- and spectrum-resolved multifocal multiphoton microscopy,” Appl. Phys. B-Lasers and Optics 84, 379–383 (2006).
[CrossRef]

Niu, H. B.

O’Connor, D. V.

D. V. O’Connor and D. Phillips, Time-correlated single-photon counting (Academic press, London, 1984).

Olomucki, A.

J. C. Brochon, P. Wahl, M. O. Monneuse-Doublet, and A. Olomucki, “Pulse Fluorimetry Study of Octopine Dehydrogenase-Reduced Nicotinamide Adenine Dinucleotide Complexes,” Biochemistry 16, 4594–4599 (1977).
[CrossRef] [PubMed]

Pal, P.

A. Pradhan, P. Pal, G. Durocher, L. Villeneuve, A. Balassy, F. Babai, L. Gaboury, and L. Blanchard, “Steady state and time-resolved fluorescence properties of metastatic and non-metastatic malignant cells from different species,” J. Photochem. Photobiol. B-Biol. 31, 101–112 (1995).
[CrossRef]

Patterson, G. H.

G. H. Patterson, S. M. Knobel, P. Arkhammar, O. Thastrup, and D. W. Piston, “Separation of the glucose-stimulated cytoplasmic mitochondrial NAD(P)H responses in pancreatic islet beta cells,” Proc. Natl. Acad. Sci. U. S. A. 97, 5203–5207 (2000).
[CrossRef] [PubMed]

G. H. Patterson and D. W. Piston, “Photobleaching in two-photon excitation microscopy,” Biophys. J. 78, 2159–2162 (2000).
[CrossRef] [PubMed]

Pawley, J. B.

V. E. Centonze and J. B. Pawley, “Tutorial on Practical Confocal Microscopy and Use of the Confocal Test Specimen,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum Press, New York, 1995), pp. 549–570.

Peter, M.

M. Peter and S. M. Ameer-Beg, “Imaging molecular interactions by multiphoton FLIM,” Biol. Cell 96, 231–236 (2004).
[CrossRef] [PubMed]

Peterson, M.

P. D. Borszcz, M. Peterson, L. Standeven, S. Kirwan, M. Sandusky, A. Shaw, E. O. Long, and D. N. Burshtyn, “KIR enrichment at the effector-target cell interface is more sensitive than signaling to the strength of ligand binding,” Eur. J. Immunol. 33, 1084–1093 (2003).
[CrossRef] [PubMed]

Phillips, D.

B. Treanor, P. M. P. Lanigan, S. Kumar, C. Dunsby, I. Munro, E. Auksorius, F. J. Culley, M. A. Purbhoo, D. Phillips, M. A. A. Neil, D. N. Burshtyn, P. M. W. French, and D. M. Davis, “Microclusters of inhibitory killer immunoglobulin like receptor signaling at natural killer cell immunological synapses,” J. Cell Biol. 174, 153–161 (2006).
[CrossRef] [PubMed]

K. Suhling, P. M. W. French, and D. Phillips, “Time-resolved fluorescence microscopy,” Photochem. Photobiol. 4, 13–22 (2005).
[CrossRef]

D. V. O’Connor and D. Phillips, Time-correlated single-photon counting (Academic press, London, 1984).

Pick, R.

Piston, D. W.

G. H. Patterson and D. W. Piston, “Photobleaching in two-photon excitation microscopy,” Biophys. J. 78, 2159–2162 (2000).
[CrossRef] [PubMed]

G. H. Patterson, S. M. Knobel, P. Arkhammar, O. Thastrup, and D. W. Piston, “Separation of the glucose-stimulated cytoplasmic mitochondrial NAD(P)H responses in pancreatic islet beta cells,” Proc. Natl. Acad. Sci. U. S. A. 97, 5203–5207 (2000).
[CrossRef] [PubMed]

D. W. Piston, B. R. Masters, and W. W. Webb, “3-Dimensionally Resolved NAD(P)H Cellular Metabolic Redox Imaging of the in-Situ Cornea with 2-Photon Excitation Laser-Scanning Microscopy,” J. Microsc. 178, 20–27 (1995).
[CrossRef] [PubMed]

Pradhan, A.

A. Pradhan, P. Pal, G. Durocher, L. Villeneuve, A. Balassy, F. Babai, L. Gaboury, and L. Blanchard, “Steady state and time-resolved fluorescence properties of metastatic and non-metastatic malignant cells from different species,” J. Photochem. Photobiol. B-Biol. 31, 101–112 (1995).
[CrossRef]

Purbhoo, M. A.

B. Treanor, P. M. P. Lanigan, S. Kumar, C. Dunsby, I. Munro, E. Auksorius, F. J. Culley, M. A. Purbhoo, D. Phillips, M. A. A. Neil, D. N. Burshtyn, P. M. W. French, and D. M. Davis, “Microclusters of inhibitory killer immunoglobulin like receptor signaling at natural killer cell immunological synapses,” J. Cell Biol. 174, 153–161 (2006).
[CrossRef] [PubMed]

Qu, J.

L. Liu, J. Qu, Z. Lin, L. Wang, Z. Fu, B. Guo, and H. Niu, “Simultaneous time- and spectrum-resolved multifocal multiphoton microscopy,” Appl. Phys. B-Lasers and Optics 84, 379–383 (2006).
[CrossRef]

Qu, J. L.

Qu, J. N. Y.

Ragan, T.

T. Ragan, J. D. Sylvan, K. H. Kim, H. Huang, K. Bahlmann, R. T. Lee, and P. T. C. So, “High-resolution whole organ imaging using two-photon tissue cytometry,” J. Biomed. Opt. 12, 9 (2007).
[CrossRef]

Ramanujam, N.

M. C. Skala, K. M. Riching, D. K. Bird, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, P. J. Keely, and N. Ramanujam, “In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia,” J. Biomed. Opt. 12, 024014-024011-024010 (2007).
[CrossRef] [PubMed]

D. K. Bird, L. Yan, K. M. Vrotsos, K. W. Eliceiri, E. M. Vaughan, P. J. Keely, J. G. White, and N. Ramanujam, “Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH,” Cancer Res. 65, 8766–8773 (2005).
[CrossRef] [PubMed]

Requejo-Isidro, J.

R. K. P. Benninger, O. Hofmann, J. McGinty, J. Requejo-Isidro, I. Munro, M. A. A. Neil, A. J. deMello, and P. M. W. French, “Time-resolved fluorescence imaging of solvent interactions in microfluidic devices,” Opt. Express 13, 6275–6285 (2005).
[CrossRef] [PubMed]

D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intensifier,” New J. Phys. 6, 13 (2004).
[CrossRef]

Riching, K. M.

M. C. Skala, K. M. Riching, D. K. Bird, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, P. J. Keely, and N. Ramanujam, “In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia,” J. Biomed. Opt. 12, 024014-024011-024010 (2007).
[CrossRef] [PubMed]

Riemann, I.

Rogatsky, G. G.

A. Mayevsky and G. G. Rogatsky, “Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies,” Am. J. Physiol.-Cell Physiol. 292, C615–C640 (2007).
[CrossRef]

Roger, G.

Saitoh, H.

R. V. Krishnan, H. Saitoh, H. Terada, V. E. Centonze, and B. Herman, “Development of a multiphoton fluorescence lifetime imaging microscopy system using a streak camera,” Rev. Sci. Instrum. 74, 2714–2721 (2003).
[CrossRef]

Sandusky, M.

P. D. Borszcz, M. Peterson, L. Standeven, S. Kirwan, M. Sandusky, A. Shaw, E. O. Long, and D. N. Burshtyn, “KIR enrichment at the effector-target cell interface is more sensitive than signaling to the strength of ligand binding,” Eur. J. Immunol. 33, 1084–1093 (2003).
[CrossRef] [PubMed]

Sark, W. Van

H. C. Gerritsen, M. A. H. Asselbergs, A. V. Agronskaia, and W. Van Sark, “Fluorescence lifetime imaging in scanning microscopes: acquisition speed, photon economy and lifetime resolution,” J. Microsc. 206, 218–224 (2002).
[CrossRef] [PubMed]

Schneckenburger, H.

H. Schneckenburger and K. Konig, “Fluorescence Decay Kinetics and Imaging of Nad(P)H and Flavins as Metabolic Indicators,” Opt. Eng. 31, 1447–1451 (1992).
[CrossRef]

Schoener, B.

B. Chance, P. Cohen, F. Jobsis, and B. Schoener, “Intracellular Oxidation-Reduction States in Vivo,” Science 137, 499–508 (1962).
[CrossRef] [PubMed]

Schonle, A.

Seidel, C. A. M.

C. Eggeling, A. Volkmer, and C. A. M. Seidel, “Molecular photobleaching kinetics of rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy,” Chemphyschem 6, 791–804 (2005).
[CrossRef] [PubMed]

Shaw, A.

P. D. Borszcz, M. Peterson, L. Standeven, S. Kirwan, M. Sandusky, A. Shaw, E. O. Long, and D. N. Burshtyn, “KIR enrichment at the effector-target cell interface is more sensitive than signaling to the strength of ligand binding,” Eur. J. Immunol. 33, 1084–1093 (2003).
[CrossRef] [PubMed]

Skala, M. C.

M. C. Skala, K. M. Riching, D. K. Bird, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, P. J. Keely, and N. Ramanujam, “In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia,” J. Biomed. Opt. 12, 024014-024011-024010 (2007).
[CrossRef] [PubMed]

So, P. T. C.

T. Ragan, J. D. Sylvan, K. H. Kim, H. Huang, K. Bahlmann, R. T. Lee, and P. T. C. So, “High-resolution whole organ imaging using two-photon tissue cytometry,” J. Biomed. Opt. 12, 9 (2007).
[CrossRef]

B. R. Masters, P. T. C. So, and E. Gratton, “Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin,” Biophys. J. 72, 2405–2412 (1997).
[CrossRef] [PubMed]

Sonek, G. J.

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, “Evidence for Localized Cell Heating Induced by Infrared Optical Tweezers,” Biophys. J. 68, 2137–2144 (1995).
[CrossRef] [PubMed]

Squier, J.

A. H. Buist, M. Muller, J. Squier, and G. J. Brakenhoff, “Real time two-photon absorption microscopy using multi point excitation,” J. Microsc. 192, 217–226 (1998).
[CrossRef]

Squirrell, J. M.

J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17, 763–767 (1999).
[CrossRef] [PubMed]

Stamp, G. W.

D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intensifier,” New J. Phys. 6, 13 (2004).
[CrossRef]

Standeven, L.

P. D. Borszcz, M. Peterson, L. Standeven, S. Kirwan, M. Sandusky, A. Shaw, E. O. Long, and D. N. Burshtyn, “KIR enrichment at the effector-target cell interface is more sensitive than signaling to the strength of ligand binding,” Eur. J. Immunol. 33, 1084–1093 (2003).
[CrossRef] [PubMed]

Straub, M.

M. Straub and S. W. Hell, “Fluorescence lifetime three-dimensional microscopy with picosecond precision using a multifocal multiphoton microscope,” Appl. Phys. Lett. 73, 1769–1771 (1998).
[CrossRef]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “2-Photon Laser Scanning Fluorescence Microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Suhling, K.

K. Suhling, P. M. W. French, and D. Phillips, “Time-resolved fluorescence microscopy,” Photochem. Photobiol. 4, 13–22 (2005).
[CrossRef]

Sylvan, J. D.

T. Ragan, J. D. Sylvan, K. H. Kim, H. Huang, K. Bahlmann, R. T. Lee, and P. T. C. So, “High-resolution whole organ imaging using two-photon tissue cytometry,” J. Biomed. Opt. 12, 9 (2007).
[CrossRef]

Tamura, M.

M. Wakita, G. Nishimura, and M. Tamura, “Some Characteristics of the Fluorescence Lifetime of Reduced Pyridine-Nucleotides in Isolated-Mitochondria, Isolated Hepatocytes, and Perfused-Rat-Liver in-Situ,” J. Biochem.(Tokyo) 118, 1151–1160 (1995).

Taroni, P.

R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, and G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D-Appl. Phys. 35, R61–R76 (2002).
[CrossRef]

Terada, H.

R. V. Krishnan, H. Saitoh, H. Terada, V. E. Centonze, and B. Herman, “Development of a multiphoton fluorescence lifetime imaging microscopy system using a streak camera,” Rev. Sci. Instrum. 74, 2714–2721 (2003).
[CrossRef]

Thastrup, O.

G. H. Patterson, S. M. Knobel, P. Arkhammar, O. Thastrup, and D. W. Piston, “Separation of the glucose-stimulated cytoplasmic mitochondrial NAD(P)H responses in pancreatic islet beta cells,” Proc. Natl. Acad. Sci. U. S. A. 97, 5203–5207 (2000).
[CrossRef] [PubMed]

Tiede, L. M.

L. M. Tiede and M. G. Nichols, “Photobleaching of reduced nicotinamide adenine dinucleotide and the development of highly fluorescent lesions in rat basophilic leukemia cells during multiphoton microscopy,” Photochem. Photobiol. 82, 656–664 (2006).
[CrossRef] [PubMed]

Treanor, B.

B. Treanor, P. M. P. Lanigan, S. Kumar, C. Dunsby, I. Munro, E. Auksorius, F. J. Culley, M. A. Purbhoo, D. Phillips, M. A. A. Neil, D. N. Burshtyn, P. M. W. French, and D. M. Davis, “Microclusters of inhibitory killer immunoglobulin like receptor signaling at natural killer cell immunological synapses,” J. Cell Biol. 174, 153–161 (2006).
[CrossRef] [PubMed]

Tromberg, B. J.

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, “Evidence for Localized Cell Heating Induced by Infrared Optical Tweezers,” Biophys. J. 68, 2137–2144 (1995).
[CrossRef] [PubMed]

Uhl, R.

H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, “Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: Signal and photodamage,” Biophys. J. 77, 2226–2236 (1999).
[CrossRef] [PubMed]

Valentini, G.

R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, and G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D-Appl. Phys. 35, R61–R76 (2002).
[CrossRef]

Vaughan, E. M.

D. K. Bird, L. Yan, K. M. Vrotsos, K. W. Eliceiri, E. M. Vaughan, P. J. Keely, J. G. White, and N. Ramanujam, “Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH,” Cancer Res. 65, 8766–8773 (2005).
[CrossRef] [PubMed]

Villeneuve, L.

A. Pradhan, P. Pal, G. Durocher, L. Villeneuve, A. Balassy, F. Babai, L. Gaboury, and L. Blanchard, “Steady state and time-resolved fluorescence properties of metastatic and non-metastatic malignant cells from different species,” J. Photochem. Photobiol. B-Biol. 31, 101–112 (1995).
[CrossRef]

Vishwasrao, H. D.

H. D. Vishwasrao, A. A. Heikal, K. A. Kasischke, and W. W. Webb, “Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy,” J. Biol. Chem. 280, 25119–25126 (2005).
[CrossRef] [PubMed]

Visser, A. J. W. G.

A. J. W. G. Visser and A. van Hoek, “The fluorescence decay of reduced nicotinamides in aqueous solution after exciation with a UV-mode locked Ar Ion Laser,” Photochem. Photobiol. 33, 35–40 (1981).
[CrossRef]

Volkmer, A.

C. Eggeling, A. Volkmer, and C. A. M. Seidel, “Molecular photobleaching kinetics of rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy,” Chemphyschem 6, 791–804 (2005).
[CrossRef] [PubMed]

Vrotsos, K. M.

D. K. Bird, L. Yan, K. M. Vrotsos, K. W. Eliceiri, E. M. Vaughan, P. J. Keely, J. G. White, and N. Ramanujam, “Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH,” Cancer Res. 65, 8766–8773 (2005).
[CrossRef] [PubMed]

Wahl, P.

J. C. Brochon, P. Wahl, M. O. Monneuse-Doublet, and A. Olomucki, “Pulse Fluorimetry Study of Octopine Dehydrogenase-Reduced Nicotinamide Adenine Dinucleotide Complexes,” Biochemistry 16, 4594–4599 (1977).
[CrossRef] [PubMed]

Wakita, M.

M. Wakita, G. Nishimura, and M. Tamura, “Some Characteristics of the Fluorescence Lifetime of Reduced Pyridine-Nucleotides in Isolated-Mitochondria, Isolated Hepatocytes, and Perfused-Rat-Liver in-Situ,” J. Biochem.(Tokyo) 118, 1151–1160 (1995).

Wang, L.

L. Liu, J. Qu, Z. Lin, L. Wang, Z. Fu, B. Guo, and H. Niu, “Simultaneous time- and spectrum-resolved multifocal multiphoton microscopy,” Appl. Phys. B-Lasers and Optics 84, 379–383 (2006).
[CrossRef]

Webb, W. W.

H. D. Vishwasrao, A. A. Heikal, K. A. Kasischke, and W. W. Webb, “Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy,” J. Biol. Chem. 280, 25119–25126 (2005).
[CrossRef] [PubMed]

S. H. Huang, A. A. Heikal, and W. W. Webb, “Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein,” Biophys. J. 82, 2811–2825 (2002).
[CrossRef] [PubMed]

D. W. Piston, B. R. Masters, and W. W. Webb, “3-Dimensionally Resolved NAD(P)H Cellular Metabolic Redox Imaging of the in-Situ Cornea with 2-Photon Excitation Laser-Scanning Microscopy,” J. Microsc. 178, 20–27 (1995).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “2-Photon Laser Scanning Fluorescence Microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

White, J. G.

D. K. Bird, L. Yan, K. M. Vrotsos, K. W. Eliceiri, E. M. Vaughan, P. J. Keely, J. G. White, and N. Ramanujam, “Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH,” Cancer Res. 65, 8766–8773 (2005).
[CrossRef] [PubMed]

J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17, 763–767 (1999).
[CrossRef] [PubMed]

Wokosin, D. L.

J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17, 763–767 (1999).
[CrossRef] [PubMed]

Wu, J. R.

G. C. Cianci, J. R. Wu, and K. M. Berland, “Saturation modified point spread functions in two-photon microscopy,” Microsc. Res. Tech. 64, 135–141 (2004).
[CrossRef] [PubMed]

Wu, Y. C.

Xu, G. X.

Yan, L.

D. K. Bird, L. Yan, K. M. Vrotsos, K. W. Eliceiri, E. M. Vaughan, P. J. Keely, J. G. White, and N. Ramanujam, “Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH,” Cancer Res. 65, 8766–8773 (2005).
[CrossRef] [PubMed]

Zheng, W.

Am. J. Physiol.-Cell Physiol. (1)

A. Mayevsky and G. G. Rogatsky, “Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies,” Am. J. Physiol.-Cell Physiol. 292, C615–C640 (2007).
[CrossRef]

Appl. Phys. B-Lasers and Optics (1)

L. Liu, J. Qu, Z. Lin, L. Wang, Z. Fu, B. Guo, and H. Niu, “Simultaneous time- and spectrum-resolved multifocal multiphoton microscopy,” Appl. Phys. B-Lasers and Optics 84, 379–383 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

M. Straub and S. W. Hell, “Fluorescence lifetime three-dimensional microscopy with picosecond precision using a multifocal multiphoton microscope,” Appl. Phys. Lett. 73, 1769–1771 (1998).
[CrossRef]

Appl. Spectrosc. (1)

Biochemistry (2)

A. Gafni and L. Brand, “Fluorescence Decay Studies of Reduced Nicotinamide Adenine Dinucleotide in Solution and Bound to Liver Alcohol Dehydrogenase,” Biochemistry 15, 3165–3171 (1976).
[CrossRef] [PubMed]

J. C. Brochon, P. Wahl, M. O. Monneuse-Doublet, and A. Olomucki, “Pulse Fluorimetry Study of Octopine Dehydrogenase-Reduced Nicotinamide Adenine Dinucleotide Complexes,” Biochemistry 16, 4594–4599 (1977).
[CrossRef] [PubMed]

Biol. Cell (1)

M. Peter and S. M. Ameer-Beg, “Imaging molecular interactions by multiphoton FLIM,” Biol. Cell 96, 231–236 (2004).
[CrossRef] [PubMed]

Biophys. J. (6)

G. H. Patterson and D. W. Piston, “Photobleaching in two-photon excitation microscopy,” Biophys. J. 78, 2159–2162 (2000).
[CrossRef] [PubMed]

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, “Evidence for Localized Cell Heating Induced by Infrared Optical Tweezers,” Biophys. J. 68, 2137–2144 (1995).
[CrossRef] [PubMed]

A. Hopt and E. Neher, “Highly nonlinear photodamage in two-photon fluorescence microscopy,” Biophys. J. 80, 2029–2036 (2001).
[CrossRef] [PubMed]

H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, “Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: Signal and photodamage,” Biophys. J. 77, 2226–2236 (1999).
[CrossRef] [PubMed]

B. R. Masters, P. T. C. So, and E. Gratton, “Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin,” Biophys. J. 72, 2405–2412 (1997).
[CrossRef] [PubMed]

S. H. Huang, A. A. Heikal, and W. W. Webb, “Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein,” Biophys. J. 82, 2811–2825 (2002).
[CrossRef] [PubMed]

Cancer Res. (1)

D. K. Bird, L. Yan, K. M. Vrotsos, K. W. Eliceiri, E. M. Vaughan, P. J. Keely, J. G. White, and N. Ramanujam, “Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH,” Cancer Res. 65, 8766–8773 (2005).
[CrossRef] [PubMed]

Chemphyschem (1)

C. Eggeling, A. Volkmer, and C. A. M. Seidel, “Molecular photobleaching kinetics of rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy,” Chemphyschem 6, 791–804 (2005).
[CrossRef] [PubMed]

Eur. J. Immunol. (1)

P. D. Borszcz, M. Peterson, L. Standeven, S. Kirwan, M. Sandusky, A. Shaw, E. O. Long, and D. N. Burshtyn, “KIR enrichment at the effector-target cell interface is more sensitive than signaling to the strength of ligand binding,” Eur. J. Immunol. 33, 1084–1093 (2003).
[CrossRef] [PubMed]

J. Biochem.(Tokyo) (1)

M. Wakita, G. Nishimura, and M. Tamura, “Some Characteristics of the Fluorescence Lifetime of Reduced Pyridine-Nucleotides in Isolated-Mitochondria, Isolated Hepatocytes, and Perfused-Rat-Liver in-Situ,” J. Biochem.(Tokyo) 118, 1151–1160 (1995).

J. Biol. Chem. (1)

H. D. Vishwasrao, A. A. Heikal, K. A. Kasischke, and W. W. Webb, “Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy,” J. Biol. Chem. 280, 25119–25126 (2005).
[CrossRef] [PubMed]

J. Biomed. Opt. (3)

M. C. Skala, K. M. Riching, D. K. Bird, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, P. J. Keely, and N. Ramanujam, “In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia,” J. Biomed. Opt. 12, 024014-024011-024010 (2007).
[CrossRef] [PubMed]

J. Martini, V. Andresen, and D. Anselmetti, “Scattering suppression and confocal detection in multifocal multiphoton microscopy,” J. Biomed. Opt. 12, 034010–034016 (2007).
[CrossRef] [PubMed]

T. Ragan, J. D. Sylvan, K. H. Kim, H. Huang, K. Bahlmann, R. T. Lee, and P. T. C. So, “High-resolution whole organ imaging using two-photon tissue cytometry,” J. Biomed. Opt. 12, 9 (2007).
[CrossRef]

J. Cell Biol. (1)

B. Treanor, P. M. P. Lanigan, S. Kumar, C. Dunsby, I. Munro, E. Auksorius, F. J. Culley, M. A. Purbhoo, D. Phillips, M. A. A. Neil, D. N. Burshtyn, P. M. W. French, and D. M. Davis, “Microclusters of inhibitory killer immunoglobulin like receptor signaling at natural killer cell immunological synapses,” J. Cell Biol. 174, 153–161 (2006).
[CrossRef] [PubMed]

J. Microsc. (5)

D. W. Piston, B. R. Masters, and W. W. Webb, “3-Dimensionally Resolved NAD(P)H Cellular Metabolic Redox Imaging of the in-Situ Cornea with 2-Photon Excitation Laser-Scanning Microscopy,” J. Microsc. 178, 20–27 (1995).
[CrossRef] [PubMed]

D. R. Drummond, N. Carter, and R. A. Cross, “Multiphoton versus confocal high resolution z-sectioning of enhanced green fluorescent microtubules: increased multiphoton photobleaching within the focal plane can be compensated using a Pockels cell and dual widefield detectors,” J. Microsc. 206, 161–169 (2002).
[CrossRef] [PubMed]

A. H. Buist, M. Muller, J. Squier, and G. J. Brakenhoff, “Real time two-photon absorption microscopy using multi point excitation,” J. Microsc. 192, 217–226 (1998).
[CrossRef]

T. Nielsen, M. Frick, D. Hellweg, and P. Andresen, “High efficiency beam splitter for multifocal multiphoton microscopy,” J. Microsc. 201, 368–376 (2001).
[CrossRef] [PubMed]

H. C. Gerritsen, M. A. H. Asselbergs, A. V. Agronskaia, and W. Van Sark, “Fluorescence lifetime imaging in scanning microscopes: acquisition speed, photon economy and lifetime resolution,” J. Microsc. 206, 218–224 (2002).
[CrossRef] [PubMed]

J. Microscopy-Oxford. (1)

K. Konig, “Multiphoton microscopy in life sciences,” J. Microscopy-Oxford. 200, 83–104 (2000).
[CrossRef]

J. Opt. Soc. Am. A-Opt. Image Sci. Vis. (1)

A. Egner and S. W. Hell, “Time multiplexing and parallelization in multifocal multiphoton microscopy,” J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 17, 1192–1201 (2000).
[CrossRef] [PubMed]

J. Photochem. Photobiol. B-Biol. (1)

A. Pradhan, P. Pal, G. Durocher, L. Villeneuve, A. Balassy, F. Babai, L. Gaboury, and L. Blanchard, “Steady state and time-resolved fluorescence properties of metastatic and non-metastatic malignant cells from different species,” J. Photochem. Photobiol. B-Biol. 31, 101–112 (1995).
[CrossRef]

J. Phys. D-Appl. Phys. (1)

R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, and G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D-Appl. Phys. 35, R61–R76 (2002).
[CrossRef]

Microsc. Res. Tech. (2)

W. Becker, A. Bergmann, M. A. Hink, K. Konig, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63, 58–66 (2004).
[CrossRef]

G. C. Cianci, J. R. Wu, and K. M. Berland, “Saturation modified point spread functions in two-photon microscopy,” Microsc. Res. Tech. 64, 135–141 (2004).
[CrossRef] [PubMed]

Nat. Biotechnol. (2)

J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17, 763–767 (1999).
[CrossRef] [PubMed]

E. A. Jares-Erijman and T. M. Jovin, “FRET imaging,” Nat. Biotechnol. 21, 1387–1395 (2003).
[CrossRef] [PubMed]

Nature Methods (1)

J. A. Conchello and J. W. Lichtman, “Optical sectioning microscopy,” Nature Methods 2, 920–931 (2005).
[CrossRef] [PubMed]

New J. Phys. (1)

D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intensifier,” New J. Phys. 6, 13 (2004).
[CrossRef]

Opt. Eng. (1)

H. Schneckenburger and K. Konig, “Fluorescence Decay Kinetics and Imaging of Nad(P)H and Flavins as Metabolic Indicators,” Opt. Eng. 31, 1447–1451 (1992).
[CrossRef]

Opt. Express (1)

Opt. Lett. (6)

Photochem. Photobiol. (4)

A. J. W. G. Visser and A. van Hoek, “The fluorescence decay of reduced nicotinamides in aqueous solution after exciation with a UV-mode locked Ar Ion Laser,” Photochem. Photobiol. 33, 35–40 (1981).
[CrossRef]

M. G. Nichols, E. E. Barth, and J. A. Nichols, “Reduction in DNA synthesis during two-photon microscopy of intrinsic reduced nicotinamide adenine dinucleotide fluorescence,” Photochem. Photobiol. 81, 259–269 (2005).
[CrossRef] [PubMed]

L. M. Tiede and M. G. Nichols, “Photobleaching of reduced nicotinamide adenine dinucleotide and the development of highly fluorescent lesions in rat basophilic leukemia cells during multiphoton microscopy,” Photochem. Photobiol. 82, 656–664 (2006).
[CrossRef] [PubMed]

K. Suhling, P. M. W. French, and D. Phillips, “Time-resolved fluorescence microscopy,” Photochem. Photobiol. 4, 13–22 (2005).
[CrossRef]

Proc. Natl. Acad. Sci. U. S. A. (1)

G. H. Patterson, S. M. Knobel, P. Arkhammar, O. Thastrup, and D. W. Piston, “Separation of the glucose-stimulated cytoplasmic mitochondrial NAD(P)H responses in pancreatic islet beta cells,” Proc. Natl. Acad. Sci. U. S. A. 97, 5203–5207 (2000).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

R. V. Krishnan, H. Saitoh, H. Terada, V. E. Centonze, and B. Herman, “Development of a multiphoton fluorescence lifetime imaging microscopy system using a streak camera,” Rev. Sci. Instrum. 74, 2714–2721 (2003).
[CrossRef]

Science (2)

W. Denk, J. H. Strickler, and W. W. Webb, “2-Photon Laser Scanning Fluorescence Microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

B. Chance, P. Cohen, F. Jobsis, and B. Schoener, “Intracellular Oxidation-Reduction States in Vivo,” Science 137, 499–508 (1962).
[CrossRef] [PubMed]

Other (4)

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, New York, 2006).
[CrossRef]

V. E. Centonze and J. B. Pawley, “Tutorial on Practical Confocal Microscopy and Use of the Confocal Test Specimen,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum Press, New York, 1995), pp. 549–570.

D. V. O’Connor and D. Phillips, Time-correlated single-photon counting (Academic press, London, 1984).

W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer, Berlin, 2005).
[CrossRef]

Supplementary Material (1)

» Media 1: AVI (1561 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup: P1, P2 are pinholes, λ1,λ2 are half wave plates, L1-L6 are lenses, PR1, PR2 are prisms, MUX is the beam multiplexer, Pol is a rotatable polarizing beamsplitter cube and IP1, IP2 are image planes.

Fig. 2.
Fig. 2.

3-D FLIM image of fluorescently labelled pollen grains. (a) fluorescence intensity and (b) intensity-merged false-colour FLIM map for one slice in the image stack. (c) shows a single movie frame of a 3-D rendering [1561 KB] of the whole FLIM image stack using the same false colour scale as used for (b). λex = 800 nm and the excitation power was set to Pex = 1 mW per beam, which corresponded to a count rate of ~2.4 MHz. Scale bars in (a) and (b) are 2.5 μm and the data volume rendered in (c) is 25.6×40×75 μm3. [Media 1]

Fig. 3.
Fig. 3.

(a-b) fluorescence intensity and (c-d) corresponding intensity-merged false-colour FLIM image of KIR2DL1-GFP expressing YTS cells. A total of 25 optically sectioned images were recorded using an acquisition time of 60 s per slice with λex = 880 nm and an excitation power of 3.8 mW per foci. The field of view for this image was 25.6×40 μm with a z-step of 0.5 μm between consecutively numbered images. Scale bars are 2.5 μm.

Fig. 4.
Fig. 4.

(a). transmitted light image and (b) corresponding autofluorescence intensity image (averaged over 3 frames) of a HEK293 cell; image size is 80x256 pixels and the field of view is 40×25.6 μm Scale bars in both images are 2.5 μm.

Fig. 5.
Fig. 5.

Fluorescence decay profile averaged over an individual HEK293 cell from a single (7.7 s) acquisition frame and fit using a double exponential decay model. The bottom part of the figure shows the residuals of the fit.

Fig. 6.
Fig. 6.

Fitted time-lapse decay parameters for a HEK293a cell stimulated by 5 mM NaCN at frame 60. Each frame corresponds to 7.7 s. The graphs show (from top to bottom) total number of counts over the ROI, the pre-exponential factors (a1 and a2), the fluorescence decay lifetimes (tau1 and tau2), the calculated mean fluorescence lifetime (meantau) and the goodness of fit parameter χ2 (chisqr). The vertical red lines indicate the time points at which HBSS and NaCN were added.

Tables (1)

Tables Icon

Table 1. Summary of changes in autofluorescence signal observed before and after stimulation

Metrics