Abstract

We demonstrate a simple, essentially alignment-free Transient-Grating Frequency-Resolved-Optical-Gating arrangement using a simple input mask that separates the input beam into three beams and a Fresnel biprism that crosses and delays them. It naturally operates single shot and has no moving parts. It is also extremely broadband and hence should be ideal for measuring pulses from optical parametric amplifiers.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. O'Shea, M. Kimmel, X. Gu, and R. Trebino, "Highly simplified device for ultrashort-pulse measurement,"Opt. Lett. 26, 932-934 (2001).
  2. S. Akturk, M. Kimmel, P. O'Shea, and R. Trebino, "Extremely simple device for measuring 20-fs pulses," Opt. Lett. 29, 1025-1027 (2004).
    [CrossRef] [PubMed]
  3. S. Akturk, M. Kimmel, and R. Trebino, "Extremely simple device for measuring 1.5-µm ultrashort laser pulses," Opt. Express 12, 4483-4489 (2004).
    [CrossRef] [PubMed]
  4. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277 (1997).
    [CrossRef]
  5. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic Publishers, 2002).
    [CrossRef]
  6. J. N. Sweetser, D. N. Fittinghoff, and R. Trebino, "Transient-Grating frequency-resolved optical gating," Opt. Lett. 22, 519-521 (1997).
    [CrossRef] [PubMed]
  7. M. Li, J. P. Nibarger, C. Guo, and G. N. Gibson, "Dispersion-free transient-grating frequency-resolved optical gating," Appl. Opt. 38, 5250 (1999).
    [CrossRef]
  8. H. J. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag Berlin Heidelberg, 1986).
  9. R. W. Boyd, Nonlinear Optics (Academic Press, 2003).

2004 (2)

2001 (1)

1999 (1)

1997 (2)

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

J. N. Sweetser, D. N. Fittinghoff, and R. Trebino, "Transient-Grating frequency-resolved optical gating," Opt. Lett. 22, 519-521 (1997).
[CrossRef] [PubMed]

Akturk, S.

DeLong, K. W.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Fittinghoff, D. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

J. N. Sweetser, D. N. Fittinghoff, and R. Trebino, "Transient-Grating frequency-resolved optical gating," Opt. Lett. 22, 519-521 (1997).
[CrossRef] [PubMed]

Gibson, G. N.

Gu, X.

Guo, C.

Kane, D. J.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Kimmel, M.

Krumbugel, M. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Li, M.

Nibarger, J. P.

O'Shea, P.

Richman, B. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Sweetser, J. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

J. N. Sweetser, D. N. Fittinghoff, and R. Trebino, "Transient-Grating frequency-resolved optical gating," Opt. Lett. 22, 519-521 (1997).
[CrossRef] [PubMed]

Trebino, R.

Appl. Opt. (1)

Opt. Express (1)

Opt. Lett. (3)

Rev. Sci. Instrum. (1)

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Other (3)

R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic Publishers, 2002).
[CrossRef]

H. J. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag Berlin Heidelberg, 1986).

R. W. Boyd, Nonlinear Optics (Academic Press, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Simple broadband TG FROG arrangement. The input mask splits the input beam into three beams, which are then overlapped in the χ(3) medium (ZnS in these initial measurements,but fused silica in a more broadband arrangement that includes the UV). The cylindrical lens yields line foci, mapping the delay onto transverse (vertical) position, allowing single-shot measurement. The upper two beams cross and form a transient grating in the crystal. The lower beam is diffracted by the transient grating and generates an autocorrelation signal beam in the other corner of the rectangle. The line focus then acts as the entrance slit to a home-made spectrometer consisting of a collimating lens, diffraction grating, and focusing lens, yielding a single-shot TG FROG trace with delay running vertically and wavelength horizontally. The inset figure at the lower right shows the shape and size of the (rectangular) holes in the specific input mask that we used in the measurements performed for this work. The shape of the holes is not important, however.

Fig. 2.
Fig. 2.

Measured (left) and retrieved (right) TG FROG traces for our 800-nm pulse measurement.

Fig. 3.
Fig. 3.

Retrieved intensity and phase of the pulse using the simplified TG FROG (and GRENOUILLE and independent spectrum for comparison). On the left are the spectral intensity and phase; on the right are the temporal intensity and phase.

Fig. 4.
Fig. 4.

Measured (left) and retrieved (right) TG FROG traces for a double pulse.

Fig. 5.
Fig. 5.

Left: The retrieved spectral intensity and phase of a double pulse measured using TG FROG and the independent spectrum for comparison. Right: The temporal intensity and phase measured using TG FROG.

Fig. 6.
Fig. 6.

Measured (left) and retrieved (right) TG FROG traces for the measurement of a 400-nm pulse.


               Fig. 7.
Fig. 7.

Left: Retrieved spectral intensity and phase of a 400-nm pulse measured using TG FROG and the independent spectrum for comparison. Right: The temporal intensity and phase measured using TG FROG.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I FROG TG ( ω , τ ) = E 1 ( t ) E 2 * ( t ) E 3 ( t τ ) exp ( iωt ) dt 2
I FROG TG ( ω , τ ) = E ( t ) 2 E ( t τ ) exp ( iωt ) dt 2

Metrics