Abstract

We report tunable fractional delays of 250% for 700 fs pulses propagating in a 1.55 µm semiconductor optical amplifier at room temperature. This large fractional delay is attributed to a spectral hole created by the propagating pulses for pulses with duration shorter than the carrier heating relaxation time. Delay can be tuned electrically by adjusting the current with low amplitude variation across the tuning range.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, "Variable optical buffer using slow light in Semiconductor Nanostructures," Proc. IEEE 9, 1884-1897 (2003).
    [CrossRef]
  2. S. Sarkar, Y. Guo, and Hailin Wang, "Tunable optical delay via carrier induced exciton dephasing in semiconductor quantum wells," Opt. Express 14, 2845-2850 (2006).
    [CrossRef] [PubMed]
  3. X. Zhao, P. Palinginis, B. Pesala, C. J. Chang-Hasnain, and P. Hemmer, "Tunable ultraslow light in vertical-cavity surface-emitting laser amplifier," Opt. Express 13, 7899-7904 (2005).
    [CrossRef] [PubMed]
  4. B. Pesala, Z. Chen, A. V. Uskov, and C. Chang-Hasnain, "Slow and superluminal light based on four-wave mixing in semiconductor optical amplifiers," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies 2006 Technical Digest (Optical Society of America, Washington, D.C., 2006), CMW3
  5. H. Su, S. L. Chuang, "Room-temperature slow light with semiconductor quantum dot devices," Opt. Lett. 21, 271-273 (2006).
    [CrossRef]
  6. A. V. Uskov, F. G. Sedgwick, and C. J. Chang-Hasnain, "Delay limit of slow light in Semiconductor Optical Amplifiers," IEEE Photon. Technol. Lett.,  18, 731-733 (2006).
    [CrossRef]
  7. J. Mørk, R. Kjaer, M. van der Poel, and K. Yvind, "Slow light in a Semiconductor Waveguide at GHz frequencies," Opt. Express 13, 8136-8145 (2005).
    [CrossRef]
  8. M. van der Poel, J. Mørk, and J. M. Hvam, "Controllable delay of ultrashort pulses in a quantum dot optical amplifier," Opt. Express 13, 8032-8037 (2005).
    [CrossRef] [PubMed]
  9. K. L. Hall, J. Mark, E. P. Ippen, and G. Eisenstein, "Femtosecond gain dynamics in InGaAsP Optical Amplifiers," Appl. Phys. Lett. 56, 1740-1742 (1990).
    [CrossRef]
  10. K. L. Hall, G. Lenz, A. M. Darwish, and E. P. Ippen, "Subpicosecond gain and index nonlinearities in InGaAsP diode lasers," Opt. Commun. 111, 589-612 (1994).
    [CrossRef]
  11. Z. Vardeny and J. Tauc, "Picosecond coherence coupling in the pump and probe technique," Opt. Commun. 39, 396-400 (1981).
    [CrossRef]
  12. A. Uskov, J. Mørk, and J. Mark, "Wave mixing in Semiconductor Laser Amplifiers due to Carrier Heating and Spectral-Hole Burning," IEEE J. Quantum Electron. 30, 1769-1781 (1994).
    [CrossRef]
  13. A. Mecozzi and J. Mørk, "Saturation induced by Picosecond pulses in Semiconductor Optical Amplifiers," J. Opt. Soc. Am. B 14, 761-770 (1996).
    [CrossRef]
  14. A. D’Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. Spano, R. Dall’Ara, G. Guekos, and J. Eckner, "4.3 Terahertz four-wave mixing Spectroscopy of InGaAsP Semiconductor Amplifiers," Appl. Phys. Lett. 65, 2633-2635 (1994).
    [CrossRef]
  15. L. Zhang, T. Luo, W. Zhang, C. Yu, Y. Wang, A. E. Willner, "Optimizing operating conditions to reduce data pattern dependence induced by slow light elements," in Proc. the Optical Fiber Communication Conference (OFC) 2006, OFP7.
  16. Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, A. E. Willner, "12-GHz-bandwidth SBS slow light in optical fibers," in Proc. the Optical Fiber Communication Conference (OFC) 2006, Post-deadline paper PDP1.
  17. F. G. Sedgwick, and C. J. Chang-Hasnain, "Fast light in a semiconductor optical amplifier," in OSA Topical Meeting on Slow and Fast Light 2006 (Optical Society of America, Rochester, NY, 2006).

2006 (3)

H. Su, S. L. Chuang, "Room-temperature slow light with semiconductor quantum dot devices," Opt. Lett. 21, 271-273 (2006).
[CrossRef]

A. V. Uskov, F. G. Sedgwick, and C. J. Chang-Hasnain, "Delay limit of slow light in Semiconductor Optical Amplifiers," IEEE Photon. Technol. Lett.,  18, 731-733 (2006).
[CrossRef]

S. Sarkar, Y. Guo, and Hailin Wang, "Tunable optical delay via carrier induced exciton dephasing in semiconductor quantum wells," Opt. Express 14, 2845-2850 (2006).
[CrossRef] [PubMed]

2005 (3)

2003 (1)

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, "Variable optical buffer using slow light in Semiconductor Nanostructures," Proc. IEEE 9, 1884-1897 (2003).
[CrossRef]

1996 (1)

1994 (3)

A. Uskov, J. Mørk, and J. Mark, "Wave mixing in Semiconductor Laser Amplifiers due to Carrier Heating and Spectral-Hole Burning," IEEE J. Quantum Electron. 30, 1769-1781 (1994).
[CrossRef]

A. D’Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. Spano, R. Dall’Ara, G. Guekos, and J. Eckner, "4.3 Terahertz four-wave mixing Spectroscopy of InGaAsP Semiconductor Amplifiers," Appl. Phys. Lett. 65, 2633-2635 (1994).
[CrossRef]

K. L. Hall, G. Lenz, A. M. Darwish, and E. P. Ippen, "Subpicosecond gain and index nonlinearities in InGaAsP diode lasers," Opt. Commun. 111, 589-612 (1994).
[CrossRef]

1990 (1)

K. L. Hall, J. Mark, E. P. Ippen, and G. Eisenstein, "Femtosecond gain dynamics in InGaAsP Optical Amplifiers," Appl. Phys. Lett. 56, 1740-1742 (1990).
[CrossRef]

1981 (1)

Z. Vardeny and J. Tauc, "Picosecond coherence coupling in the pump and probe technique," Opt. Commun. 39, 396-400 (1981).
[CrossRef]

Chang-Hasnain, C. J.

A. V. Uskov, F. G. Sedgwick, and C. J. Chang-Hasnain, "Delay limit of slow light in Semiconductor Optical Amplifiers," IEEE Photon. Technol. Lett.,  18, 731-733 (2006).
[CrossRef]

X. Zhao, P. Palinginis, B. Pesala, C. J. Chang-Hasnain, and P. Hemmer, "Tunable ultraslow light in vertical-cavity surface-emitting laser amplifier," Opt. Express 13, 7899-7904 (2005).
[CrossRef] [PubMed]

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, "Variable optical buffer using slow light in Semiconductor Nanostructures," Proc. IEEE 9, 1884-1897 (2003).
[CrossRef]

Chuang, S. L.

H. Su, S. L. Chuang, "Room-temperature slow light with semiconductor quantum dot devices," Opt. Lett. 21, 271-273 (2006).
[CrossRef]

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, "Variable optical buffer using slow light in Semiconductor Nanostructures," Proc. IEEE 9, 1884-1897 (2003).
[CrossRef]

D’Ottavi, A.

A. D’Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. Spano, R. Dall’Ara, G. Guekos, and J. Eckner, "4.3 Terahertz four-wave mixing Spectroscopy of InGaAsP Semiconductor Amplifiers," Appl. Phys. Lett. 65, 2633-2635 (1994).
[CrossRef]

Dall’Ara, R.

A. D’Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. Spano, R. Dall’Ara, G. Guekos, and J. Eckner, "4.3 Terahertz four-wave mixing Spectroscopy of InGaAsP Semiconductor Amplifiers," Appl. Phys. Lett. 65, 2633-2635 (1994).
[CrossRef]

Darwish, A. M.

K. L. Hall, G. Lenz, A. M. Darwish, and E. P. Ippen, "Subpicosecond gain and index nonlinearities in InGaAsP diode lasers," Opt. Commun. 111, 589-612 (1994).
[CrossRef]

Eckner, J.

A. D’Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. Spano, R. Dall’Ara, G. Guekos, and J. Eckner, "4.3 Terahertz four-wave mixing Spectroscopy of InGaAsP Semiconductor Amplifiers," Appl. Phys. Lett. 65, 2633-2635 (1994).
[CrossRef]

Eisenstein, G.

K. L. Hall, J. Mark, E. P. Ippen, and G. Eisenstein, "Femtosecond gain dynamics in InGaAsP Optical Amplifiers," Appl. Phys. Lett. 56, 1740-1742 (1990).
[CrossRef]

Guekos, G.

A. D’Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. Spano, R. Dall’Ara, G. Guekos, and J. Eckner, "4.3 Terahertz four-wave mixing Spectroscopy of InGaAsP Semiconductor Amplifiers," Appl. Phys. Lett. 65, 2633-2635 (1994).
[CrossRef]

Guo, Y.

Hall, K. L.

K. L. Hall, G. Lenz, A. M. Darwish, and E. P. Ippen, "Subpicosecond gain and index nonlinearities in InGaAsP diode lasers," Opt. Commun. 111, 589-612 (1994).
[CrossRef]

K. L. Hall, J. Mark, E. P. Ippen, and G. Eisenstein, "Femtosecond gain dynamics in InGaAsP Optical Amplifiers," Appl. Phys. Lett. 56, 1740-1742 (1990).
[CrossRef]

Hemmer, P.

Hvam, J. M.

Iannone, E.

A. D’Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. Spano, R. Dall’Ara, G. Guekos, and J. Eckner, "4.3 Terahertz four-wave mixing Spectroscopy of InGaAsP Semiconductor Amplifiers," Appl. Phys. Lett. 65, 2633-2635 (1994).
[CrossRef]

Ippen, E. P.

K. L. Hall, G. Lenz, A. M. Darwish, and E. P. Ippen, "Subpicosecond gain and index nonlinearities in InGaAsP diode lasers," Opt. Commun. 111, 589-612 (1994).
[CrossRef]

K. L. Hall, J. Mark, E. P. Ippen, and G. Eisenstein, "Femtosecond gain dynamics in InGaAsP Optical Amplifiers," Appl. Phys. Lett. 56, 1740-1742 (1990).
[CrossRef]

Kim, J.

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, "Variable optical buffer using slow light in Semiconductor Nanostructures," Proc. IEEE 9, 1884-1897 (2003).
[CrossRef]

Kjaer, R.

Ku, P. C.

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, "Variable optical buffer using slow light in Semiconductor Nanostructures," Proc. IEEE 9, 1884-1897 (2003).
[CrossRef]

Lenz, G.

K. L. Hall, G. Lenz, A. M. Darwish, and E. P. Ippen, "Subpicosecond gain and index nonlinearities in InGaAsP diode lasers," Opt. Commun. 111, 589-612 (1994).
[CrossRef]

Mark, J.

A. Uskov, J. Mørk, and J. Mark, "Wave mixing in Semiconductor Laser Amplifiers due to Carrier Heating and Spectral-Hole Burning," IEEE J. Quantum Electron. 30, 1769-1781 (1994).
[CrossRef]

K. L. Hall, J. Mark, E. P. Ippen, and G. Eisenstein, "Femtosecond gain dynamics in InGaAsP Optical Amplifiers," Appl. Phys. Lett. 56, 1740-1742 (1990).
[CrossRef]

Mecozzi, A.

A. Mecozzi and J. Mørk, "Saturation induced by Picosecond pulses in Semiconductor Optical Amplifiers," J. Opt. Soc. Am. B 14, 761-770 (1996).
[CrossRef]

A. D’Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. Spano, R. Dall’Ara, G. Guekos, and J. Eckner, "4.3 Terahertz four-wave mixing Spectroscopy of InGaAsP Semiconductor Amplifiers," Appl. Phys. Lett. 65, 2633-2635 (1994).
[CrossRef]

Mørk, J.

Palinginis, P.

Pesala, B.

Sarkar, S.

Scotti, S.

A. D’Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. Spano, R. Dall’Ara, G. Guekos, and J. Eckner, "4.3 Terahertz four-wave mixing Spectroscopy of InGaAsP Semiconductor Amplifiers," Appl. Phys. Lett. 65, 2633-2635 (1994).
[CrossRef]

Sedgwick, F. G.

A. V. Uskov, F. G. Sedgwick, and C. J. Chang-Hasnain, "Delay limit of slow light in Semiconductor Optical Amplifiers," IEEE Photon. Technol. Lett.,  18, 731-733 (2006).
[CrossRef]

Spano, P.

A. D’Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. Spano, R. Dall’Ara, G. Guekos, and J. Eckner, "4.3 Terahertz four-wave mixing Spectroscopy of InGaAsP Semiconductor Amplifiers," Appl. Phys. Lett. 65, 2633-2635 (1994).
[CrossRef]

Su, H.

H. Su, S. L. Chuang, "Room-temperature slow light with semiconductor quantum dot devices," Opt. Lett. 21, 271-273 (2006).
[CrossRef]

Tauc, J.

Z. Vardeny and J. Tauc, "Picosecond coherence coupling in the pump and probe technique," Opt. Commun. 39, 396-400 (1981).
[CrossRef]

Uskov, A.

A. Uskov, J. Mørk, and J. Mark, "Wave mixing in Semiconductor Laser Amplifiers due to Carrier Heating and Spectral-Hole Burning," IEEE J. Quantum Electron. 30, 1769-1781 (1994).
[CrossRef]

Uskov, A. V.

A. V. Uskov, F. G. Sedgwick, and C. J. Chang-Hasnain, "Delay limit of slow light in Semiconductor Optical Amplifiers," IEEE Photon. Technol. Lett.,  18, 731-733 (2006).
[CrossRef]

van der Poel, M.

Vardeny, Z.

Z. Vardeny and J. Tauc, "Picosecond coherence coupling in the pump and probe technique," Opt. Commun. 39, 396-400 (1981).
[CrossRef]

Wang, Hailin

Yvind, K.

Zhao, X.

Appl. Phys. Lett. (2)

A. D’Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. Spano, R. Dall’Ara, G. Guekos, and J. Eckner, "4.3 Terahertz four-wave mixing Spectroscopy of InGaAsP Semiconductor Amplifiers," Appl. Phys. Lett. 65, 2633-2635 (1994).
[CrossRef]

K. L. Hall, J. Mark, E. P. Ippen, and G. Eisenstein, "Femtosecond gain dynamics in InGaAsP Optical Amplifiers," Appl. Phys. Lett. 56, 1740-1742 (1990).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Uskov, J. Mørk, and J. Mark, "Wave mixing in Semiconductor Laser Amplifiers due to Carrier Heating and Spectral-Hole Burning," IEEE J. Quantum Electron. 30, 1769-1781 (1994).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

A. V. Uskov, F. G. Sedgwick, and C. J. Chang-Hasnain, "Delay limit of slow light in Semiconductor Optical Amplifiers," IEEE Photon. Technol. Lett.,  18, 731-733 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

K. L. Hall, G. Lenz, A. M. Darwish, and E. P. Ippen, "Subpicosecond gain and index nonlinearities in InGaAsP diode lasers," Opt. Commun. 111, 589-612 (1994).
[CrossRef]

Z. Vardeny and J. Tauc, "Picosecond coherence coupling in the pump and probe technique," Opt. Commun. 39, 396-400 (1981).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

H. Su, S. L. Chuang, "Room-temperature slow light with semiconductor quantum dot devices," Opt. Lett. 21, 271-273 (2006).
[CrossRef]

Proc. IEEE (1)

C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, "Variable optical buffer using slow light in Semiconductor Nanostructures," Proc. IEEE 9, 1884-1897 (2003).
[CrossRef]

Other (4)

B. Pesala, Z. Chen, A. V. Uskov, and C. Chang-Hasnain, "Slow and superluminal light based on four-wave mixing in semiconductor optical amplifiers," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies 2006 Technical Digest (Optical Society of America, Washington, D.C., 2006), CMW3

L. Zhang, T. Luo, W. Zhang, C. Yu, Y. Wang, A. E. Willner, "Optimizing operating conditions to reduce data pattern dependence induced by slow light elements," in Proc. the Optical Fiber Communication Conference (OFC) 2006, OFP7.

Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, A. E. Willner, "12-GHz-bandwidth SBS slow light in optical fibers," in Proc. the Optical Fiber Communication Conference (OFC) 2006, Post-deadline paper PDP1.

F. G. Sedgwick, and C. J. Chang-Hasnain, "Fast light in a semiconductor optical amplifier," in OSA Topical Meeting on Slow and Fast Light 2006 (Optical Society of America, Rochester, NY, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Experimental setup for measurement of gain dynamics. The pulses are split into two branches, the pump (90%) and probe (10%.) The probe propagates through a half waveplate, a polarizer , a variable attenuator, and a mechanical chopper for lock-in detection. The free-space propagation distance of the probe is varied with a precision linear stage. The polarization state of the pump is adjusted with a fiber polarization controller and matched to that of the probe.Both are polarized along the slow axis of the PM 50/50 splitter. A final fiber polarization controller adjusts the polarization state of the SOA input.

Fig. 2.
Fig. 2.

Broadening and distortion of pump-probe cross-correlation after propagation through the SOA at various currents. Note that cross-correlation traces shown above are broader than the actual pulses.

Fig. 3.
Fig. 3.

Normalized probe transmission vs. delay for three SOA biases: absorption (20 mA), near transparency (50 mA), and gain (100 mA). Data points are red squares, black lines are fits. The fits consist of a simple analytical impulse response [Eq. (2)] numerically convolved with the pump-probe cross-correlation (Fig. 2.).

Fig. 4.
Fig. 4.

Experimental setup for slow light measurements. Pulses are split into reference (99%) branch and signal (1%) branch. A cross correlator is used to measure optical delay as a function of SOA current.

Fig. 5.
Fig. 5.

(a). Normalized auto correlation at the SOA input and signal-reference cross-correlation at the SOA output (70 mA, no pump). FWHM, assuming sech2 pulse shape, is labeled on the figure. Figure 5(b). Normalized cross-correlation at the SOA output showing delay of pulses as current is varied (no pump). Note that the cross-correlation traces are broader than the actual pulses.

Fig. 6.
Fig. 6.

Fractional delay vs. bias current (no pump)

Fig. 7.
Fig. 7.

Amplitude variation and broadening vs. bias current (no pump.)

Fig. 8.
Fig. 8.

(a). Small signal SOA gain as a function of optical frequency. Center frequency of pulse (1548 nm) is shown by arrow. Figure 8. (b). Full width at half maximum of SOA gain peak as a function of bias current.

Tables (1)

Tables Icon

Table 1. Time constants and coefficients from Eq. (2) for intraband gain or absorption saturation effects. A negative coefficient corresponds to an initial decrease in probe transmission relaxing upward with the specified time constant.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I probe ( t 0 ) = h ( t′ + t 0 ) F ( t′ ) dt′
h ( t ) = u ( t ) { a 0 + a SHB e t τ SHB + a CH e t τ CH }
ν g 1 = ω c dn = 1 2 π Δ g Δ ω .
T adv = L v g = Δ gL Δ ω .

Metrics