Abstract

Quantum key distribution with pulsed heralded single photon source was performed over 40 km of fiber for the first time to our knowledge. QBER was measured to be 4.23% suggesting security against unconditional attack.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C.H. Bennett and G. Brassard, in proceedings of the IEEE International Conference on Computers, Systems and Signals Processing, (Institute of Electrical and Electronics Engineers, New York 1984), pp. 175-179.
  2. C. H. Bennett, F. Bessette, G. Brassard, L. Salvail and J. Smolin, "Experimental quantum cryptography," J. Cryptology 5, 3-28 (1992).
    [CrossRef]
  3. P. Townsend, J. G. Rarity and P. R. Tapster, "Single photon interference in a 10 km long optical fiber interferometer," Electron. Lett. 29, 634-639 (1993).
    [CrossRef]
  4. G. Brassard, N. Lütkenhaus, T. Mor and B. C. Sanders, "Limitations on practical quantum cryptography," Phys. Rev. Lett. 85, 1330-1333 (2000).
    [CrossRef] [PubMed]
  5. V. Scarani, A. Acín, G. Ribordy and N. Gisin, "Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations," Phys. Rev. Lett. 92, 0579014 (2004).
    [CrossRef]
  6. K. Inoue and T. Honjo, "Robustness of differential-phase-shift quantum key distribution against photon-numbersplitting attack," Phys. Rev. A 71, 042305 (2005).
    [CrossRef]
  7. H.-K. Lo and X. Ma and K. Chen,"Decoy state quantum key distribution," Phys. Rev. Lett. 94, 230504 (2005).
    [CrossRef] [PubMed]
  8. Y. Zhao, B. Qi, X. Ma, H.-K. Lo and L. Qian,"Experimental quantum key distribution with decoy states," Phys. Rev. Lett. 96, 070502 (2006).
    [CrossRef] [PubMed]
  9. S. Fasel, O. Alibart, A. Beveratos, S. Tanzilli, H. Zbinden, P. Baldi and N. Gisin,"High-quality asynchronous heralded single-photon source at telecom wavelength," New J. of Phys. 6, 163 (2004).
    [CrossRef]
  10. Shigeki Takeuchi, Ryo Okamoto, and Keiji Sasaki,"High-yield single-photon source using gated spontaneous parametric downconversion," Appl. Opt. 43, 5708-5711 (2004).
    [CrossRef] [PubMed]
  11. Ryo Okamoto, Shigeki Takeuchi, and Keiji Sasaki, "Detailed analysis of a single-photon source using gated spontaneous parametric downconversion," J. Opt. Soc. Am. B 22, 2393-2401 (2005).
    [CrossRef]
  12. A. Trifonov and A. Zavriyev,"Secure communication with a heralded single-photon source," J. Opt. B 7, S772-S777 (2005).
    [CrossRef]
  13. N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
    [CrossRef]
  14. E. Waks, A. Zeevi and Y. Yamamoto, "Security of quantum key distribution with entangled photons against individual attacks," Phys. Rev. A 65, 052310 (2002).
    [CrossRef]
  15. H. Briegel, W. Dür, J. I. Cirac and P. Zoller,"Quantum repeaters: the role of imperfect local operations in quantum communication," Phys. Rev. Lett. 81, 5932-5935 (1998).
    [CrossRef]
  16. A. Soujaeff, S. Takeuchi, K. Sasaki, T. Hasegawa and M. Matsui, "Heralded single photon source at 1550 nm from pulsed parametric downconversion," quant-ph/0611112, (2006).
  17. D. Gottesman, H.-K. Lo, N. Lütkenhaus and J. Preskill, "Security of quantum key distribution with imperfect devices," Quantum Inf. Comput. 4, 325-360 (2004).
  18. H. K. Hong and L. Mandel, "Experimental realization of a localized one-photon state," Phys. Rev. Lett. 56, 58-60 (1986).
    [CrossRef] [PubMed]
  19. Using a model presented in reference [10, 11, 16], we estimated the average number of photon pairs μ at the crystal output to be 0.168 at the maximum pump power (195 mW), and 3 pairs event probability at the crystal ouput to be a fraction equal to 0.056 of the two pairs generation probability for this pump power.
  20. C. H. Bennett, "Quantum cryptography using any two nonorthogonal states," Phys. Rev. Lett. 68, 3121-3124 (1992).
    [CrossRef] [PubMed]
  21. M. Koashi, "Efficient quantum key distribution with practical sources and detectors," quant-ph/0609180, (2006).
  22. M. Hayashi, "Practical evaluation of security for quantum key distribution," Phys. Rev. A 74, 022307 (2006).
    [CrossRef]
  23. Y. Adachi, T. Yamamoto, M. Koashi, N. Imoto," Simple and efficient quantum key distribution with parametric down-conversion," quant-ph/0610118, (2006).

2006 (2)

Y. Zhao, B. Qi, X. Ma, H.-K. Lo and L. Qian,"Experimental quantum key distribution with decoy states," Phys. Rev. Lett. 96, 070502 (2006).
[CrossRef] [PubMed]

M. Hayashi, "Practical evaluation of security for quantum key distribution," Phys. Rev. A 74, 022307 (2006).
[CrossRef]

2005 (4)

Ryo Okamoto, Shigeki Takeuchi, and Keiji Sasaki, "Detailed analysis of a single-photon source using gated spontaneous parametric downconversion," J. Opt. Soc. Am. B 22, 2393-2401 (2005).
[CrossRef]

A. Trifonov and A. Zavriyev,"Secure communication with a heralded single-photon source," J. Opt. B 7, S772-S777 (2005).
[CrossRef]

K. Inoue and T. Honjo, "Robustness of differential-phase-shift quantum key distribution against photon-numbersplitting attack," Phys. Rev. A 71, 042305 (2005).
[CrossRef]

H.-K. Lo and X. Ma and K. Chen,"Decoy state quantum key distribution," Phys. Rev. Lett. 94, 230504 (2005).
[CrossRef] [PubMed]

2004 (4)

S. Fasel, O. Alibart, A. Beveratos, S. Tanzilli, H. Zbinden, P. Baldi and N. Gisin,"High-quality asynchronous heralded single-photon source at telecom wavelength," New J. of Phys. 6, 163 (2004).
[CrossRef]

Shigeki Takeuchi, Ryo Okamoto, and Keiji Sasaki,"High-yield single-photon source using gated spontaneous parametric downconversion," Appl. Opt. 43, 5708-5711 (2004).
[CrossRef] [PubMed]

V. Scarani, A. Acín, G. Ribordy and N. Gisin, "Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations," Phys. Rev. Lett. 92, 0579014 (2004).
[CrossRef]

D. Gottesman, H.-K. Lo, N. Lütkenhaus and J. Preskill, "Security of quantum key distribution with imperfect devices," Quantum Inf. Comput. 4, 325-360 (2004).

2002 (2)

N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

E. Waks, A. Zeevi and Y. Yamamoto, "Security of quantum key distribution with entangled photons against individual attacks," Phys. Rev. A 65, 052310 (2002).
[CrossRef]

2000 (1)

G. Brassard, N. Lütkenhaus, T. Mor and B. C. Sanders, "Limitations on practical quantum cryptography," Phys. Rev. Lett. 85, 1330-1333 (2000).
[CrossRef] [PubMed]

1998 (1)

H. Briegel, W. Dür, J. I. Cirac and P. Zoller,"Quantum repeaters: the role of imperfect local operations in quantum communication," Phys. Rev. Lett. 81, 5932-5935 (1998).
[CrossRef]

1993 (1)

P. Townsend, J. G. Rarity and P. R. Tapster, "Single photon interference in a 10 km long optical fiber interferometer," Electron. Lett. 29, 634-639 (1993).
[CrossRef]

1992 (2)

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail and J. Smolin, "Experimental quantum cryptography," J. Cryptology 5, 3-28 (1992).
[CrossRef]

C. H. Bennett, "Quantum cryptography using any two nonorthogonal states," Phys. Rev. Lett. 68, 3121-3124 (1992).
[CrossRef] [PubMed]

1986 (1)

H. K. Hong and L. Mandel, "Experimental realization of a localized one-photon state," Phys. Rev. Lett. 56, 58-60 (1986).
[CrossRef] [PubMed]

Acín, A.

V. Scarani, A. Acín, G. Ribordy and N. Gisin, "Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations," Phys. Rev. Lett. 92, 0579014 (2004).
[CrossRef]

Alibart, O.

S. Fasel, O. Alibart, A. Beveratos, S. Tanzilli, H. Zbinden, P. Baldi and N. Gisin,"High-quality asynchronous heralded single-photon source at telecom wavelength," New J. of Phys. 6, 163 (2004).
[CrossRef]

Baldi, P.

S. Fasel, O. Alibart, A. Beveratos, S. Tanzilli, H. Zbinden, P. Baldi and N. Gisin,"High-quality asynchronous heralded single-photon source at telecom wavelength," New J. of Phys. 6, 163 (2004).
[CrossRef]

Bennett, C. H.

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail and J. Smolin, "Experimental quantum cryptography," J. Cryptology 5, 3-28 (1992).
[CrossRef]

C. H. Bennett, "Quantum cryptography using any two nonorthogonal states," Phys. Rev. Lett. 68, 3121-3124 (1992).
[CrossRef] [PubMed]

Bessette, F.

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail and J. Smolin, "Experimental quantum cryptography," J. Cryptology 5, 3-28 (1992).
[CrossRef]

Beveratos, A.

S. Fasel, O. Alibart, A. Beveratos, S. Tanzilli, H. Zbinden, P. Baldi and N. Gisin,"High-quality asynchronous heralded single-photon source at telecom wavelength," New J. of Phys. 6, 163 (2004).
[CrossRef]

Brassard, G.

G. Brassard, N. Lütkenhaus, T. Mor and B. C. Sanders, "Limitations on practical quantum cryptography," Phys. Rev. Lett. 85, 1330-1333 (2000).
[CrossRef] [PubMed]

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail and J. Smolin, "Experimental quantum cryptography," J. Cryptology 5, 3-28 (1992).
[CrossRef]

Briegel, H.

H. Briegel, W. Dür, J. I. Cirac and P. Zoller,"Quantum repeaters: the role of imperfect local operations in quantum communication," Phys. Rev. Lett. 81, 5932-5935 (1998).
[CrossRef]

Chen, K.

H.-K. Lo and X. Ma and K. Chen,"Decoy state quantum key distribution," Phys. Rev. Lett. 94, 230504 (2005).
[CrossRef] [PubMed]

Cirac, J. I.

H. Briegel, W. Dür, J. I. Cirac and P. Zoller,"Quantum repeaters: the role of imperfect local operations in quantum communication," Phys. Rev. Lett. 81, 5932-5935 (1998).
[CrossRef]

Dür, W.

H. Briegel, W. Dür, J. I. Cirac and P. Zoller,"Quantum repeaters: the role of imperfect local operations in quantum communication," Phys. Rev. Lett. 81, 5932-5935 (1998).
[CrossRef]

Fasel, S.

S. Fasel, O. Alibart, A. Beveratos, S. Tanzilli, H. Zbinden, P. Baldi and N. Gisin,"High-quality asynchronous heralded single-photon source at telecom wavelength," New J. of Phys. 6, 163 (2004).
[CrossRef]

Gisin, N.

S. Fasel, O. Alibart, A. Beveratos, S. Tanzilli, H. Zbinden, P. Baldi and N. Gisin,"High-quality asynchronous heralded single-photon source at telecom wavelength," New J. of Phys. 6, 163 (2004).
[CrossRef]

V. Scarani, A. Acín, G. Ribordy and N. Gisin, "Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations," Phys. Rev. Lett. 92, 0579014 (2004).
[CrossRef]

N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

Gottesman, D.

D. Gottesman, H.-K. Lo, N. Lütkenhaus and J. Preskill, "Security of quantum key distribution with imperfect devices," Quantum Inf. Comput. 4, 325-360 (2004).

Hayashi, M.

M. Hayashi, "Practical evaluation of security for quantum key distribution," Phys. Rev. A 74, 022307 (2006).
[CrossRef]

Hong, H. K.

H. K. Hong and L. Mandel, "Experimental realization of a localized one-photon state," Phys. Rev. Lett. 56, 58-60 (1986).
[CrossRef] [PubMed]

Honjo, T.

K. Inoue and T. Honjo, "Robustness of differential-phase-shift quantum key distribution against photon-numbersplitting attack," Phys. Rev. A 71, 042305 (2005).
[CrossRef]

Inoue, K.

K. Inoue and T. Honjo, "Robustness of differential-phase-shift quantum key distribution against photon-numbersplitting attack," Phys. Rev. A 71, 042305 (2005).
[CrossRef]

Lo, H.-K.

Y. Zhao, B. Qi, X. Ma, H.-K. Lo and L. Qian,"Experimental quantum key distribution with decoy states," Phys. Rev. Lett. 96, 070502 (2006).
[CrossRef] [PubMed]

H.-K. Lo and X. Ma and K. Chen,"Decoy state quantum key distribution," Phys. Rev. Lett. 94, 230504 (2005).
[CrossRef] [PubMed]

D. Gottesman, H.-K. Lo, N. Lütkenhaus and J. Preskill, "Security of quantum key distribution with imperfect devices," Quantum Inf. Comput. 4, 325-360 (2004).

Lütkenhaus, N.

D. Gottesman, H.-K. Lo, N. Lütkenhaus and J. Preskill, "Security of quantum key distribution with imperfect devices," Quantum Inf. Comput. 4, 325-360 (2004).

G. Brassard, N. Lütkenhaus, T. Mor and B. C. Sanders, "Limitations on practical quantum cryptography," Phys. Rev. Lett. 85, 1330-1333 (2000).
[CrossRef] [PubMed]

Ma, X.

Y. Zhao, B. Qi, X. Ma, H.-K. Lo and L. Qian,"Experimental quantum key distribution with decoy states," Phys. Rev. Lett. 96, 070502 (2006).
[CrossRef] [PubMed]

H.-K. Lo and X. Ma and K. Chen,"Decoy state quantum key distribution," Phys. Rev. Lett. 94, 230504 (2005).
[CrossRef] [PubMed]

Mandel, L.

H. K. Hong and L. Mandel, "Experimental realization of a localized one-photon state," Phys. Rev. Lett. 56, 58-60 (1986).
[CrossRef] [PubMed]

Mor, T.

G. Brassard, N. Lütkenhaus, T. Mor and B. C. Sanders, "Limitations on practical quantum cryptography," Phys. Rev. Lett. 85, 1330-1333 (2000).
[CrossRef] [PubMed]

Preskill, J.

D. Gottesman, H.-K. Lo, N. Lütkenhaus and J. Preskill, "Security of quantum key distribution with imperfect devices," Quantum Inf. Comput. 4, 325-360 (2004).

Qi, B.

Y. Zhao, B. Qi, X. Ma, H.-K. Lo and L. Qian,"Experimental quantum key distribution with decoy states," Phys. Rev. Lett. 96, 070502 (2006).
[CrossRef] [PubMed]

Qian, L.

Y. Zhao, B. Qi, X. Ma, H.-K. Lo and L. Qian,"Experimental quantum key distribution with decoy states," Phys. Rev. Lett. 96, 070502 (2006).
[CrossRef] [PubMed]

Rarity, J. G.

P. Townsend, J. G. Rarity and P. R. Tapster, "Single photon interference in a 10 km long optical fiber interferometer," Electron. Lett. 29, 634-639 (1993).
[CrossRef]

Ribordy, G.

V. Scarani, A. Acín, G. Ribordy and N. Gisin, "Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations," Phys. Rev. Lett. 92, 0579014 (2004).
[CrossRef]

N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

Salvail, L.

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail and J. Smolin, "Experimental quantum cryptography," J. Cryptology 5, 3-28 (1992).
[CrossRef]

Sanders, B. C.

G. Brassard, N. Lütkenhaus, T. Mor and B. C. Sanders, "Limitations on practical quantum cryptography," Phys. Rev. Lett. 85, 1330-1333 (2000).
[CrossRef] [PubMed]

Scarani, V.

V. Scarani, A. Acín, G. Ribordy and N. Gisin, "Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations," Phys. Rev. Lett. 92, 0579014 (2004).
[CrossRef]

Smolin, J.

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail and J. Smolin, "Experimental quantum cryptography," J. Cryptology 5, 3-28 (1992).
[CrossRef]

Tanzilli, S.

S. Fasel, O. Alibart, A. Beveratos, S. Tanzilli, H. Zbinden, P. Baldi and N. Gisin,"High-quality asynchronous heralded single-photon source at telecom wavelength," New J. of Phys. 6, 163 (2004).
[CrossRef]

Tapster, P. R.

P. Townsend, J. G. Rarity and P. R. Tapster, "Single photon interference in a 10 km long optical fiber interferometer," Electron. Lett. 29, 634-639 (1993).
[CrossRef]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

Townsend, P.

P. Townsend, J. G. Rarity and P. R. Tapster, "Single photon interference in a 10 km long optical fiber interferometer," Electron. Lett. 29, 634-639 (1993).
[CrossRef]

Trifonov, A.

A. Trifonov and A. Zavriyev,"Secure communication with a heralded single-photon source," J. Opt. B 7, S772-S777 (2005).
[CrossRef]

Waks, E.

E. Waks, A. Zeevi and Y. Yamamoto, "Security of quantum key distribution with entangled photons against individual attacks," Phys. Rev. A 65, 052310 (2002).
[CrossRef]

Yamamoto, Y.

E. Waks, A. Zeevi and Y. Yamamoto, "Security of quantum key distribution with entangled photons against individual attacks," Phys. Rev. A 65, 052310 (2002).
[CrossRef]

Zavriyev, A.

A. Trifonov and A. Zavriyev,"Secure communication with a heralded single-photon source," J. Opt. B 7, S772-S777 (2005).
[CrossRef]

Zbinden, H.

S. Fasel, O. Alibart, A. Beveratos, S. Tanzilli, H. Zbinden, P. Baldi and N. Gisin,"High-quality asynchronous heralded single-photon source at telecom wavelength," New J. of Phys. 6, 163 (2004).
[CrossRef]

N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

Zeevi, A.

E. Waks, A. Zeevi and Y. Yamamoto, "Security of quantum key distribution with entangled photons against individual attacks," Phys. Rev. A 65, 052310 (2002).
[CrossRef]

Zhao, Y.

Y. Zhao, B. Qi, X. Ma, H.-K. Lo and L. Qian,"Experimental quantum key distribution with decoy states," Phys. Rev. Lett. 96, 070502 (2006).
[CrossRef] [PubMed]

Zoller, P.

H. Briegel, W. Dür, J. I. Cirac and P. Zoller,"Quantum repeaters: the role of imperfect local operations in quantum communication," Phys. Rev. Lett. 81, 5932-5935 (1998).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (1)

P. Townsend, J. G. Rarity and P. R. Tapster, "Single photon interference in a 10 km long optical fiber interferometer," Electron. Lett. 29, 634-639 (1993).
[CrossRef]

J. Cryptology (1)

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail and J. Smolin, "Experimental quantum cryptography," J. Cryptology 5, 3-28 (1992).
[CrossRef]

J. Opt. B (1)

A. Trifonov and A. Zavriyev,"Secure communication with a heralded single-photon source," J. Opt. B 7, S772-S777 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

New J. of Phys. (1)

S. Fasel, O. Alibart, A. Beveratos, S. Tanzilli, H. Zbinden, P. Baldi and N. Gisin,"High-quality asynchronous heralded single-photon source at telecom wavelength," New J. of Phys. 6, 163 (2004).
[CrossRef]

Phys. Rev. A (3)

E. Waks, A. Zeevi and Y. Yamamoto, "Security of quantum key distribution with entangled photons against individual attacks," Phys. Rev. A 65, 052310 (2002).
[CrossRef]

K. Inoue and T. Honjo, "Robustness of differential-phase-shift quantum key distribution against photon-numbersplitting attack," Phys. Rev. A 71, 042305 (2005).
[CrossRef]

M. Hayashi, "Practical evaluation of security for quantum key distribution," Phys. Rev. A 74, 022307 (2006).
[CrossRef]

Phys. Rev. Lett. (7)

C. H. Bennett, "Quantum cryptography using any two nonorthogonal states," Phys. Rev. Lett. 68, 3121-3124 (1992).
[CrossRef] [PubMed]

H.-K. Lo and X. Ma and K. Chen,"Decoy state quantum key distribution," Phys. Rev. Lett. 94, 230504 (2005).
[CrossRef] [PubMed]

Y. Zhao, B. Qi, X. Ma, H.-K. Lo and L. Qian,"Experimental quantum key distribution with decoy states," Phys. Rev. Lett. 96, 070502 (2006).
[CrossRef] [PubMed]

G. Brassard, N. Lütkenhaus, T. Mor and B. C. Sanders, "Limitations on practical quantum cryptography," Phys. Rev. Lett. 85, 1330-1333 (2000).
[CrossRef] [PubMed]

V. Scarani, A. Acín, G. Ribordy and N. Gisin, "Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations," Phys. Rev. Lett. 92, 0579014 (2004).
[CrossRef]

H. Briegel, W. Dür, J. I. Cirac and P. Zoller,"Quantum repeaters: the role of imperfect local operations in quantum communication," Phys. Rev. Lett. 81, 5932-5935 (1998).
[CrossRef]

H. K. Hong and L. Mandel, "Experimental realization of a localized one-photon state," Phys. Rev. Lett. 56, 58-60 (1986).
[CrossRef] [PubMed]

Quantum Inf. Comput. (1)

D. Gottesman, H.-K. Lo, N. Lütkenhaus and J. Preskill, "Security of quantum key distribution with imperfect devices," Quantum Inf. Comput. 4, 325-360 (2004).

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

Other (5)

A. Soujaeff, S. Takeuchi, K. Sasaki, T. Hasegawa and M. Matsui, "Heralded single photon source at 1550 nm from pulsed parametric downconversion," quant-ph/0611112, (2006).

Using a model presented in reference [10, 11, 16], we estimated the average number of photon pairs μ at the crystal output to be 0.168 at the maximum pump power (195 mW), and 3 pairs event probability at the crystal ouput to be a fraction equal to 0.056 of the two pairs generation probability for this pump power.

C.H. Bennett and G. Brassard, in proceedings of the IEEE International Conference on Computers, Systems and Signals Processing, (Institute of Electrical and Electronics Engineers, New York 1984), pp. 175-179.

M. Koashi, "Efficient quantum key distribution with practical sources and detectors," quant-ph/0609180, (2006).

Y. Adachi, T. Yamamoto, M. Koashi, N. Imoto," Simple and efficient quantum key distribution with parametric down-conversion," quant-ph/0610118, (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

HSPS experimental set up, bandpass filter (BPF) and highpass filter (HPF) reject residual pump in idler and signal path.

Fig. 2.
Fig. 2.

Pc (2) of HSPS as a function of pump power for a constant P(1) of 0.296. Black circles are measurement results, plotted with error bars. The dashed red line is the linear regression curve for Pc (2).

Fig. 3.
Fig. 3.

QKD system, thick blue lines are DSF channel, red line is the HSPS heralding signal and green line is the 82 MHz clock signal. Black lines represent driving signal for phase modulation and APD gated operation. Doted black lines are output signals from APD, and dashed-doted black lines are signals exchange between personal computers and EA and EB.

Fig. 4.
Fig. 4.

Calculated gain figure of our QKD system with HSPS (dashed), for a single photon source with same P(1) as our HSPS (black) and for WCP based on original BB84 protocol with optimum average photon number (dot). The Black cross is the gain figure for the 40 km QKD experiment.

Tables (1)

Tables Icon

Table 1. HSPS photon number distribution and triggering rate. For P(1), statistical fluctuation were negligible (less than 2% of the total count)

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

G = 1 2 p exp [ ( 1 p m p exp ) ( 1 H ( Q ( 1 p m p exp ) ) ) H ( Q ) ]
H = Q log 2 ( Q ) ( 1 Q ) log 2 ( 1 Q )

Metrics