A. R. Weily, K. P. Esselle, T. S. Bird, and B. C. Sanders, “Experimental woodpile EBG waveguides, bends and power dividers at microwave frequencies,” Electron. Lett. 42,32–33 (2006).
[Crossref]
H. Liu, J. Q. Yao, E. B. Li, W. Q. Wen, Q. Zhang, and P. Wang, “Theoretical analysis of optimum parameters for complete forbidden bands of three-dimensional photonic crystals with typical lattice structures,” Acta Phys. Sin. 55,230–238 (2006).
Y. Lin, D. Rivera, and K. P. Chen, “Woodpile-type photonic crystals with orthorhombic or tetragonal symmetry formed through phase mask techniques,” Opt. Express 14,887–892 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-2-887.
[Crossref]
[PubMed]
K. Takagi, K. Seno, and A. Kawasaki, “Fabrication of a three-dimensional terahertz photonic crystal using monosized spherical particles,” Appl. Phys. Lett. 85,3681–3683 (2004).
[Crossref]
C. Lin, C. Chen, G. Schneider, P. Yao, S. Shi, A. Sharkawy, and D. Prather, “Wavelength scale terahertz two-dimensional photonic crystal waveguides,” Opt. Express 12,5723–5728 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-23-5723.
[Crossref]
[PubMed]
T. D. Drysdale, R. J. Blaikie, and D. R. S. Cumming, “Calculated and measured transmittance of a tunable metallic photonic crystal filter for terahertz frequencies,” Appl. Phys. Lett. 83,5362–5364 (2003).
[Crossref]
P. Kopperschmidt, “Tetragonal photonic woodpile structures,” Appl. Phys. B 76,729–734 (2003).
[Crossref]
N. Jukam and M. S. Sherwin, “Two-dimensional terahertz photonic crystals fabricated by deep reactive ion etching in Si,” Appl. Phys. Lett. 83,21–23 (2003).
[Crossref]
S. W. Wang, W. Lu, X. S. Chen, Z. F. Li, X. C. Shen, and W. J. Wen, “Two-dimensional photonic crystal at THz frequencies constructed by metal-coated cylinders,” J. Appl. Phys. 93,9401–9403 (2003).
[Crossref]
A. Feigel, M. Veinger, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, “Three-dimensional simple cubic woodpile photonic crystals made from chalcogenide glasses,” Appl. Phys. Lett. 83,4480–4482 (2003).
[Crossref]
S. Shoji, H. B. Sun, and S. Kawata, “Photofabrication of wood-pile three-dimensional photonic crystals using four-beam laser interference,” Appl. Phys. Lett. 83,608–610 (2003).
[Crossref]
P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory and Tech. 50,910–928 (2002).
[Crossref]
R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417,156–159 (2002).
[Crossref]
[PubMed]
A. L. Reynolds, H. M. H. Chong, I. G. Thayne, J. M. Arnold, and P. De Maagt, “Analysis of membrane support structures for integrated antenna usage on two-dimensional photonic-bandgap structures,” IEEE Trans. Microwave Theory and Tech. 49,1254–1261 (2001).
[Crossref]
S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and Jim Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394,251–253 (1998).
[Crossref]
A. Chelnokov, S. Rowson, J.-M. Lourtioz, L. Duvillaret, and J.-L. Coutaz, “Terahertz characterisation of mechanically machined 3D photonic crystal,” Electron. Lett. 33,1981–1983 (1997).
[Crossref]
C. M. Anderson and K. P. Giapis, “Larger two-dimensional photonic band gaps,” Phys. Rev. Lett. 77,2949–2952 (1996).
[Crossref]
[PubMed]
S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Theoretical investigation of fabrication-related disorder on the properties of photonic crystals,” J. Appl. Phys. 78,1415–1418 (1995).
[Crossref]
K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89,413–416 (1994).
[Crossref]
E. Özbay, E. Michel, G. Tuttle, R. Biswas, K. M. Ho, J. Bostak, and D. M. Bloom, “Terahertz spectroscopy of three-dimensional photonic band-gap crystals,” Opt. Lett. 19,1155–1157 (1994).
[PubMed]
K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65,3152–3155 (1990).
[Crossref]
[PubMed]
C. M. Anderson and K. P. Giapis, “Larger two-dimensional photonic band gaps,” Phys. Rev. Lett. 77,2949–2952 (1996).
[Crossref]
[PubMed]
A. L. Reynolds, H. M. H. Chong, I. G. Thayne, J. M. Arnold, and P. De Maagt, “Analysis of membrane support structures for integrated antenna usage on two-dimensional photonic-bandgap structures,” IEEE Trans. Microwave Theory and Tech. 49,1254–1261 (2001).
[Crossref]
A. Feigel, M. Veinger, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, “Three-dimensional simple cubic woodpile photonic crystals made from chalcogenide glasses,” Appl. Phys. Lett. 83,4480–4482 (2003).
[Crossref]
R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417,156–159 (2002).
[Crossref]
[PubMed]
R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417,156–159 (2002).
[Crossref]
[PubMed]
A. R. Weily, K. P. Esselle, T. S. Bird, and B. C. Sanders, “Experimental woodpile EBG waveguides, bends and power dividers at microwave frequencies,” Electron. Lett. 42,32–33 (2006).
[Crossref]
S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and Jim Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394,251–253 (1998).
[Crossref]
K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89,413–416 (1994).
[Crossref]
E. Özbay, E. Michel, G. Tuttle, R. Biswas, K. M. Ho, J. Bostak, and D. M. Bloom, “Terahertz spectroscopy of three-dimensional photonic band-gap crystals,” Opt. Lett. 19,1155–1157 (1994).
[PubMed]
T. D. Drysdale, R. J. Blaikie, and D. R. S. Cumming, “Calculated and measured transmittance of a tunable metallic photonic crystal filter for terahertz frequencies,” Appl. Phys. Lett. 83,5362–5364 (2003).
[Crossref]
S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and Jim Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394,251–253 (1998).
[Crossref]
K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89,413–416 (1994).
[Crossref]
K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65,3152–3155 (1990).
[Crossref]
[PubMed]
A. Chelnokov, S. Rowson, J.-M. Lourtioz, L. Duvillaret, and J.-L. Coutaz, “Terahertz characterisation of mechanically machined 3D photonic crystal,” Electron. Lett. 33,1981–1983 (1997).
[Crossref]
S. W. Wang, W. Lu, X. S. Chen, Z. F. Li, X. C. Shen, and W. J. Wen, “Two-dimensional photonic crystal at THz frequencies constructed by metal-coated cylinders,” J. Appl. Phys. 93,9401–9403 (2003).
[Crossref]
A. L. Reynolds, H. M. H. Chong, I. G. Thayne, J. M. Arnold, and P. De Maagt, “Analysis of membrane support structures for integrated antenna usage on two-dimensional photonic-bandgap structures,” IEEE Trans. Microwave Theory and Tech. 49,1254–1261 (2001).
[Crossref]
H. Kurt and D. S. Citrin, “Photonic crystals for biochemical sensing in the terahertz region,” Appl. Phys. Lett. 87,041108 (2005).
[Crossref]
A. Chelnokov, S. Rowson, J.-M. Lourtioz, L. Duvillaret, and J.-L. Coutaz, “Terahertz characterisation of mechanically machined 3D photonic crystal,” Electron. Lett. 33,1981–1983 (1997).
[Crossref]
T. D. Drysdale, R. J. Blaikie, and D. R. S. Cumming, “Calculated and measured transmittance of a tunable metallic photonic crystal filter for terahertz frequencies,” Appl. Phys. Lett. 83,5362–5364 (2003).
[Crossref]
R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417,156–159 (2002).
[Crossref]
[PubMed]
T. D. Drysdale, R. J. Blaikie, and D. R. S. Cumming, “Calculated and measured transmittance of a tunable metallic photonic crystal filter for terahertz frequencies,” Appl. Phys. Lett. 83,5362–5364 (2003).
[Crossref]
A. Chelnokov, S. Rowson, J.-M. Lourtioz, L. Duvillaret, and J.-L. Coutaz, “Terahertz characterisation of mechanically machined 3D photonic crystal,” Electron. Lett. 33,1981–1983 (1997).
[Crossref]
A. R. Weily, K. P. Esselle, T. S. Bird, and B. C. Sanders, “Experimental woodpile EBG waveguides, bends and power dividers at microwave frequencies,” Electron. Lett. 42,32–33 (2006).
[Crossref]
S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Theoretical investigation of fabrication-related disorder on the properties of photonic crystals,” J. Appl. Phys. 78,1415–1418 (1995).
[Crossref]
A. Feigel, M. Veinger, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, “Three-dimensional simple cubic woodpile photonic crystals made from chalcogenide glasses,” Appl. Phys. Lett. 83,4480–4482 (2003).
[Crossref]
S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and Jim Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394,251–253 (1998).
[Crossref]
C. M. Anderson and K. P. Giapis, “Larger two-dimensional photonic band gaps,” Phys. Rev. Lett. 77,2949–2952 (1996).
[Crossref]
[PubMed]
S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and Jim Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394,251–253 (1998).
[Crossref]
S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and Jim Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394,251–253 (1998).
[Crossref]
K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89,413–416 (1994).
[Crossref]
E. Özbay, E. Michel, G. Tuttle, R. Biswas, K. M. Ho, J. Bostak, and D. M. Bloom, “Terahertz spectroscopy of three-dimensional photonic band-gap crystals,” Opt. Lett. 19,1155–1157 (1994).
[PubMed]
K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65,3152–3155 (1990).
[Crossref]
[PubMed]
R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417,156–159 (2002).
[Crossref]
[PubMed]
S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Theoretical investigation of fabrication-related disorder on the properties of photonic crystals,” J. Appl. Phys. 78,1415–1418 (1995).
[Crossref]
N. Jukam and M. S. Sherwin, “Two-dimensional terahertz photonic crystals fabricated by deep reactive ion etching in Si,” Appl. Phys. Lett. 83,21–23 (2003).
[Crossref]
K. Takagi, K. Seno, and A. Kawasaki, “Fabrication of a three-dimensional terahertz photonic crystal using monosized spherical particles,” Appl. Phys. Lett. 85,3681–3683 (2004).
[Crossref]
S. Shoji, H. B. Sun, and S. Kawata, “Photofabrication of wood-pile three-dimensional photonic crystals using four-beam laser interference,” Appl. Phys. Lett. 83,608–610 (2003).
[Crossref]
A. Feigel, M. Veinger, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, “Three-dimensional simple cubic woodpile photonic crystals made from chalcogenide glasses,” Appl. Phys. Lett. 83,4480–4482 (2003).
[Crossref]
R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417,156–159 (2002).
[Crossref]
[PubMed]
P. Kopperschmidt, “Tetragonal photonic woodpile structures,” Appl. Phys. B 76,729–734 (2003).
[Crossref]
H. Kurt and D. S. Citrin, “Photonic crystals for biochemical sensing in the terahertz region,” Appl. Phys. Lett. 87,041108 (2005).
[Crossref]
S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and Jim Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394,251–253 (1998).
[Crossref]
H. Liu, J. Q. Yao, E. B. Li, W. Q. Wen, Q. Zhang, and P. Wang, “Theoretical analysis of optimum parameters for complete forbidden bands of three-dimensional photonic crystals with typical lattice structures,” Acta Phys. Sin. 55,230–238 (2006).
S. W. Wang, W. Lu, X. S. Chen, Z. F. Li, X. C. Shen, and W. J. Wen, “Two-dimensional photonic crystal at THz frequencies constructed by metal-coated cylinders,” J. Appl. Phys. 93,9401–9403 (2003).
[Crossref]
S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and Jim Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394,251–253 (1998).
[Crossref]
R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417,156–159 (2002).
[Crossref]
[PubMed]
H. Liu, J. Q. Yao, E. B. Li, W. Q. Wen, Q. Zhang, and P. Wang, “Theoretical analysis of optimum parameters for complete forbidden bands of three-dimensional photonic crystals with typical lattice structures,” Acta Phys. Sin. 55,230–238 (2006).
A. Chelnokov, S. Rowson, J.-M. Lourtioz, L. Duvillaret, and J.-L. Coutaz, “Terahertz characterisation of mechanically machined 3D photonic crystal,” Electron. Lett. 33,1981–1983 (1997).
[Crossref]
S. W. Wang, W. Lu, X. S. Chen, Z. F. Li, X. C. Shen, and W. J. Wen, “Two-dimensional photonic crystal at THz frequencies constructed by metal-coated cylinders,” J. Appl. Phys. 93,9401–9403 (2003).
[Crossref]
A. Feigel, M. Veinger, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, “Three-dimensional simple cubic woodpile photonic crystals made from chalcogenide glasses,” Appl. Phys. Lett. 83,4480–4482 (2003).
[Crossref]
A. L. Reynolds, H. M. H. Chong, I. G. Thayne, J. M. Arnold, and P. De Maagt, “Analysis of membrane support structures for integrated antenna usage on two-dimensional photonic-bandgap structures,” IEEE Trans. Microwave Theory and Tech. 49,1254–1261 (2001).
[Crossref]
A. L. Reynolds, H. M. H. Chong, I. G. Thayne, J. M. Arnold, and P. De Maagt, “Analysis of membrane support structures for integrated antenna usage on two-dimensional photonic-bandgap structures,” IEEE Trans. Microwave Theory and Tech. 49,1254–1261 (2001).
[Crossref]
R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417,156–159 (2002).
[Crossref]
[PubMed]
R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417,156–159 (2002).
[Crossref]
[PubMed]
A. Chelnokov, S. Rowson, J.-M. Lourtioz, L. Duvillaret, and J.-L. Coutaz, “Terahertz characterisation of mechanically machined 3D photonic crystal,” Electron. Lett. 33,1981–1983 (1997).
[Crossref]
A. R. Weily, K. P. Esselle, T. S. Bird, and B. C. Sanders, “Experimental woodpile EBG waveguides, bends and power dividers at microwave frequencies,” Electron. Lett. 42,32–33 (2006).
[Crossref]
K. Takagi, K. Seno, and A. Kawasaki, “Fabrication of a three-dimensional terahertz photonic crystal using monosized spherical particles,” Appl. Phys. Lett. 85,3681–3683 (2004).
[Crossref]
A. Feigel, M. Veinger, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, “Three-dimensional simple cubic woodpile photonic crystals made from chalcogenide glasses,” Appl. Phys. Lett. 83,4480–4482 (2003).
[Crossref]
S. W. Wang, W. Lu, X. S. Chen, Z. F. Li, X. C. Shen, and W. J. Wen, “Two-dimensional photonic crystal at THz frequencies constructed by metal-coated cylinders,” J. Appl. Phys. 93,9401–9403 (2003).
[Crossref]
N. Jukam and M. S. Sherwin, “Two-dimensional terahertz photonic crystals fabricated by deep reactive ion etching in Si,” Appl. Phys. Lett. 83,21–23 (2003).
[Crossref]
S. Shoji, H. B. Sun, and S. Kawata, “Photofabrication of wood-pile three-dimensional photonic crystals using four-beam laser interference,” Appl. Phys. Lett. 83,608–610 (2003).
[Crossref]
P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory and Tech. 50,910–928 (2002).
[Crossref]
K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89,413–416 (1994).
[Crossref]
S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and Jim Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394,251–253 (1998).
[Crossref]
S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and Jim Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394,251–253 (1998).
[Crossref]
K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89,413–416 (1994).
[Crossref]
K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65,3152–3155 (1990).
[Crossref]
[PubMed]
S. Shoji, H. B. Sun, and S. Kawata, “Photofabrication of wood-pile three-dimensional photonic crystals using four-beam laser interference,” Appl. Phys. Lett. 83,608–610 (2003).
[Crossref]
K. Takagi, K. Seno, and A. Kawasaki, “Fabrication of a three-dimensional terahertz photonic crystal using monosized spherical particles,” Appl. Phys. Lett. 85,3681–3683 (2004).
[Crossref]
A. L. Reynolds, H. M. H. Chong, I. G. Thayne, J. M. Arnold, and P. De Maagt, “Analysis of membrane support structures for integrated antenna usage on two-dimensional photonic-bandgap structures,” IEEE Trans. Microwave Theory and Tech. 49,1254–1261 (2001).
[Crossref]
R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417,156–159 (2002).
[Crossref]
[PubMed]
A. Feigel, M. Veinger, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, “Three-dimensional simple cubic woodpile photonic crystals made from chalcogenide glasses,” Appl. Phys. Lett. 83,4480–4482 (2003).
[Crossref]
S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Theoretical investigation of fabrication-related disorder on the properties of photonic crystals,” J. Appl. Phys. 78,1415–1418 (1995).
[Crossref]
H. Liu, J. Q. Yao, E. B. Li, W. Q. Wen, Q. Zhang, and P. Wang, “Theoretical analysis of optimum parameters for complete forbidden bands of three-dimensional photonic crystals with typical lattice structures,” Acta Phys. Sin. 55,230–238 (2006).
S. W. Wang, W. Lu, X. S. Chen, Z. F. Li, X. C. Shen, and W. J. Wen, “Two-dimensional photonic crystal at THz frequencies constructed by metal-coated cylinders,” J. Appl. Phys. 93,9401–9403 (2003).
[Crossref]
A. R. Weily, K. P. Esselle, T. S. Bird, and B. C. Sanders, “Experimental woodpile EBG waveguides, bends and power dividers at microwave frequencies,” Electron. Lett. 42,32–33 (2006).
[Crossref]
S. W. Wang, W. Lu, X. S. Chen, Z. F. Li, X. C. Shen, and W. J. Wen, “Two-dimensional photonic crystal at THz frequencies constructed by metal-coated cylinders,” J. Appl. Phys. 93,9401–9403 (2003).
[Crossref]
H. Liu, J. Q. Yao, E. B. Li, W. Q. Wen, Q. Zhang, and P. Wang, “Theoretical analysis of optimum parameters for complete forbidden bands of three-dimensional photonic crystals with typical lattice structures,” Acta Phys. Sin. 55,230–238 (2006).
H. Liu, J. Q. Yao, E. B. Li, W. Q. Wen, Q. Zhang, and P. Wang, “Theoretical analysis of optimum parameters for complete forbidden bands of three-dimensional photonic crystals with typical lattice structures,” Acta Phys. Sin. 55,230–238 (2006).
H. Liu, J. Q. Yao, E. B. Li, W. Q. Wen, Q. Zhang, and P. Wang, “Theoretical analysis of optimum parameters for complete forbidden bands of three-dimensional photonic crystals with typical lattice structures,” Acta Phys. Sin. 55,230–238 (2006).
S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and Jim Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394,251–253 (1998).
[Crossref]
H. Liu, J. Q. Yao, E. B. Li, W. Q. Wen, Q. Zhang, and P. Wang, “Theoretical analysis of optimum parameters for complete forbidden bands of three-dimensional photonic crystals with typical lattice structures,” Acta Phys. Sin. 55,230–238 (2006).
P. Kopperschmidt, “Tetragonal photonic woodpile structures,” Appl. Phys. B 76,729–734 (2003).
[Crossref]
T. D. Drysdale, R. J. Blaikie, and D. R. S. Cumming, “Calculated and measured transmittance of a tunable metallic photonic crystal filter for terahertz frequencies,” Appl. Phys. Lett. 83,5362–5364 (2003).
[Crossref]
K. Takagi, K. Seno, and A. Kawasaki, “Fabrication of a three-dimensional terahertz photonic crystal using monosized spherical particles,” Appl. Phys. Lett. 85,3681–3683 (2004).
[Crossref]
N. Jukam and M. S. Sherwin, “Two-dimensional terahertz photonic crystals fabricated by deep reactive ion etching in Si,” Appl. Phys. Lett. 83,21–23 (2003).
[Crossref]
A. Feigel, M. Veinger, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, “Three-dimensional simple cubic woodpile photonic crystals made from chalcogenide glasses,” Appl. Phys. Lett. 83,4480–4482 (2003).
[Crossref]
S. Shoji, H. B. Sun, and S. Kawata, “Photofabrication of wood-pile three-dimensional photonic crystals using four-beam laser interference,” Appl. Phys. Lett. 83,608–610 (2003).
[Crossref]
H. Kurt and D. S. Citrin, “Photonic crystals for biochemical sensing in the terahertz region,” Appl. Phys. Lett. 87,041108 (2005).
[Crossref]
A. R. Weily, K. P. Esselle, T. S. Bird, and B. C. Sanders, “Experimental woodpile EBG waveguides, bends and power dividers at microwave frequencies,” Electron. Lett. 42,32–33 (2006).
[Crossref]
A. Chelnokov, S. Rowson, J.-M. Lourtioz, L. Duvillaret, and J.-L. Coutaz, “Terahertz characterisation of mechanically machined 3D photonic crystal,” Electron. Lett. 33,1981–1983 (1997).
[Crossref]
A. L. Reynolds, H. M. H. Chong, I. G. Thayne, J. M. Arnold, and P. De Maagt, “Analysis of membrane support structures for integrated antenna usage on two-dimensional photonic-bandgap structures,” IEEE Trans. Microwave Theory and Tech. 49,1254–1261 (2001).
[Crossref]
P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory and Tech. 50,910–928 (2002).
[Crossref]
S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Theoretical investigation of fabrication-related disorder on the properties of photonic crystals,” J. Appl. Phys. 78,1415–1418 (1995).
[Crossref]
S. W. Wang, W. Lu, X. S. Chen, Z. F. Li, X. C. Shen, and W. J. Wen, “Two-dimensional photonic crystal at THz frequencies constructed by metal-coated cylinders,” J. Appl. Phys. 93,9401–9403 (2003).
[Crossref]
S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and Jim Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394,251–253 (1998).
[Crossref]
R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417,156–159 (2002).
[Crossref]
[PubMed]
Y. Lin, D. Rivera, and K. P. Chen, “Woodpile-type photonic crystals with orthorhombic or tetragonal symmetry formed through phase mask techniques,” Opt. Express 14,887–892 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-2-887.
[Crossref]
[PubMed]
C. Lin, C. Chen, G. Schneider, P. Yao, S. Shi, A. Sharkawy, and D. Prather, “Wavelength scale terahertz two-dimensional photonic crystal waveguides,” Opt. Express 12,5723–5728 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-23-5723.
[Crossref]
[PubMed]
A. Di Falco, C. Conti, and G. Assanto, “Terahertz pulse generation via optical rectification in photonic crystal microcavities,” Opt. Lett. 30,1174–1176 (2005).
[Crossref]
[PubMed]
E. Özbay, E. Michel, G. Tuttle, R. Biswas, K. M. Ho, J. Bostak, and D. M. Bloom, “Terahertz spectroscopy of three-dimensional photonic band-gap crystals,” Opt. Lett. 19,1155–1157 (1994).
[PubMed]
K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65,3152–3155 (1990).
[Crossref]
[PubMed]
C. M. Anderson and K. P. Giapis, “Larger two-dimensional photonic band gaps,” Phys. Rev. Lett. 77,2949–2952 (1996).
[Crossref]
[PubMed]
K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89,413–416 (1994).
[Crossref]