Abstract

Design curves for insertion loss of multimode polymer waveguide 90° bends are reported as a function of bend radius for several waveguide widths. For the first time, to our knowledge, in multimode rectangular waveguides the insertion loss is resolved into its components of transition, radiation and propagation loss, in order of decreasing strength, separating them from input and output coupling loss by calibration and comparison of experimentally measured and beam propagation method (BPM) modeled curves. We used the method of nested bends for the first time in multimode polymer waveguides to calculate the propagation loss on a small substrate without using destructive cut-back. The lowest loss of 0.74 dB occurred for a 50 μm square cross section, Δn=0.0296, 13.5 mm radius waveguide bend.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Ladoucer and P. Labeye “A new general approach to optical waveguide path design,” J. Lightwave Technol. 13,481–492 (1995).
    [CrossRef]
  2. Jaime Cardenas, Lixia Li, Seunghyum Kim, and Gregory P. Nordin, “Compact low loss single air interface bends in polymer waveguides,” Opt. Express 12,5314–5324 (2004).
    [CrossRef] [PubMed]
  3. Takashi Sakamoto, Hiroyuki Tsuda, Makoto Hikita, Toshiaki Kagawa, Kouta Tateno, and Chikara Amano, “Optical interconnection using VCSELs and polymeric waveguide circuits,” J. Lightwave Technol. 22,2083–2090 (2004).
  4. Ioannis Papakonstantinou, David R. Selviah, Richard A. Pitwon, and Dave Milward, “Low cost, precision self-alignment technique for coupling laser and photodiode arrays to waveguide arrays”, IEEE Trans. Adv. Packag., (submitted for publication).
  5. Sami Musa, Albert Borreman, Abgail A. M. Kok, Mart B. J. Diemeer, and Alfred Driessen, “Experimental study of bent multimode optical waveguides,” Appl. Opt. 43,5705–5707 (2004).
    [CrossRef] [PubMed]
  6. L. Dellmann, R. Dangel, R. Beyeler, Ch. Berger, F. Horst, B.J. Offrein, and G.L. Bona, “Polymer waveguides for high-speed optical interconnects,” in Proceedings of EOS Topical Meeting on Optics in Computing, (Engelberg, Switzerland, 2004), pp.131–132.
  7. Makoto Hikita, Satoru Tomarum Koji Enbutsu, Naoki Ooba, Ryoko Yoshimura, Mitsuo Usui, Takashi Yoshida, and Saburo Imamura, “Polymeric optical waveguide films for short-distance optical interconnects,” IEEE J. Sel. Top. Quantum. Electron., 5,1237–1242 (1999).
    [CrossRef]
  8. Vijaya Subramaniam, Gregory N. De Brabander, David H. Naghski, and Joseph T. Boyd, “Measurement of mode field profiles and bending and transition losses in curved optical channel waveguides,” J. Lightwave Technol. 15,990–997 (1997).
    [CrossRef]
  9. Allan W. Snyder and John D. Love, “Reflection at a curved dielectric interface - electromagnetic tunneling,” IEEE Trans. Microwave Theory Technol. 23,134–141 (1975).
    [CrossRef]
  10. I. C. Goyal, R. L. Gallawa, and A. K. Ghatak, “Bent planar waveguides and whispering gallery modes: A New Method of Analysis,” J. Lightwave Technol. 8,768–774 (1990).
    [CrossRef]
  11. F. Ladoucer, J. D. Love, and T. J. Senden, “Effect of side wall roughness in buried channel waveguides,” IEE Proc. Optoelectron 141 (1994).
  12. D. Marcuse, “Power distribution and radiation loss in multimode dielectric slab waveguides,” Bell Syst. Tech. J. 51,429–454(1972).
  13. Exxelis Ltd., “TruemodeTM wet film datasheet” (2006), http://www.exxelis.com/products/truemode.php.

2006 (1)

Exxelis Ltd., “TruemodeTM wet film datasheet” (2006), http://www.exxelis.com/products/truemode.php.

2004 (4)

1999 (1)

Makoto Hikita, Satoru Tomarum Koji Enbutsu, Naoki Ooba, Ryoko Yoshimura, Mitsuo Usui, Takashi Yoshida, and Saburo Imamura, “Polymeric optical waveguide films for short-distance optical interconnects,” IEEE J. Sel. Top. Quantum. Electron., 5,1237–1242 (1999).
[CrossRef]

1997 (1)

Vijaya Subramaniam, Gregory N. De Brabander, David H. Naghski, and Joseph T. Boyd, “Measurement of mode field profiles and bending and transition losses in curved optical channel waveguides,” J. Lightwave Technol. 15,990–997 (1997).
[CrossRef]

1995 (1)

F. Ladoucer and P. Labeye “A new general approach to optical waveguide path design,” J. Lightwave Technol. 13,481–492 (1995).
[CrossRef]

1994 (1)

F. Ladoucer, J. D. Love, and T. J. Senden, “Effect of side wall roughness in buried channel waveguides,” IEE Proc. Optoelectron 141 (1994).

1990 (1)

I. C. Goyal, R. L. Gallawa, and A. K. Ghatak, “Bent planar waveguides and whispering gallery modes: A New Method of Analysis,” J. Lightwave Technol. 8,768–774 (1990).
[CrossRef]

1975 (1)

Allan W. Snyder and John D. Love, “Reflection at a curved dielectric interface - electromagnetic tunneling,” IEEE Trans. Microwave Theory Technol. 23,134–141 (1975).
[CrossRef]

1972 (1)

D. Marcuse, “Power distribution and radiation loss in multimode dielectric slab waveguides,” Bell Syst. Tech. J. 51,429–454(1972).

Amano, Chikara

Berger, Ch.

L. Dellmann, R. Dangel, R. Beyeler, Ch. Berger, F. Horst, B.J. Offrein, and G.L. Bona, “Polymer waveguides for high-speed optical interconnects,” in Proceedings of EOS Topical Meeting on Optics in Computing, (Engelberg, Switzerland, 2004), pp.131–132.

Beyeler, R.

L. Dellmann, R. Dangel, R. Beyeler, Ch. Berger, F. Horst, B.J. Offrein, and G.L. Bona, “Polymer waveguides for high-speed optical interconnects,” in Proceedings of EOS Topical Meeting on Optics in Computing, (Engelberg, Switzerland, 2004), pp.131–132.

Bona, G.L.

L. Dellmann, R. Dangel, R. Beyeler, Ch. Berger, F. Horst, B.J. Offrein, and G.L. Bona, “Polymer waveguides for high-speed optical interconnects,” in Proceedings of EOS Topical Meeting on Optics in Computing, (Engelberg, Switzerland, 2004), pp.131–132.

Borreman, Albert

Boyd, Joseph T.

Vijaya Subramaniam, Gregory N. De Brabander, David H. Naghski, and Joseph T. Boyd, “Measurement of mode field profiles and bending and transition losses in curved optical channel waveguides,” J. Lightwave Technol. 15,990–997 (1997).
[CrossRef]

Cardenas, Jaime

Dangel, R.

L. Dellmann, R. Dangel, R. Beyeler, Ch. Berger, F. Horst, B.J. Offrein, and G.L. Bona, “Polymer waveguides for high-speed optical interconnects,” in Proceedings of EOS Topical Meeting on Optics in Computing, (Engelberg, Switzerland, 2004), pp.131–132.

De Brabander, Gregory N.

Vijaya Subramaniam, Gregory N. De Brabander, David H. Naghski, and Joseph T. Boyd, “Measurement of mode field profiles and bending and transition losses in curved optical channel waveguides,” J. Lightwave Technol. 15,990–997 (1997).
[CrossRef]

Dellmann, L.

L. Dellmann, R. Dangel, R. Beyeler, Ch. Berger, F. Horst, B.J. Offrein, and G.L. Bona, “Polymer waveguides for high-speed optical interconnects,” in Proceedings of EOS Topical Meeting on Optics in Computing, (Engelberg, Switzerland, 2004), pp.131–132.

Diemeer, Mart B. J.

Driessen, Alfred

Gallawa, R. L.

I. C. Goyal, R. L. Gallawa, and A. K. Ghatak, “Bent planar waveguides and whispering gallery modes: A New Method of Analysis,” J. Lightwave Technol. 8,768–774 (1990).
[CrossRef]

Ghatak, A. K.

I. C. Goyal, R. L. Gallawa, and A. K. Ghatak, “Bent planar waveguides and whispering gallery modes: A New Method of Analysis,” J. Lightwave Technol. 8,768–774 (1990).
[CrossRef]

Goyal, I. C.

I. C. Goyal, R. L. Gallawa, and A. K. Ghatak, “Bent planar waveguides and whispering gallery modes: A New Method of Analysis,” J. Lightwave Technol. 8,768–774 (1990).
[CrossRef]

Hikita, Makoto

Takashi Sakamoto, Hiroyuki Tsuda, Makoto Hikita, Toshiaki Kagawa, Kouta Tateno, and Chikara Amano, “Optical interconnection using VCSELs and polymeric waveguide circuits,” J. Lightwave Technol. 22,2083–2090 (2004).

Makoto Hikita, Satoru Tomarum Koji Enbutsu, Naoki Ooba, Ryoko Yoshimura, Mitsuo Usui, Takashi Yoshida, and Saburo Imamura, “Polymeric optical waveguide films for short-distance optical interconnects,” IEEE J. Sel. Top. Quantum. Electron., 5,1237–1242 (1999).
[CrossRef]

Horst, F.

L. Dellmann, R. Dangel, R. Beyeler, Ch. Berger, F. Horst, B.J. Offrein, and G.L. Bona, “Polymer waveguides for high-speed optical interconnects,” in Proceedings of EOS Topical Meeting on Optics in Computing, (Engelberg, Switzerland, 2004), pp.131–132.

Imamura, Saburo

Makoto Hikita, Satoru Tomarum Koji Enbutsu, Naoki Ooba, Ryoko Yoshimura, Mitsuo Usui, Takashi Yoshida, and Saburo Imamura, “Polymeric optical waveguide films for short-distance optical interconnects,” IEEE J. Sel. Top. Quantum. Electron., 5,1237–1242 (1999).
[CrossRef]

Kagawa, Toshiaki

Kim, Seunghyum

Koji Enbutsu, Satoru Tomarum

Makoto Hikita, Satoru Tomarum Koji Enbutsu, Naoki Ooba, Ryoko Yoshimura, Mitsuo Usui, Takashi Yoshida, and Saburo Imamura, “Polymeric optical waveguide films for short-distance optical interconnects,” IEEE J. Sel. Top. Quantum. Electron., 5,1237–1242 (1999).
[CrossRef]

Kok, Abgail A. M.

Labeye, P.

F. Ladoucer and P. Labeye “A new general approach to optical waveguide path design,” J. Lightwave Technol. 13,481–492 (1995).
[CrossRef]

Ladoucer, F.

F. Ladoucer and P. Labeye “A new general approach to optical waveguide path design,” J. Lightwave Technol. 13,481–492 (1995).
[CrossRef]

F. Ladoucer, J. D. Love, and T. J. Senden, “Effect of side wall roughness in buried channel waveguides,” IEE Proc. Optoelectron 141 (1994).

Li, Lixia

Love, J. D.

F. Ladoucer, J. D. Love, and T. J. Senden, “Effect of side wall roughness in buried channel waveguides,” IEE Proc. Optoelectron 141 (1994).

Love, John D.

Allan W. Snyder and John D. Love, “Reflection at a curved dielectric interface - electromagnetic tunneling,” IEEE Trans. Microwave Theory Technol. 23,134–141 (1975).
[CrossRef]

Marcuse, D.

D. Marcuse, “Power distribution and radiation loss in multimode dielectric slab waveguides,” Bell Syst. Tech. J. 51,429–454(1972).

Milward, Dave

Ioannis Papakonstantinou, David R. Selviah, Richard A. Pitwon, and Dave Milward, “Low cost, precision self-alignment technique for coupling laser and photodiode arrays to waveguide arrays”, IEEE Trans. Adv. Packag., (submitted for publication).

Musa, Sami

Naghski, David H.

Vijaya Subramaniam, Gregory N. De Brabander, David H. Naghski, and Joseph T. Boyd, “Measurement of mode field profiles and bending and transition losses in curved optical channel waveguides,” J. Lightwave Technol. 15,990–997 (1997).
[CrossRef]

Nordin, Gregory P.

Offrein, B.J.

L. Dellmann, R. Dangel, R. Beyeler, Ch. Berger, F. Horst, B.J. Offrein, and G.L. Bona, “Polymer waveguides for high-speed optical interconnects,” in Proceedings of EOS Topical Meeting on Optics in Computing, (Engelberg, Switzerland, 2004), pp.131–132.

Ooba, Naoki

Makoto Hikita, Satoru Tomarum Koji Enbutsu, Naoki Ooba, Ryoko Yoshimura, Mitsuo Usui, Takashi Yoshida, and Saburo Imamura, “Polymeric optical waveguide films for short-distance optical interconnects,” IEEE J. Sel. Top. Quantum. Electron., 5,1237–1242 (1999).
[CrossRef]

Papakonstantinou, Ioannis

Ioannis Papakonstantinou, David R. Selviah, Richard A. Pitwon, and Dave Milward, “Low cost, precision self-alignment technique for coupling laser and photodiode arrays to waveguide arrays”, IEEE Trans. Adv. Packag., (submitted for publication).

Pitwon, Richard A.

Ioannis Papakonstantinou, David R. Selviah, Richard A. Pitwon, and Dave Milward, “Low cost, precision self-alignment technique for coupling laser and photodiode arrays to waveguide arrays”, IEEE Trans. Adv. Packag., (submitted for publication).

Sakamoto, Takashi

Selviah, David R.

Ioannis Papakonstantinou, David R. Selviah, Richard A. Pitwon, and Dave Milward, “Low cost, precision self-alignment technique for coupling laser and photodiode arrays to waveguide arrays”, IEEE Trans. Adv. Packag., (submitted for publication).

Senden, T. J.

F. Ladoucer, J. D. Love, and T. J. Senden, “Effect of side wall roughness in buried channel waveguides,” IEE Proc. Optoelectron 141 (1994).

Snyder, Allan W.

Allan W. Snyder and John D. Love, “Reflection at a curved dielectric interface - electromagnetic tunneling,” IEEE Trans. Microwave Theory Technol. 23,134–141 (1975).
[CrossRef]

Subramaniam, Vijaya

Vijaya Subramaniam, Gregory N. De Brabander, David H. Naghski, and Joseph T. Boyd, “Measurement of mode field profiles and bending and transition losses in curved optical channel waveguides,” J. Lightwave Technol. 15,990–997 (1997).
[CrossRef]

Tateno, Kouta

Tsuda, Hiroyuki

Usui, Mitsuo

Makoto Hikita, Satoru Tomarum Koji Enbutsu, Naoki Ooba, Ryoko Yoshimura, Mitsuo Usui, Takashi Yoshida, and Saburo Imamura, “Polymeric optical waveguide films for short-distance optical interconnects,” IEEE J. Sel. Top. Quantum. Electron., 5,1237–1242 (1999).
[CrossRef]

Yoshida, Takashi

Makoto Hikita, Satoru Tomarum Koji Enbutsu, Naoki Ooba, Ryoko Yoshimura, Mitsuo Usui, Takashi Yoshida, and Saburo Imamura, “Polymeric optical waveguide films for short-distance optical interconnects,” IEEE J. Sel. Top. Quantum. Electron., 5,1237–1242 (1999).
[CrossRef]

Yoshimura, Ryoko

Makoto Hikita, Satoru Tomarum Koji Enbutsu, Naoki Ooba, Ryoko Yoshimura, Mitsuo Usui, Takashi Yoshida, and Saburo Imamura, “Polymeric optical waveguide films for short-distance optical interconnects,” IEEE J. Sel. Top. Quantum. Electron., 5,1237–1242 (1999).
[CrossRef]

Appl. Opt. (1)

Bell Syst. Tech. J. (1)

D. Marcuse, “Power distribution and radiation loss in multimode dielectric slab waveguides,” Bell Syst. Tech. J. 51,429–454(1972).

IEE Proc. Optoelectron (1)

F. Ladoucer, J. D. Love, and T. J. Senden, “Effect of side wall roughness in buried channel waveguides,” IEE Proc. Optoelectron 141 (1994).

IEEE J. Sel. Top. Quantum. Electron. (1)

Makoto Hikita, Satoru Tomarum Koji Enbutsu, Naoki Ooba, Ryoko Yoshimura, Mitsuo Usui, Takashi Yoshida, and Saburo Imamura, “Polymeric optical waveguide films for short-distance optical interconnects,” IEEE J. Sel. Top. Quantum. Electron., 5,1237–1242 (1999).
[CrossRef]

IEEE Trans. Adv. Packag. (1)

Ioannis Papakonstantinou, David R. Selviah, Richard A. Pitwon, and Dave Milward, “Low cost, precision self-alignment technique for coupling laser and photodiode arrays to waveguide arrays”, IEEE Trans. Adv. Packag., (submitted for publication).

IEEE Trans. Microwave Theory Technol. (1)

Allan W. Snyder and John D. Love, “Reflection at a curved dielectric interface - electromagnetic tunneling,” IEEE Trans. Microwave Theory Technol. 23,134–141 (1975).
[CrossRef]

J. Lightwave Technol. (4)

I. C. Goyal, R. L. Gallawa, and A. K. Ghatak, “Bent planar waveguides and whispering gallery modes: A New Method of Analysis,” J. Lightwave Technol. 8,768–774 (1990).
[CrossRef]

Takashi Sakamoto, Hiroyuki Tsuda, Makoto Hikita, Toshiaki Kagawa, Kouta Tateno, and Chikara Amano, “Optical interconnection using VCSELs and polymeric waveguide circuits,” J. Lightwave Technol. 22,2083–2090 (2004).

F. Ladoucer and P. Labeye “A new general approach to optical waveguide path design,” J. Lightwave Technol. 13,481–492 (1995).
[CrossRef]

Vijaya Subramaniam, Gregory N. De Brabander, David H. Naghski, and Joseph T. Boyd, “Measurement of mode field profiles and bending and transition losses in curved optical channel waveguides,” J. Lightwave Technol. 15,990–997 (1997).
[CrossRef]

Opt. Express (1)

Other (2)

L. Dellmann, R. Dangel, R. Beyeler, Ch. Berger, F. Horst, B.J. Offrein, and G.L. Bona, “Polymer waveguides for high-speed optical interconnects,” in Proceedings of EOS Topical Meeting on Optics in Computing, (Engelberg, Switzerland, 2004), pp.131–132.

Exxelis Ltd., “TruemodeTM wet film datasheet” (2006), http://www.exxelis.com/products/truemode.php.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Schematic diagram of one set of waveguide bends. Three sets of waveguides with widths w = 50 μm, 75 μm, and 100 μm respectively were fabricated. Radius R, varied between 5.5 mm < R < 34.5 mm while the separation of adjacent waveguides was ΔR = 1 mm. Straight sections lin = 11.5 mm and lout = 24.5 mm. (b) Light through a waveguide bend of R = 5.5 mm. Light lost due to scattering, transition loss, radiation loss, reflection and back-scattering at the end of the waveguide can be clearly seen. Waveguide was butt-coupled to a MM fiber illuminated with a red-laser.

Fig. 2.
Fig. 2.

Photograph of the end face of a 50 μm × 50 μm waveguide cross section recorded with an infrared sensitive CCD camera. Dashed lines determine the boundaries of the upper- and lower- claddings both of which are ∼50 μm thick. It can be seen that light is mainly confined in the core of the waveguide. The light from the waveguide end face was imaged directly onto a CCD camera chip with the aid of a × 20 microscope objective lens, NA = 0.47. Neutral density filters were used to avoid overexposing the camera.

Fig. 3.
Fig. 3.

Loss of waveguide bends for three widths w = 50 μm, 75 μm and 100 μm as a function of bend radius after normalization by subtracting the loss of similar straight waveguides of lstr = 65.5 mm to remove coupling loss and partially remove propagation loss.

Fig. 4.
Fig. 4.

Propagation of the optical field around two waveguide segments of a bend for a launch field consisting of fully filled waveguide modes for w = 50 μm, R = 13 mm (a) in the first segment (first 10°). (b) in the 30° to 40° degree segment.

Fig.  5.
Fig. 5.

Power as a function of angle propagated by cascading the results from nine 10° segments and its derivative for w = 75 μm, R = 5 mm.

Fig. 6.
Fig. 6.

BPM modeled loss (TransA + TransB + RL) for launched fully filled 50/125 μm MM fiber modes and for fully filled waveguide modes compared to normalized experimental loss as a function of bend radius for 50 μm × 50 μm waveguides. The experimental normalization removed propagation loss to match the slope of the modeled waveguide mode curve for R > 20 mm.

Fig. 7.
Fig. 7.

Transition, radiation loss from the BPM modelling and propagation loss from both the experiment and BPM modelling for 50 μm × 50 μmm, 75 μm × 50 μm and 100 μmm × 50 μmm waveguides.

Tables (3)

Tables Icon

Table 1. Minimum loss for several waveguide widths

Tables Icon

Table 2. Parameters used in BPM modeling

Tables Icon

Table 3. Curve slopes and propagation loss

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

TL = CouplI + TransA + RL + TransB + CouplO + PL .
PL = ( l in + l out + l bend ) α ( w ) , α ( w ) = α exp ( w ) α BPM ( w ) .
P norm 2 = P norm 1 + ( l in + l out + l bend l str ) α ( w ) .
P bend w R = P in TL .
P norm 2 = RL TransA TransB .

Metrics