Abstract

We present a high-speed and highly scalable silicon optical modulator based on the free carrier plasma dispersion effect. The fast refractive index modulation of the device is due to electric-field-induced carrier depletion in a Silicon-on-Insulator waveguide containing a reverse biased pn junction. To achieve high-speed performance, a travelling-wave design is used to allow co-propagation of electrical and optical signals along the waveguide. We demonstrate high-frequency modulator optical response with 3 dB bandwidth of ∼20 GHz and data transmission up to 30 Gb/s. Such high-speed data transmission capability will enable silicon modulators to be one of the key building blocks for integrated silicon photonic chips for next generation communication networks as well as future high performance computing applications.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
    [CrossRef] [PubMed]
  2. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, H. Hodge, D. Rubin, U. D. Keil, and T. Franck, "High-speed silicon Mach-Zehnder modulator," Opt. Express 13, 3129-3135 (2005).
    [CrossRef] [PubMed]
  3. A. Huang, G. Gunn, G.-L. Li, Y. Liang, S. Mirsaidi, A. Narasimha, and T. Pinguet, "A 10 Gb/s photonic modulator and WDM MUX/DEMUX integrated with electronics in 0.13 μm SOI CMOS," in Technical Digest of 2006 IEEE International Solid-State Circuits Conference, Session 13/ Optical Communication/13.7.
  4. S. J. Koester, G. Dehlinger, J. D. Schaub, J. O. Chu, Q. C. Ouyang, and A. Grill, "Germanium-on-insulator photodetectors," in Technical Digest of 2005 2nd IEEE International Conference on Group IV Photonics, pp. 171-173.
  5. M. Oehme, J. Werner, E. Kasper, M. Jutzi, and M. Berroth, "High bandwidth Ge p-i-n photodetector integrated on Si," Appl. Phys. Lett. 89, 071117-071117-3 (2006).
    [CrossRef]
  6. O. Boyraz and B. Jalali, "Demonstration of a silicon Raman laser," Opt. Express 12, 5269-5273 (2004).
    [CrossRef] [PubMed]
  7. H. Rong,  et al. "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
    [CrossRef] [PubMed]
  8. A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, "Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 12, 4261-4268 (2004).
    [CrossRef] [PubMed]
  9. O. Boyraz and B. Jalali, "Demonstration of 11 dB fiber-to-fiber gain in a silicon Raman amplifier," Electron. Express 1, 429-434 (2004).
    [CrossRef]
  10. Q. Xu, V. R. Almeida, and M. Lipson, "Demonstration of high Raman gain in a submicrometer-size silicon-on-insulator waveguide," Opt. Lett. 30, 35-37 (2005).
    [CrossRef] [PubMed]
  11. R. Jones,  et al. "Net continuous-wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 13, 519-525 (2005).
    [CrossRef] [PubMed]
  12. R. L. Espinola, J. I. Dadap, R. M. OsgoodJr., S. J. McNab, and Y. A. Vlasov, "C-band wavelength conversion in silicon photonic wire waveguides," Opt. Express 13, 4341-4349 (2005).
    [CrossRef] [PubMed]
  13. K. Yamada,  et al. "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photon. Technol. Lett. 18, 1046-1048 (2006).
    [CrossRef]
  14. H. Rong, Y. H. Kuo, A. Liu, M. Paniccia, and O. Cohen, "High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides," Opt. Express 14, 1182-1188 (2006).
    [CrossRef] [PubMed]
  15. A. W. Fang, H. Park, O. Cohen, R. Jones, M. Paniccia, and J. E. Bowers, "Electrically pumped hybrid AlGaInAs-silicon evanescent laser," Opt. Express 14, 9203-9210 (2006).
    [CrossRef] [PubMed]
  16. K. Noguchi, O. Mitomi, H. Miyazawa, "Millimeter-wave Ti:LiNbO3 optical modulators," J. Lightwave Technol. 16, 615-619 (1998).
    [CrossRef]
  17. K. Tsuzuki, T. Ishibashi, T. Ito, S. Oku, Y. Shibata, T. Ito, R. Iga, Y. Kondo, Y. Tohmori, "A 40-Gb/s InGaAlAs-InAlAs MQW n-i-n Mach-Zehnder modulator with a drive voltage of 2.3 V," IEEE Photon. Technol. Lett. 17, 46-48 (2005).
    [CrossRef]
  18. R. A. Soref, P. J. Lorenzo, "All-silicon active and passive guided-wave components for λ=1.3 and 1.6 μm," IEEE J. Quantum Electron. QE-22, 873-879 (1986).
    [CrossRef]
  19. R. A. Soref, B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. QE-23, 123-129 (1987).
    [CrossRef]
  20. R. S. Jacobsen,  et al. "Strained silicon as a new electro-optic material," Nature 441, 199-202 (2006).
    [CrossRef] [PubMed]
  21. Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, J. S. Harris, "Strong quantum-confined Stark effect in germanium quantum-well structures on silicon," Nature 437, 1334-1336 (2005).
    [CrossRef] [PubMed]
  22. C. K. Tang, G. T. Reed, "Highly efficient optical phase modulator in SOI waveguides," Electron. Lett. 31, 451-452 (1995).
    [CrossRef]
  23. F. Y. Gardes, G. T. Reed, N. G. Emerson, C. E. Png, "A sub-micron depletion-type photonic modulator in Silicon on Insulator," Optics Express 13, 8845-8853 (2006).
    [CrossRef]
  24. Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
    [CrossRef] [PubMed]
  25. F. Gan, F. X. Kartner, "High-speed silicon electrooptic modulator design," IEEE Photon. Technol. Lett. 17, 1007-1009 (2005).
    [CrossRef]
  26. A. Alping, X. S. Wu, T. R. Hausken, and L. A. Coldren, "Highly efficient waveguide phase modulator for integrated optoelectronics," Appl. Phys. Lett. 48, 243-245 (1986).
    [CrossRef]
  27. J. G. Mendoza-Alvarez, L. A. Coldren, A. Alping, R. H. Yan, T. Hausken, K. Lee, and K. Pedrotti, "Analysis of depletion edge translation lightwave modulators," J. Lightwave Technol. 6, 793-807 (1988).
    [CrossRef]
  28. R. C. Alferness, "Waveguide electrooptic modulators," IEEE Trans. Microwave Theory Tech. 30, 1121-1137 (1982).
    [CrossRef]
  29. R. G. Walker, "High-speed III-V semiconductor intensity modulators," J. Quantum Electron. 27, 654-667 (1991).
    [CrossRef]
  30. S. L. Chuang, Physics of Optoelectronics Devices. (John Wiley, New York, 1995).
  31. G. T. Reed, A. P. Knights, Silicon Photonics: an introduction (John Wiley, Chichester, 2004).
  32. K. Tsuzuki, K. Sano, N. Kikuchi, N. Kashio, E. Yamada, Y., Shibata, T. Ishibashi, M. Tokumitsu, and H. Yasaka, "0.3 Vpp single-drive push-pull InP Mach-Zehnder modulator module for 43-Gbit/s systems," in Technical Digest of 2006 Optical Fiber Communication Conference and National Fiber Optic Engineers Conference 5-10 March 2006, p.3.
  33. Y. Cui and P. Berini, "Modeling and design of GaAs traveling-wave electrooptic modulators based on capacitively loaded coplanar strips," J. Lightwave Technol. 24, 544-554 (2006).
    [CrossRef]
  34. S. Pae, T. Su, J. P. Denton, G. W. Neudeck, "Multiple layers of silicon-on-insulator islands fabrication by selective epitaxial growth," IEEE Electron Device Lett. 20, 194-196 (1999).
    [CrossRef]

2006

K. Yamada,  et al. "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photon. Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

H. Rong, Y. H. Kuo, A. Liu, M. Paniccia, and O. Cohen, "High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides," Opt. Express 14, 1182-1188 (2006).
[CrossRef] [PubMed]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. Paniccia, and J. E. Bowers, "Electrically pumped hybrid AlGaInAs-silicon evanescent laser," Opt. Express 14, 9203-9210 (2006).
[CrossRef] [PubMed]

R. S. Jacobsen,  et al. "Strained silicon as a new electro-optic material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

F. Y. Gardes, G. T. Reed, N. G. Emerson, C. E. Png, "A sub-micron depletion-type photonic modulator in Silicon on Insulator," Optics Express 13, 8845-8853 (2006).
[CrossRef]

Y. Cui and P. Berini, "Modeling and design of GaAs traveling-wave electrooptic modulators based on capacitively loaded coplanar strips," J. Lightwave Technol. 24, 544-554 (2006).
[CrossRef]

2005

Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

F. Gan, F. X. Kartner, "High-speed silicon electrooptic modulator design," IEEE Photon. Technol. Lett. 17, 1007-1009 (2005).
[CrossRef]

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, J. S. Harris, "Strong quantum-confined Stark effect in germanium quantum-well structures on silicon," Nature 437, 1334-1336 (2005).
[CrossRef] [PubMed]

Q. Xu, V. R. Almeida, and M. Lipson, "Demonstration of high Raman gain in a submicrometer-size silicon-on-insulator waveguide," Opt. Lett. 30, 35-37 (2005).
[CrossRef] [PubMed]

R. Jones,  et al. "Net continuous-wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 13, 519-525 (2005).
[CrossRef] [PubMed]

R. L. Espinola, J. I. Dadap, R. M. OsgoodJr., S. J. McNab, and Y. A. Vlasov, "C-band wavelength conversion in silicon photonic wire waveguides," Opt. Express 13, 4341-4349 (2005).
[CrossRef] [PubMed]

K. Tsuzuki, T. Ishibashi, T. Ito, S. Oku, Y. Shibata, T. Ito, R. Iga, Y. Kondo, Y. Tohmori, "A 40-Gb/s InGaAlAs-InAlAs MQW n-i-n Mach-Zehnder modulator with a drive voltage of 2.3 V," IEEE Photon. Technol. Lett. 17, 46-48 (2005).
[CrossRef]

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, H. Hodge, D. Rubin, U. D. Keil, and T. Franck, "High-speed silicon Mach-Zehnder modulator," Opt. Express 13, 3129-3135 (2005).
[CrossRef] [PubMed]

H. Rong,  et al. "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

2004

A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, "Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 12, 4261-4268 (2004).
[CrossRef] [PubMed]

O. Boyraz and B. Jalali, "Demonstration of 11 dB fiber-to-fiber gain in a silicon Raman amplifier," Electron. Express 1, 429-434 (2004).
[CrossRef]

O. Boyraz and B. Jalali, "Demonstration of a silicon Raman laser," Opt. Express 12, 5269-5273 (2004).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

1999

S. Pae, T. Su, J. P. Denton, G. W. Neudeck, "Multiple layers of silicon-on-insulator islands fabrication by selective epitaxial growth," IEEE Electron Device Lett. 20, 194-196 (1999).
[CrossRef]

1998

1995

C. K. Tang, G. T. Reed, "Highly efficient optical phase modulator in SOI waveguides," Electron. Lett. 31, 451-452 (1995).
[CrossRef]

1991

R. G. Walker, "High-speed III-V semiconductor intensity modulators," J. Quantum Electron. 27, 654-667 (1991).
[CrossRef]

1988

J. G. Mendoza-Alvarez, L. A. Coldren, A. Alping, R. H. Yan, T. Hausken, K. Lee, and K. Pedrotti, "Analysis of depletion edge translation lightwave modulators," J. Lightwave Technol. 6, 793-807 (1988).
[CrossRef]

1987

R. A. Soref, B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. QE-23, 123-129 (1987).
[CrossRef]

1986

R. A. Soref, P. J. Lorenzo, "All-silicon active and passive guided-wave components for λ=1.3 and 1.6 μm," IEEE J. Quantum Electron. QE-22, 873-879 (1986).
[CrossRef]

A. Alping, X. S. Wu, T. R. Hausken, and L. A. Coldren, "Highly efficient waveguide phase modulator for integrated optoelectronics," Appl. Phys. Lett. 48, 243-245 (1986).
[CrossRef]

1982

R. C. Alferness, "Waveguide electrooptic modulators," IEEE Trans. Microwave Theory Tech. 30, 1121-1137 (1982).
[CrossRef]

Alferness, R. C.

R. C. Alferness, "Waveguide electrooptic modulators," IEEE Trans. Microwave Theory Tech. 30, 1121-1137 (1982).
[CrossRef]

Almeida, V. R.

Alping, A.

J. G. Mendoza-Alvarez, L. A. Coldren, A. Alping, R. H. Yan, T. Hausken, K. Lee, and K. Pedrotti, "Analysis of depletion edge translation lightwave modulators," J. Lightwave Technol. 6, 793-807 (1988).
[CrossRef]

A. Alping, X. S. Wu, T. R. Hausken, and L. A. Coldren, "Highly efficient waveguide phase modulator for integrated optoelectronics," Appl. Phys. Lett. 48, 243-245 (1986).
[CrossRef]

Bennett, B. R.

R. A. Soref, B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. QE-23, 123-129 (1987).
[CrossRef]

Berini, P.

Bowers, J. E.

Boyraz, O.

O. Boyraz and B. Jalali, "Demonstration of 11 dB fiber-to-fiber gain in a silicon Raman amplifier," Electron. Express 1, 429-434 (2004).
[CrossRef]

O. Boyraz and B. Jalali, "Demonstration of a silicon Raman laser," Opt. Express 12, 5269-5273 (2004).
[CrossRef] [PubMed]

Cohen, O.

Coldren, L. A.

J. G. Mendoza-Alvarez, L. A. Coldren, A. Alping, R. H. Yan, T. Hausken, K. Lee, and K. Pedrotti, "Analysis of depletion edge translation lightwave modulators," J. Lightwave Technol. 6, 793-807 (1988).
[CrossRef]

A. Alping, X. S. Wu, T. R. Hausken, and L. A. Coldren, "Highly efficient waveguide phase modulator for integrated optoelectronics," Appl. Phys. Lett. 48, 243-245 (1986).
[CrossRef]

Cui, Y.

Dadap, J. I.

Denton, J. P.

S. Pae, T. Su, J. P. Denton, G. W. Neudeck, "Multiple layers of silicon-on-insulator islands fabrication by selective epitaxial growth," IEEE Electron Device Lett. 20, 194-196 (1999).
[CrossRef]

Emerson, N. G.

F. Y. Gardes, G. T. Reed, N. G. Emerson, C. E. Png, "A sub-micron depletion-type photonic modulator in Silicon on Insulator," Optics Express 13, 8845-8853 (2006).
[CrossRef]

Espinola, R. L.

Fang, A. W.

Franck, T.

Gan, F.

F. Gan, F. X. Kartner, "High-speed silicon electrooptic modulator design," IEEE Photon. Technol. Lett. 17, 1007-1009 (2005).
[CrossRef]

Gardes, F. Y.

F. Y. Gardes, G. T. Reed, N. G. Emerson, C. E. Png, "A sub-micron depletion-type photonic modulator in Silicon on Insulator," Optics Express 13, 8845-8853 (2006).
[CrossRef]

Ge, Y.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, J. S. Harris, "Strong quantum-confined Stark effect in germanium quantum-well structures on silicon," Nature 437, 1334-1336 (2005).
[CrossRef] [PubMed]

Hak, D.

Harris, J. S.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, J. S. Harris, "Strong quantum-confined Stark effect in germanium quantum-well structures on silicon," Nature 437, 1334-1336 (2005).
[CrossRef] [PubMed]

Hausken, T.

J. G. Mendoza-Alvarez, L. A. Coldren, A. Alping, R. H. Yan, T. Hausken, K. Lee, and K. Pedrotti, "Analysis of depletion edge translation lightwave modulators," J. Lightwave Technol. 6, 793-807 (1988).
[CrossRef]

Hausken, T. R.

A. Alping, X. S. Wu, T. R. Hausken, and L. A. Coldren, "Highly efficient waveguide phase modulator for integrated optoelectronics," Appl. Phys. Lett. 48, 243-245 (1986).
[CrossRef]

Hodge, H.

Iga, R.

K. Tsuzuki, T. Ishibashi, T. Ito, S. Oku, Y. Shibata, T. Ito, R. Iga, Y. Kondo, Y. Tohmori, "A 40-Gb/s InGaAlAs-InAlAs MQW n-i-n Mach-Zehnder modulator with a drive voltage of 2.3 V," IEEE Photon. Technol. Lett. 17, 46-48 (2005).
[CrossRef]

Ishibashi, T.

K. Tsuzuki, T. Ishibashi, T. Ito, S. Oku, Y. Shibata, T. Ito, R. Iga, Y. Kondo, Y. Tohmori, "A 40-Gb/s InGaAlAs-InAlAs MQW n-i-n Mach-Zehnder modulator with a drive voltage of 2.3 V," IEEE Photon. Technol. Lett. 17, 46-48 (2005).
[CrossRef]

Ito, T.

K. Tsuzuki, T. Ishibashi, T. Ito, S. Oku, Y. Shibata, T. Ito, R. Iga, Y. Kondo, Y. Tohmori, "A 40-Gb/s InGaAlAs-InAlAs MQW n-i-n Mach-Zehnder modulator with a drive voltage of 2.3 V," IEEE Photon. Technol. Lett. 17, 46-48 (2005).
[CrossRef]

K. Tsuzuki, T. Ishibashi, T. Ito, S. Oku, Y. Shibata, T. Ito, R. Iga, Y. Kondo, Y. Tohmori, "A 40-Gb/s InGaAlAs-InAlAs MQW n-i-n Mach-Zehnder modulator with a drive voltage of 2.3 V," IEEE Photon. Technol. Lett. 17, 46-48 (2005).
[CrossRef]

Jacobsen, R. S.

R. S. Jacobsen,  et al. "Strained silicon as a new electro-optic material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

Jalali, B.

O. Boyraz and B. Jalali, "Demonstration of a silicon Raman laser," Opt. Express 12, 5269-5273 (2004).
[CrossRef] [PubMed]

O. Boyraz and B. Jalali, "Demonstration of 11 dB fiber-to-fiber gain in a silicon Raman amplifier," Electron. Express 1, 429-434 (2004).
[CrossRef]

Jones, R.

Kamins, T. I.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, J. S. Harris, "Strong quantum-confined Stark effect in germanium quantum-well structures on silicon," Nature 437, 1334-1336 (2005).
[CrossRef] [PubMed]

Kartner, F. X.

F. Gan, F. X. Kartner, "High-speed silicon electrooptic modulator design," IEEE Photon. Technol. Lett. 17, 1007-1009 (2005).
[CrossRef]

Keil, U. D.

Kondo, Y.

K. Tsuzuki, T. Ishibashi, T. Ito, S. Oku, Y. Shibata, T. Ito, R. Iga, Y. Kondo, Y. Tohmori, "A 40-Gb/s InGaAlAs-InAlAs MQW n-i-n Mach-Zehnder modulator with a drive voltage of 2.3 V," IEEE Photon. Technol. Lett. 17, 46-48 (2005).
[CrossRef]

Kuo, Y. H.

Kuo, Y.-H.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, J. S. Harris, "Strong quantum-confined Stark effect in germanium quantum-well structures on silicon," Nature 437, 1334-1336 (2005).
[CrossRef] [PubMed]

Lee, K.

J. G. Mendoza-Alvarez, L. A. Coldren, A. Alping, R. H. Yan, T. Hausken, K. Lee, and K. Pedrotti, "Analysis of depletion edge translation lightwave modulators," J. Lightwave Technol. 6, 793-807 (1988).
[CrossRef]

Lee, Y. K.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, J. S. Harris, "Strong quantum-confined Stark effect in germanium quantum-well structures on silicon," Nature 437, 1334-1336 (2005).
[CrossRef] [PubMed]

Liao, L.

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, H. Hodge, D. Rubin, U. D. Keil, and T. Franck, "High-speed silicon Mach-Zehnder modulator," Opt. Express 13, 3129-3135 (2005).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Lipson, M.

Liu, A.

Lorenzo, P. J.

R. A. Soref, P. J. Lorenzo, "All-silicon active and passive guided-wave components for λ=1.3 and 1.6 μm," IEEE J. Quantum Electron. QE-22, 873-879 (1986).
[CrossRef]

McNab, S. J.

Mendoza-Alvarez, J. G.

J. G. Mendoza-Alvarez, L. A. Coldren, A. Alping, R. H. Yan, T. Hausken, K. Lee, and K. Pedrotti, "Analysis of depletion edge translation lightwave modulators," J. Lightwave Technol. 6, 793-807 (1988).
[CrossRef]

Miller, D. A. B.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, J. S. Harris, "Strong quantum-confined Stark effect in germanium quantum-well structures on silicon," Nature 437, 1334-1336 (2005).
[CrossRef] [PubMed]

Mitomi, O.

Miyazawa, H.

Morse, M.

Neudeck, G. W.

S. Pae, T. Su, J. P. Denton, G. W. Neudeck, "Multiple layers of silicon-on-insulator islands fabrication by selective epitaxial growth," IEEE Electron Device Lett. 20, 194-196 (1999).
[CrossRef]

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Noguchi, K.

Oku, S.

K. Tsuzuki, T. Ishibashi, T. Ito, S. Oku, Y. Shibata, T. Ito, R. Iga, Y. Kondo, Y. Tohmori, "A 40-Gb/s InGaAlAs-InAlAs MQW n-i-n Mach-Zehnder modulator with a drive voltage of 2.3 V," IEEE Photon. Technol. Lett. 17, 46-48 (2005).
[CrossRef]

Osgood, R. M.

Pae, S.

S. Pae, T. Su, J. P. Denton, G. W. Neudeck, "Multiple layers of silicon-on-insulator islands fabrication by selective epitaxial growth," IEEE Electron Device Lett. 20, 194-196 (1999).
[CrossRef]

Paniccia, M.

Park, H.

Pedrotti, K.

J. G. Mendoza-Alvarez, L. A. Coldren, A. Alping, R. H. Yan, T. Hausken, K. Lee, and K. Pedrotti, "Analysis of depletion edge translation lightwave modulators," J. Lightwave Technol. 6, 793-807 (1988).
[CrossRef]

Png, C. E.

F. Y. Gardes, G. T. Reed, N. G. Emerson, C. E. Png, "A sub-micron depletion-type photonic modulator in Silicon on Insulator," Optics Express 13, 8845-8853 (2006).
[CrossRef]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

Reed, G. T.

F. Y. Gardes, G. T. Reed, N. G. Emerson, C. E. Png, "A sub-micron depletion-type photonic modulator in Silicon on Insulator," Optics Express 13, 8845-8853 (2006).
[CrossRef]

C. K. Tang, G. T. Reed, "Highly efficient optical phase modulator in SOI waveguides," Electron. Lett. 31, 451-452 (1995).
[CrossRef]

Ren, S.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, J. S. Harris, "Strong quantum-confined Stark effect in germanium quantum-well structures on silicon," Nature 437, 1334-1336 (2005).
[CrossRef] [PubMed]

Rong, H.

Roth, J. E.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, J. S. Harris, "Strong quantum-confined Stark effect in germanium quantum-well structures on silicon," Nature 437, 1334-1336 (2005).
[CrossRef] [PubMed]

Rubin, D.

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, H. Hodge, D. Rubin, U. D. Keil, and T. Franck, "High-speed silicon Mach-Zehnder modulator," Opt. Express 13, 3129-3135 (2005).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Samara-Rubio, D.

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, H. Hodge, D. Rubin, U. D. Keil, and T. Franck, "High-speed silicon Mach-Zehnder modulator," Opt. Express 13, 3129-3135 (2005).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

Shibata, Y.

K. Tsuzuki, T. Ishibashi, T. Ito, S. Oku, Y. Shibata, T. Ito, R. Iga, Y. Kondo, Y. Tohmori, "A 40-Gb/s InGaAlAs-InAlAs MQW n-i-n Mach-Zehnder modulator with a drive voltage of 2.3 V," IEEE Photon. Technol. Lett. 17, 46-48 (2005).
[CrossRef]

Soref, R. A.

R. A. Soref, B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. QE-23, 123-129 (1987).
[CrossRef]

R. A. Soref, P. J. Lorenzo, "All-silicon active and passive guided-wave components for λ=1.3 and 1.6 μm," IEEE J. Quantum Electron. QE-22, 873-879 (1986).
[CrossRef]

Su, T.

S. Pae, T. Su, J. P. Denton, G. W. Neudeck, "Multiple layers of silicon-on-insulator islands fabrication by selective epitaxial growth," IEEE Electron Device Lett. 20, 194-196 (1999).
[CrossRef]

Tang, C. K.

C. K. Tang, G. T. Reed, "Highly efficient optical phase modulator in SOI waveguides," Electron. Lett. 31, 451-452 (1995).
[CrossRef]

Tohmori, Y.

K. Tsuzuki, T. Ishibashi, T. Ito, S. Oku, Y. Shibata, T. Ito, R. Iga, Y. Kondo, Y. Tohmori, "A 40-Gb/s InGaAlAs-InAlAs MQW n-i-n Mach-Zehnder modulator with a drive voltage of 2.3 V," IEEE Photon. Technol. Lett. 17, 46-48 (2005).
[CrossRef]

Tsuzuki, K.

K. Tsuzuki, T. Ishibashi, T. Ito, S. Oku, Y. Shibata, T. Ito, R. Iga, Y. Kondo, Y. Tohmori, "A 40-Gb/s InGaAlAs-InAlAs MQW n-i-n Mach-Zehnder modulator with a drive voltage of 2.3 V," IEEE Photon. Technol. Lett. 17, 46-48 (2005).
[CrossRef]

Vlasov, Y. A.

Walker, R. G.

R. G. Walker, "High-speed III-V semiconductor intensity modulators," J. Quantum Electron. 27, 654-667 (1991).
[CrossRef]

Wu, X. S.

A. Alping, X. S. Wu, T. R. Hausken, and L. A. Coldren, "Highly efficient waveguide phase modulator for integrated optoelectronics," Appl. Phys. Lett. 48, 243-245 (1986).
[CrossRef]

Xu, Q.

Yamada, K.

K. Yamada,  et al. "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photon. Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

Yan, R. H.

J. G. Mendoza-Alvarez, L. A. Coldren, A. Alping, R. H. Yan, T. Hausken, K. Lee, and K. Pedrotti, "Analysis of depletion edge translation lightwave modulators," J. Lightwave Technol. 6, 793-807 (1988).
[CrossRef]

Appl. Phys. Lett.

A. Alping, X. S. Wu, T. R. Hausken, and L. A. Coldren, "Highly efficient waveguide phase modulator for integrated optoelectronics," Appl. Phys. Lett. 48, 243-245 (1986).
[CrossRef]

Electron. Express

O. Boyraz and B. Jalali, "Demonstration of 11 dB fiber-to-fiber gain in a silicon Raman amplifier," Electron. Express 1, 429-434 (2004).
[CrossRef]

Electron. Lett.

C. K. Tang, G. T. Reed, "Highly efficient optical phase modulator in SOI waveguides," Electron. Lett. 31, 451-452 (1995).
[CrossRef]

IEEE Electron Device Lett.

S. Pae, T. Su, J. P. Denton, G. W. Neudeck, "Multiple layers of silicon-on-insulator islands fabrication by selective epitaxial growth," IEEE Electron Device Lett. 20, 194-196 (1999).
[CrossRef]

IEEE J. Quantum Electron.

R. A. Soref, P. J. Lorenzo, "All-silicon active and passive guided-wave components for λ=1.3 and 1.6 μm," IEEE J. Quantum Electron. QE-22, 873-879 (1986).
[CrossRef]

R. A. Soref, B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. QE-23, 123-129 (1987).
[CrossRef]

IEEE Photon. Technol. Lett.

K. Yamada,  et al. "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photon. Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

F. Gan, F. X. Kartner, "High-speed silicon electrooptic modulator design," IEEE Photon. Technol. Lett. 17, 1007-1009 (2005).
[CrossRef]

K. Tsuzuki, T. Ishibashi, T. Ito, S. Oku, Y. Shibata, T. Ito, R. Iga, Y. Kondo, Y. Tohmori, "A 40-Gb/s InGaAlAs-InAlAs MQW n-i-n Mach-Zehnder modulator with a drive voltage of 2.3 V," IEEE Photon. Technol. Lett. 17, 46-48 (2005).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

R. C. Alferness, "Waveguide electrooptic modulators," IEEE Trans. Microwave Theory Tech. 30, 1121-1137 (1982).
[CrossRef]

J. Lightwave Technol.

J. Quantum Electron.

R. G. Walker, "High-speed III-V semiconductor intensity modulators," J. Quantum Electron. 27, 654-667 (1991).
[CrossRef]

Nature

Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

R. S. Jacobsen,  et al. "Strained silicon as a new electro-optic material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, J. S. Harris, "Strong quantum-confined Stark effect in germanium quantum-well structures on silicon," Nature 437, 1334-1336 (2005).
[CrossRef] [PubMed]

H. Rong,  et al. "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Optics Express

F. Y. Gardes, G. T. Reed, N. G. Emerson, C. E. Png, "A sub-micron depletion-type photonic modulator in Silicon on Insulator," Optics Express 13, 8845-8853 (2006).
[CrossRef]

Other

S. L. Chuang, Physics of Optoelectronics Devices. (John Wiley, New York, 1995).

G. T. Reed, A. P. Knights, Silicon Photonics: an introduction (John Wiley, Chichester, 2004).

K. Tsuzuki, K. Sano, N. Kikuchi, N. Kashio, E. Yamada, Y., Shibata, T. Ishibashi, M. Tokumitsu, and H. Yasaka, "0.3 Vpp single-drive push-pull InP Mach-Zehnder modulator module for 43-Gbit/s systems," in Technical Digest of 2006 Optical Fiber Communication Conference and National Fiber Optic Engineers Conference 5-10 March 2006, p.3.

A. Huang, G. Gunn, G.-L. Li, Y. Liang, S. Mirsaidi, A. Narasimha, and T. Pinguet, "A 10 Gb/s photonic modulator and WDM MUX/DEMUX integrated with electronics in 0.13 μm SOI CMOS," in Technical Digest of 2006 IEEE International Solid-State Circuits Conference, Session 13/ Optical Communication/13.7.

S. J. Koester, G. Dehlinger, J. D. Schaub, J. O. Chu, Q. C. Ouyang, and A. Grill, "Germanium-on-insulator photodetectors," in Technical Digest of 2005 2nd IEEE International Conference on Group IV Photonics, pp. 171-173.

M. Oehme, J. Werner, E. Kasper, M. Jutzi, and M. Berroth, "High bandwidth Ge p-i-n photodetector integrated on Si," Appl. Phys. Lett. 89, 071117-071117-3 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(A) Top view of an asymmetric Mach-Zehnder interferometer silicon modulator containing two pn junction based phase shifters. The waveguide splitter is an 1x2 multi-mode interference (MMI) coupler. The RF signal is coupled to the travelling wave electrode from the optical input side and termination load is added to the output side. (B) Cross-sectional view of a pn junction waveguide phase shifter in Silicon-On-Insulator. The coplanar waveguide electrode has a signal metal width of ∼6 μm and a signal-ground metal separation of ∼3 μm. The metal thickness is ∼1.5 μm. The high-frequency characteristic impedance of the travelling wave electrode is ∼20 Ω. (C) Scanning electron microscope (SEM) image of a pn diode phase shifter waveguide.

Fig. 2.
Fig. 2.

(A) The output spectra of a MZI modulator having 3 mm long phase shifters for various voltages applied to one of the arms. The MZI output is normalized to the output of a straight waveguide with the same waveguide length without pn junction and drive voltage. (B) The phase shift of an individual phase shifter vs. the drive voltage for the wavelength round 1550 nm for different phase shifter lengths.

Fig. 3.
Fig. 3.

Experimental setup for MZI high speed optical frequency response and data transmission measurements.

Fig. 4.
Fig. 4.

(A) Optical response of a silicon modulator as a function of the RF frequency for a MZI having 1 mm long phase shifter. (B) Optical eye diagram of the MZI modulator having a 1 mm long phase shifter. The bit rate is 30 Gb/s.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

W D = ( 2 ε 0 ε r ( V Bi + V app ) e N A ) 1 2

Metrics