Abstract

We present a high-speed and highly scalable silicon optical modulator based on the free carrier plasma dispersion effect. The fast refractive index modulation of the device is due to electric-field-induced carrier depletion in a Silicon-on-Insulator waveguide containing a reverse biased pn junction. To achieve high-speed performance, a travelling-wave design is used to allow co-propagation of electrical and optical signals along the waveguide. We demonstrate high-frequency modulator optical response with 3 dB bandwidth of ∼20 GHz and data transmission up to 30 Gb/s. Such high-speed data transmission capability will enable silicon modulators to be one of the key building blocks for integrated silicon photonic chips for next generation communication networks as well as future high performance computing applications.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427,615–618 (2004).
    [CrossRef] [PubMed]
  2. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, H. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High- speed silicon Mach-Zehnder modulator,” Opt. Express 13,3129–3135 (2005).
    [CrossRef] [PubMed]
  3. A. Huang, G. Gunn, G.-L. Li, Y. Liang, S. Mirsaidi, A. Narasimha, and T. Pinguet, “A 10 Gb/s photonic modulator and WDM MUX/DEMUX integrated with electronics in 0.13 μm SOI CMOS,” in Technical Digest of 2006 IEEE International Solid-State Circuits Conference, Session 13/ Optical Communication/13.7.
  4. S. J. Koester, G. Dehlinger, J. D. Schaub, J. O. Chu, Q. C. Ouyang, and A. Grill, “Germanium-on- insulator photodetectors,” in Technical Digest of 2005 2nd IEEE International Conference on Group IV Photonics, pp.171–173.
  5. M. Oehme, J. Werner, E. Kasper, M. Jutzi, and M. Berroth, “High bandwidth Ge p-i-n photodetector integrated on Si,” Appl. Phys. Lett. 89,071117–071117-3 (2006).
    [CrossRef]
  6. O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12,5269–5273 (2004).
    [CrossRef] [PubMed]
  7. H. Rong, et. al. “A continuous-wave Raman silicon laser,” Nature 433,725–728 (2005).
    [CrossRef] [PubMed]
  8. A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, “Net optical gain in a low loss silicon-on- insulator waveguide by stimulated Raman scattering,” Opt. Express 12,4261–4268 (2004).
    [CrossRef] [PubMed]
  9. O. Boyraz and B. Jalali, “Demonstration of 11 dB fiber-to-fiber gain in a silicon Raman amplifier,” Electron. Express 1,429–434 (2004).
    [CrossRef]
  10. Q. Xu, V. R. Almeida, and M. Lipson, “Demonstration of high Raman gain in a submicrometer-size silicon-on-insulator waveguide,” Opt. Lett. 30,35–37 (2005).
    [CrossRef] [PubMed]
  11. R. Jones, et. al. “Net continuous-wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 13,519–525 (2005).
    [CrossRef] [PubMed]
  12. R. L. Espinola, J. I. Dadap, R. M. Osgood, Jr., S. J. McNab, and Y. A. Vlasov, “C-band wavelength conversion in silicon photonic wire waveguides,” Opt. Express 13,4341–4349 (2005).
    [CrossRef] [PubMed]
  13. K. Yamada, et. al. “All-optical efficient wavelength conversion using silicon photonic wire waveguide,” IEEE Photon. Technol. Lett. 18,1046–1048 (2006).
    [CrossRef]
  14. H. Rong, Y. H. Kuo, A. Liu, M. Paniccia, and O. Cohen, “High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides,” Opt. Express 14,1182–1188 (2006).
    [CrossRef] [PubMed]
  15. A. W. Fang, H. Park, O. Cohen, R. Jones, M. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGalnAs-silicon evanescent laser,” Opt. Express 14,9203–9210 (2006).
    [CrossRef] [PubMed]
  16. K. Noguchi, O. Mitomi, and H. Miyazawa, “Millimeter-wave Ti:LiNbO3 optical modulators,” J. Lightwave Technol. 16,615–619(1998).
    [CrossRef]
  17. K. Tsuzuki, T. Ishibashi, T. Ito, S. Oku, Y. Shibata, T. Ito, R. Iga, Y. Kondo, and Y. Tohmori, “A 40-Gb/s InGaAlAs-InAlAs MQW n-i-n Mach-Zehnder modulator with a drive voltage of 2.3 V,” IEEE Photon. Technol. Lett. 17,46–48 (2005).
    [CrossRef]
  18. R. A. Soref and P. J. Lorenzo, “All-silicon active and passive guided-wave components for λ=1.3 and 1.6 μm,” IEEE J. Quantum Electron. QE-22,873–879 (1986).
    [CrossRef]
  19. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. QE-23,123–129 (1987).
    [CrossRef]
  20. R. S. Jacobsen, et al. “Strained silicon as a new electro-optic material,” Nature 441,199–202 (2006).
    [CrossRef] [PubMed]
  21. Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437,1334–1336 (2005).
    [CrossRef] [PubMed]
  22. C. K. Tang and G. T. Reed, “Highly efficient optical phase modulator in SOI waveguides,” Electron. Lett. 31,451–452 (1995).
    [CrossRef]
  23. F. Y. Gardes, G. T. Reed, N. G. Emerson, and C. E. Png, “A sub-micron depletion-type photonic modulator in Silicon on Insulator,” Optics Express 13,8845–8853 (2006).
    [CrossRef]
  24. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435,325–327 (2005).
    [CrossRef] [PubMed]
  25. F. Gan and F. X. Kartner, “High-speed silicon electrooptic modulator design,” IEEE Photon. Technol. Lett. 17,1007–1009 (2005).
    [CrossRef]
  26. A. Alping, X. S. Wu, T. R. Hausken, and L. A. Coldren, “Highly efficient waveguide phase modulator for integrated optoelectronics,” Appl. Phys. Lett. 48,243–245 (1986).
    [CrossRef]
  27. J. G. Mendoza-Alvarez, L. A. Coldren, A. Alping, R. H. Yan, T. Hausken, K. Lee, and K. Pedrotti, “Analysis of depletion edge translation lightwave modulators,” IEEE J. Lightwave Technol. 6,793–807 (1988).
    [CrossRef]
  28. R. C. Alferness, “Waveguide electrooptic modulators,” IEEE Trans. Microwave Theory Tech. 30,1121–1137 (1982).
    [CrossRef]
  29. R. G. Walker, “High-speed III-V semiconductor intensity modulators,” IEEE J. Quantum Electron. 27,654–667 (1991).
    [CrossRef]
  30. S. L. Chuang, Physics of Optoelectronics Devices. (John Wiley, New York, 1995).
  31. G. T. Reed and A. P. Knights, Silicon Photonics: an introduction (John Wiley, Chichester, 2004).
  32. K. Tsuzuki, K. Sano, N. Kikuchi, N. Kashio, E. Yamada, Y., Shibata, T. Ishibashi, M. Tokumitsu, and H. Yasaka, “0.3 Vpp single-drive push-pull InP Mach-Zehnder modulator module for 43-Gbit/s systems,” in Technical Digest of 2006 Optical Fiber Communication Conference and National Fiber Optic Engineers Conference 5–10 March 2006, p.3.
  33. Y. Cui and P. Berini, “Modeling and design of GaAs traveling-wave electrooptic modulators based on capacitively loaded coplanar strips,” IEEE J. Lightwave Technol. 24,544–554 (2006).
    [CrossRef]
  34. S. Pae, T. Su, J. P. Denton, and G. W. Neudeck, “Multiple layers of silicon-on-insulator islands fabrication by selective epitaxial growth,” IEEE Electron Device Lett. 20,194–196 (1999).
    [CrossRef]

2006 (7)

R. S. Jacobsen, et al. “Strained silicon as a new electro-optic material,” Nature 441,199–202 (2006).
[CrossRef] [PubMed]

F. Y. Gardes, G. T. Reed, N. G. Emerson, and C. E. Png, “A sub-micron depletion-type photonic modulator in Silicon on Insulator,” Optics Express 13,8845–8853 (2006).
[CrossRef]

Y. Cui and P. Berini, “Modeling and design of GaAs traveling-wave electrooptic modulators based on capacitively loaded coplanar strips,” IEEE J. Lightwave Technol. 24,544–554 (2006).
[CrossRef]

M. Oehme, J. Werner, E. Kasper, M. Jutzi, and M. Berroth, “High bandwidth Ge p-i-n photodetector integrated on Si,” Appl. Phys. Lett. 89,071117–071117-3 (2006).
[CrossRef]

K. Yamada, et. al. “All-optical efficient wavelength conversion using silicon photonic wire waveguide,” IEEE Photon. Technol. Lett. 18,1046–1048 (2006).
[CrossRef]

H. Rong, Y. H. Kuo, A. Liu, M. Paniccia, and O. Cohen, “High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides,” Opt. Express 14,1182–1188 (2006).
[CrossRef] [PubMed]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGalnAs-silicon evanescent laser,” Opt. Express 14,9203–9210 (2006).
[CrossRef] [PubMed]

2005 (9)

H. Rong, et. al. “A continuous-wave Raman silicon laser,” Nature 433,725–728 (2005).
[CrossRef] [PubMed]

Q. Xu, V. R. Almeida, and M. Lipson, “Demonstration of high Raman gain in a submicrometer-size silicon-on-insulator waveguide,” Opt. Lett. 30,35–37 (2005).
[CrossRef] [PubMed]

R. Jones, et. al. “Net continuous-wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 13,519–525 (2005).
[CrossRef] [PubMed]

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, H. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High- speed silicon Mach-Zehnder modulator,” Opt. Express 13,3129–3135 (2005).
[CrossRef] [PubMed]

R. L. Espinola, J. I. Dadap, R. M. Osgood, Jr., S. J. McNab, and Y. A. Vlasov, “C-band wavelength conversion in silicon photonic wire waveguides,” Opt. Express 13,4341–4349 (2005).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435,325–327 (2005).
[CrossRef] [PubMed]

F. Gan and F. X. Kartner, “High-speed silicon electrooptic modulator design,” IEEE Photon. Technol. Lett. 17,1007–1009 (2005).
[CrossRef]

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437,1334–1336 (2005).
[CrossRef] [PubMed]

K. Tsuzuki, T. Ishibashi, T. Ito, S. Oku, Y. Shibata, T. Ito, R. Iga, Y. Kondo, and Y. Tohmori, “A 40-Gb/s InGaAlAs-InAlAs MQW n-i-n Mach-Zehnder modulator with a drive voltage of 2.3 V,” IEEE Photon. Technol. Lett. 17,46–48 (2005).
[CrossRef]

2004 (5)

G. T. Reed and A. P. Knights, Silicon Photonics: an introduction (John Wiley, Chichester, 2004).

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427,615–618 (2004).
[CrossRef] [PubMed]

O. Boyraz and B. Jalali, “Demonstration of 11 dB fiber-to-fiber gain in a silicon Raman amplifier,” Electron. Express 1,429–434 (2004).
[CrossRef]

A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, “Net optical gain in a low loss silicon-on- insulator waveguide by stimulated Raman scattering,” Opt. Express 12,4261–4268 (2004).
[CrossRef] [PubMed]

O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12,5269–5273 (2004).
[CrossRef] [PubMed]

1999 (1)

S. Pae, T. Su, J. P. Denton, and G. W. Neudeck, “Multiple layers of silicon-on-insulator islands fabrication by selective epitaxial growth,” IEEE Electron Device Lett. 20,194–196 (1999).
[CrossRef]

1998 (1)

1995 (1)

C. K. Tang and G. T. Reed, “Highly efficient optical phase modulator in SOI waveguides,” Electron. Lett. 31,451–452 (1995).
[CrossRef]

1991 (1)

R. G. Walker, “High-speed III-V semiconductor intensity modulators,” IEEE J. Quantum Electron. 27,654–667 (1991).
[CrossRef]

1988 (1)

J. G. Mendoza-Alvarez, L. A. Coldren, A. Alping, R. H. Yan, T. Hausken, K. Lee, and K. Pedrotti, “Analysis of depletion edge translation lightwave modulators,” IEEE J. Lightwave Technol. 6,793–807 (1988).
[CrossRef]

1987 (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. QE-23,123–129 (1987).
[CrossRef]

1986 (2)

R. A. Soref and P. J. Lorenzo, “All-silicon active and passive guided-wave components for λ=1.3 and 1.6 μm,” IEEE J. Quantum Electron. QE-22,873–879 (1986).
[CrossRef]

A. Alping, X. S. Wu, T. R. Hausken, and L. A. Coldren, “Highly efficient waveguide phase modulator for integrated optoelectronics,” Appl. Phys. Lett. 48,243–245 (1986).
[CrossRef]

1982 (1)

R. C. Alferness, “Waveguide electrooptic modulators,” IEEE Trans. Microwave Theory Tech. 30,1121–1137 (1982).
[CrossRef]

Alferness, R. C.

R. C. Alferness, “Waveguide electrooptic modulators,” IEEE Trans. Microwave Theory Tech. 30,1121–1137 (1982).
[CrossRef]

Almeida, V. R.

Alping, A.

J. G. Mendoza-Alvarez, L. A. Coldren, A. Alping, R. H. Yan, T. Hausken, K. Lee, and K. Pedrotti, “Analysis of depletion edge translation lightwave modulators,” IEEE J. Lightwave Technol. 6,793–807 (1988).
[CrossRef]

A. Alping, X. S. Wu, T. R. Hausken, and L. A. Coldren, “Highly efficient waveguide phase modulator for integrated optoelectronics,” Appl. Phys. Lett. 48,243–245 (1986).
[CrossRef]

Bennett, B. R.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. QE-23,123–129 (1987).
[CrossRef]

Berini, P.

Y. Cui and P. Berini, “Modeling and design of GaAs traveling-wave electrooptic modulators based on capacitively loaded coplanar strips,” IEEE J. Lightwave Technol. 24,544–554 (2006).
[CrossRef]

Berroth, M.

M. Oehme, J. Werner, E. Kasper, M. Jutzi, and M. Berroth, “High bandwidth Ge p-i-n photodetector integrated on Si,” Appl. Phys. Lett. 89,071117–071117-3 (2006).
[CrossRef]

Bowers, J. E.

Boyraz, O.

O. Boyraz and B. Jalali, “Demonstration of 11 dB fiber-to-fiber gain in a silicon Raman amplifier,” Electron. Express 1,429–434 (2004).
[CrossRef]

O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12,5269–5273 (2004).
[CrossRef] [PubMed]

Chu, J. O.

S. J. Koester, G. Dehlinger, J. D. Schaub, J. O. Chu, Q. C. Ouyang, and A. Grill, “Germanium-on- insulator photodetectors,” in Technical Digest of 2005 2nd IEEE International Conference on Group IV Photonics, pp.171–173.

Chuang, S. L.

S. L. Chuang, Physics of Optoelectronics Devices. (John Wiley, New York, 1995).

Cohen, O.

Coldren, L. A.

J. G. Mendoza-Alvarez, L. A. Coldren, A. Alping, R. H. Yan, T. Hausken, K. Lee, and K. Pedrotti, “Analysis of depletion edge translation lightwave modulators,” IEEE J. Lightwave Technol. 6,793–807 (1988).
[CrossRef]

A. Alping, X. S. Wu, T. R. Hausken, and L. A. Coldren, “Highly efficient waveguide phase modulator for integrated optoelectronics,” Appl. Phys. Lett. 48,243–245 (1986).
[CrossRef]

Cui, Y.

Y. Cui and P. Berini, “Modeling and design of GaAs traveling-wave electrooptic modulators based on capacitively loaded coplanar strips,” IEEE J. Lightwave Technol. 24,544–554 (2006).
[CrossRef]

Dadap, J. I.

Dehlinger, G.

S. J. Koester, G. Dehlinger, J. D. Schaub, J. O. Chu, Q. C. Ouyang, and A. Grill, “Germanium-on- insulator photodetectors,” in Technical Digest of 2005 2nd IEEE International Conference on Group IV Photonics, pp.171–173.

Denton, J. P.

S. Pae, T. Su, J. P. Denton, and G. W. Neudeck, “Multiple layers of silicon-on-insulator islands fabrication by selective epitaxial growth,” IEEE Electron Device Lett. 20,194–196 (1999).
[CrossRef]

Emerson, N. G.

F. Y. Gardes, G. T. Reed, N. G. Emerson, and C. E. Png, “A sub-micron depletion-type photonic modulator in Silicon on Insulator,” Optics Express 13,8845–8853 (2006).
[CrossRef]

Espinola, R. L.

Fang, A. W.

Franck, T.

Gan, F.

F. Gan and F. X. Kartner, “High-speed silicon electrooptic modulator design,” IEEE Photon. Technol. Lett. 17,1007–1009 (2005).
[CrossRef]

Gardes, F. Y.

F. Y. Gardes, G. T. Reed, N. G. Emerson, and C. E. Png, “A sub-micron depletion-type photonic modulator in Silicon on Insulator,” Optics Express 13,8845–8853 (2006).
[CrossRef]

Ge, Y.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437,1334–1336 (2005).
[CrossRef] [PubMed]

Grill, A.

S. J. Koester, G. Dehlinger, J. D. Schaub, J. O. Chu, Q. C. Ouyang, and A. Grill, “Germanium-on- insulator photodetectors,” in Technical Digest of 2005 2nd IEEE International Conference on Group IV Photonics, pp.171–173.

Gunn, G.

A. Huang, G. Gunn, G.-L. Li, Y. Liang, S. Mirsaidi, A. Narasimha, and T. Pinguet, “A 10 Gb/s photonic modulator and WDM MUX/DEMUX integrated with electronics in 0.13 μm SOI CMOS,” in Technical Digest of 2006 IEEE International Solid-State Circuits Conference, Session 13/ Optical Communication/13.7.

Hak, D.

Harris, J. S.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437,1334–1336 (2005).
[CrossRef] [PubMed]

Hausken, T.

J. G. Mendoza-Alvarez, L. A. Coldren, A. Alping, R. H. Yan, T. Hausken, K. Lee, and K. Pedrotti, “Analysis of depletion edge translation lightwave modulators,” IEEE J. Lightwave Technol. 6,793–807 (1988).
[CrossRef]

Hausken, T. R.

A. Alping, X. S. Wu, T. R. Hausken, and L. A. Coldren, “Highly efficient waveguide phase modulator for integrated optoelectronics,” Appl. Phys. Lett. 48,243–245 (1986).
[CrossRef]

Hodge, H.

Huang, A.

A. Huang, G. Gunn, G.-L. Li, Y. Liang, S. Mirsaidi, A. Narasimha, and T. Pinguet, “A 10 Gb/s photonic modulator and WDM MUX/DEMUX integrated with electronics in 0.13 μm SOI CMOS,” in Technical Digest of 2006 IEEE International Solid-State Circuits Conference, Session 13/ Optical Communication/13.7.

Iga, R.

K. Tsuzuki, T. Ishibashi, T. Ito, S. Oku, Y. Shibata, T. Ito, R. Iga, Y. Kondo, and Y. Tohmori, “A 40-Gb/s InGaAlAs-InAlAs MQW n-i-n Mach-Zehnder modulator with a drive voltage of 2.3 V,” IEEE Photon. Technol. Lett. 17,46–48 (2005).
[CrossRef]

Ishibashi, T.

K. Tsuzuki, T. Ishibashi, T. Ito, S. Oku, Y. Shibata, T. Ito, R. Iga, Y. Kondo, and Y. Tohmori, “A 40-Gb/s InGaAlAs-InAlAs MQW n-i-n Mach-Zehnder modulator with a drive voltage of 2.3 V,” IEEE Photon. Technol. Lett. 17,46–48 (2005).
[CrossRef]

K. Tsuzuki, K. Sano, N. Kikuchi, N. Kashio, E. Yamada, Y., Shibata, T. Ishibashi, M. Tokumitsu, and H. Yasaka, “0.3 Vpp single-drive push-pull InP Mach-Zehnder modulator module for 43-Gbit/s systems,” in Technical Digest of 2006 Optical Fiber Communication Conference and National Fiber Optic Engineers Conference 5–10 March 2006, p.3.

Ito, T.

K. Tsuzuki, T. Ishibashi, T. Ito, S. Oku, Y. Shibata, T. Ito, R. Iga, Y. Kondo, and Y. Tohmori, “A 40-Gb/s InGaAlAs-InAlAs MQW n-i-n Mach-Zehnder modulator with a drive voltage of 2.3 V,” IEEE Photon. Technol. Lett. 17,46–48 (2005).
[CrossRef]

K. Tsuzuki, T. Ishibashi, T. Ito, S. Oku, Y. Shibata, T. Ito, R. Iga, Y. Kondo, and Y. Tohmori, “A 40-Gb/s InGaAlAs-InAlAs MQW n-i-n Mach-Zehnder modulator with a drive voltage of 2.3 V,” IEEE Photon. Technol. Lett. 17,46–48 (2005).
[CrossRef]

Jacobsen, R. S.

R. S. Jacobsen, et al. “Strained silicon as a new electro-optic material,” Nature 441,199–202 (2006).
[CrossRef] [PubMed]

Jalali, B.

O. Boyraz and B. Jalali, “Demonstration of 11 dB fiber-to-fiber gain in a silicon Raman amplifier,” Electron. Express 1,429–434 (2004).
[CrossRef]

O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12,5269–5273 (2004).
[CrossRef] [PubMed]

Jones, R.

Jutzi, M.

M. Oehme, J. Werner, E. Kasper, M. Jutzi, and M. Berroth, “High bandwidth Ge p-i-n photodetector integrated on Si,” Appl. Phys. Lett. 89,071117–071117-3 (2006).
[CrossRef]

Kamins, T. I.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437,1334–1336 (2005).
[CrossRef] [PubMed]

Kartner, F. X.

F. Gan and F. X. Kartner, “High-speed silicon electrooptic modulator design,” IEEE Photon. Technol. Lett. 17,1007–1009 (2005).
[CrossRef]

Kashio, N.

K. Tsuzuki, K. Sano, N. Kikuchi, N. Kashio, E. Yamada, Y., Shibata, T. Ishibashi, M. Tokumitsu, and H. Yasaka, “0.3 Vpp single-drive push-pull InP Mach-Zehnder modulator module for 43-Gbit/s systems,” in Technical Digest of 2006 Optical Fiber Communication Conference and National Fiber Optic Engineers Conference 5–10 March 2006, p.3.

Kasper, E.

M. Oehme, J. Werner, E. Kasper, M. Jutzi, and M. Berroth, “High bandwidth Ge p-i-n photodetector integrated on Si,” Appl. Phys. Lett. 89,071117–071117-3 (2006).
[CrossRef]

Keil, U. D.

Kikuchi, N.

K. Tsuzuki, K. Sano, N. Kikuchi, N. Kashio, E. Yamada, Y., Shibata, T. Ishibashi, M. Tokumitsu, and H. Yasaka, “0.3 Vpp single-drive push-pull InP Mach-Zehnder modulator module for 43-Gbit/s systems,” in Technical Digest of 2006 Optical Fiber Communication Conference and National Fiber Optic Engineers Conference 5–10 March 2006, p.3.

Knights, A. P.

G. T. Reed and A. P. Knights, Silicon Photonics: an introduction (John Wiley, Chichester, 2004).

Koester, S. J.

S. J. Koester, G. Dehlinger, J. D. Schaub, J. O. Chu, Q. C. Ouyang, and A. Grill, “Germanium-on- insulator photodetectors,” in Technical Digest of 2005 2nd IEEE International Conference on Group IV Photonics, pp.171–173.

Kondo, Y.

K. Tsuzuki, T. Ishibashi, T. Ito, S. Oku, Y. Shibata, T. Ito, R. Iga, Y. Kondo, and Y. Tohmori, “A 40-Gb/s InGaAlAs-InAlAs MQW n-i-n Mach-Zehnder modulator with a drive voltage of 2.3 V,” IEEE Photon. Technol. Lett. 17,46–48 (2005).
[CrossRef]

Kuo, Y. H.

Kuo, Y.-H.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437,1334–1336 (2005).
[CrossRef] [PubMed]

Lee, K.

J. G. Mendoza-Alvarez, L. A. Coldren, A. Alping, R. H. Yan, T. Hausken, K. Lee, and K. Pedrotti, “Analysis of depletion edge translation lightwave modulators,” IEEE J. Lightwave Technol. 6,793–807 (1988).
[CrossRef]

Lee, Y. K.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437,1334–1336 (2005).
[CrossRef] [PubMed]

Li, G.-L.

A. Huang, G. Gunn, G.-L. Li, Y. Liang, S. Mirsaidi, A. Narasimha, and T. Pinguet, “A 10 Gb/s photonic modulator and WDM MUX/DEMUX integrated with electronics in 0.13 μm SOI CMOS,” in Technical Digest of 2006 IEEE International Solid-State Circuits Conference, Session 13/ Optical Communication/13.7.

Liang, Y.

A. Huang, G. Gunn, G.-L. Li, Y. Liang, S. Mirsaidi, A. Narasimha, and T. Pinguet, “A 10 Gb/s photonic modulator and WDM MUX/DEMUX integrated with electronics in 0.13 μm SOI CMOS,” in Technical Digest of 2006 IEEE International Solid-State Circuits Conference, Session 13/ Optical Communication/13.7.

Liao, L.

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, H. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High- speed silicon Mach-Zehnder modulator,” Opt. Express 13,3129–3135 (2005).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427,615–618 (2004).
[CrossRef] [PubMed]

Lipson, M.

Liu, A.

Lorenzo, P. J.

R. A. Soref and P. J. Lorenzo, “All-silicon active and passive guided-wave components for λ=1.3 and 1.6 μm,” IEEE J. Quantum Electron. QE-22,873–879 (1986).
[CrossRef]

McNab, Jr., S. J.

Mendoza-Alvarez, J. G.

J. G. Mendoza-Alvarez, L. A. Coldren, A. Alping, R. H. Yan, T. Hausken, K. Lee, and K. Pedrotti, “Analysis of depletion edge translation lightwave modulators,” IEEE J. Lightwave Technol. 6,793–807 (1988).
[CrossRef]

Miller, D. A. B.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437,1334–1336 (2005).
[CrossRef] [PubMed]

Mirsaidi, S.

A. Huang, G. Gunn, G.-L. Li, Y. Liang, S. Mirsaidi, A. Narasimha, and T. Pinguet, “A 10 Gb/s photonic modulator and WDM MUX/DEMUX integrated with electronics in 0.13 μm SOI CMOS,” in Technical Digest of 2006 IEEE International Solid-State Circuits Conference, Session 13/ Optical Communication/13.7.

Mitomi, O.

Miyazawa, H.

Morse, M.

Narasimha, A.

A. Huang, G. Gunn, G.-L. Li, Y. Liang, S. Mirsaidi, A. Narasimha, and T. Pinguet, “A 10 Gb/s photonic modulator and WDM MUX/DEMUX integrated with electronics in 0.13 μm SOI CMOS,” in Technical Digest of 2006 IEEE International Solid-State Circuits Conference, Session 13/ Optical Communication/13.7.

Neudeck, G. W.

S. Pae, T. Su, J. P. Denton, and G. W. Neudeck, “Multiple layers of silicon-on-insulator islands fabrication by selective epitaxial growth,” IEEE Electron Device Lett. 20,194–196 (1999).
[CrossRef]

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427,615–618 (2004).
[CrossRef] [PubMed]

Noguchi, K.

Oehme, M.

M. Oehme, J. Werner, E. Kasper, M. Jutzi, and M. Berroth, “High bandwidth Ge p-i-n photodetector integrated on Si,” Appl. Phys. Lett. 89,071117–071117-3 (2006).
[CrossRef]

Oku, S.

K. Tsuzuki, T. Ishibashi, T. Ito, S. Oku, Y. Shibata, T. Ito, R. Iga, Y. Kondo, and Y. Tohmori, “A 40-Gb/s InGaAlAs-InAlAs MQW n-i-n Mach-Zehnder modulator with a drive voltage of 2.3 V,” IEEE Photon. Technol. Lett. 17,46–48 (2005).
[CrossRef]

Osgood, R. M.

Ouyang, Q. C.

S. J. Koester, G. Dehlinger, J. D. Schaub, J. O. Chu, Q. C. Ouyang, and A. Grill, “Germanium-on- insulator photodetectors,” in Technical Digest of 2005 2nd IEEE International Conference on Group IV Photonics, pp.171–173.

Pae, S.

S. Pae, T. Su, J. P. Denton, and G. W. Neudeck, “Multiple layers of silicon-on-insulator islands fabrication by selective epitaxial growth,” IEEE Electron Device Lett. 20,194–196 (1999).
[CrossRef]

Paniccia, M.

Park, H.

Pedrotti, K.

J. G. Mendoza-Alvarez, L. A. Coldren, A. Alping, R. H. Yan, T. Hausken, K. Lee, and K. Pedrotti, “Analysis of depletion edge translation lightwave modulators,” IEEE J. Lightwave Technol. 6,793–807 (1988).
[CrossRef]

Pinguet, T.

A. Huang, G. Gunn, G.-L. Li, Y. Liang, S. Mirsaidi, A. Narasimha, and T. Pinguet, “A 10 Gb/s photonic modulator and WDM MUX/DEMUX integrated with electronics in 0.13 μm SOI CMOS,” in Technical Digest of 2006 IEEE International Solid-State Circuits Conference, Session 13/ Optical Communication/13.7.

Png, C. E.

F. Y. Gardes, G. T. Reed, N. G. Emerson, and C. E. Png, “A sub-micron depletion-type photonic modulator in Silicon on Insulator,” Optics Express 13,8845–8853 (2006).
[CrossRef]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435,325–327 (2005).
[CrossRef] [PubMed]

Reed, G. T.

F. Y. Gardes, G. T. Reed, N. G. Emerson, and C. E. Png, “A sub-micron depletion-type photonic modulator in Silicon on Insulator,” Optics Express 13,8845–8853 (2006).
[CrossRef]

G. T. Reed and A. P. Knights, Silicon Photonics: an introduction (John Wiley, Chichester, 2004).

C. K. Tang and G. T. Reed, “Highly efficient optical phase modulator in SOI waveguides,” Electron. Lett. 31,451–452 (1995).
[CrossRef]

Ren, S.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437,1334–1336 (2005).
[CrossRef] [PubMed]

Rong, H.

Roth, J. E.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437,1334–1336 (2005).
[CrossRef] [PubMed]

Rubin, D.

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, H. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High- speed silicon Mach-Zehnder modulator,” Opt. Express 13,3129–3135 (2005).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427,615–618 (2004).
[CrossRef] [PubMed]

Samara-Rubio, D.

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, H. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High- speed silicon Mach-Zehnder modulator,” Opt. Express 13,3129–3135 (2005).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427,615–618 (2004).
[CrossRef] [PubMed]

Sano, K.

K. Tsuzuki, K. Sano, N. Kikuchi, N. Kashio, E. Yamada, Y., Shibata, T. Ishibashi, M. Tokumitsu, and H. Yasaka, “0.3 Vpp single-drive push-pull InP Mach-Zehnder modulator module for 43-Gbit/s systems,” in Technical Digest of 2006 Optical Fiber Communication Conference and National Fiber Optic Engineers Conference 5–10 March 2006, p.3.

Schaub, J. D.

S. J. Koester, G. Dehlinger, J. D. Schaub, J. O. Chu, Q. C. Ouyang, and A. Grill, “Germanium-on- insulator photodetectors,” in Technical Digest of 2005 2nd IEEE International Conference on Group IV Photonics, pp.171–173.

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435,325–327 (2005).
[CrossRef] [PubMed]

Shibata, Y.

K. Tsuzuki, T. Ishibashi, T. Ito, S. Oku, Y. Shibata, T. Ito, R. Iga, Y. Kondo, and Y. Tohmori, “A 40-Gb/s InGaAlAs-InAlAs MQW n-i-n Mach-Zehnder modulator with a drive voltage of 2.3 V,” IEEE Photon. Technol. Lett. 17,46–48 (2005).
[CrossRef]

Shibata, Y.,

K. Tsuzuki, K. Sano, N. Kikuchi, N. Kashio, E. Yamada, Y., Shibata, T. Ishibashi, M. Tokumitsu, and H. Yasaka, “0.3 Vpp single-drive push-pull InP Mach-Zehnder modulator module for 43-Gbit/s systems,” in Technical Digest of 2006 Optical Fiber Communication Conference and National Fiber Optic Engineers Conference 5–10 March 2006, p.3.

Soref, R. A.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. QE-23,123–129 (1987).
[CrossRef]

R. A. Soref and P. J. Lorenzo, “All-silicon active and passive guided-wave components for λ=1.3 and 1.6 μm,” IEEE J. Quantum Electron. QE-22,873–879 (1986).
[CrossRef]

Su, T.

S. Pae, T. Su, J. P. Denton, and G. W. Neudeck, “Multiple layers of silicon-on-insulator islands fabrication by selective epitaxial growth,” IEEE Electron Device Lett. 20,194–196 (1999).
[CrossRef]

Tang, C. K.

C. K. Tang and G. T. Reed, “Highly efficient optical phase modulator in SOI waveguides,” Electron. Lett. 31,451–452 (1995).
[CrossRef]

Tohmori, Y.

K. Tsuzuki, T. Ishibashi, T. Ito, S. Oku, Y. Shibata, T. Ito, R. Iga, Y. Kondo, and Y. Tohmori, “A 40-Gb/s InGaAlAs-InAlAs MQW n-i-n Mach-Zehnder modulator with a drive voltage of 2.3 V,” IEEE Photon. Technol. Lett. 17,46–48 (2005).
[CrossRef]

Tokumitsu, M.

K. Tsuzuki, K. Sano, N. Kikuchi, N. Kashio, E. Yamada, Y., Shibata, T. Ishibashi, M. Tokumitsu, and H. Yasaka, “0.3 Vpp single-drive push-pull InP Mach-Zehnder modulator module for 43-Gbit/s systems,” in Technical Digest of 2006 Optical Fiber Communication Conference and National Fiber Optic Engineers Conference 5–10 March 2006, p.3.

Tsuzuki, K.

K. Tsuzuki, T. Ishibashi, T. Ito, S. Oku, Y. Shibata, T. Ito, R. Iga, Y. Kondo, and Y. Tohmori, “A 40-Gb/s InGaAlAs-InAlAs MQW n-i-n Mach-Zehnder modulator with a drive voltage of 2.3 V,” IEEE Photon. Technol. Lett. 17,46–48 (2005).
[CrossRef]

K. Tsuzuki, K. Sano, N. Kikuchi, N. Kashio, E. Yamada, Y., Shibata, T. Ishibashi, M. Tokumitsu, and H. Yasaka, “0.3 Vpp single-drive push-pull InP Mach-Zehnder modulator module for 43-Gbit/s systems,” in Technical Digest of 2006 Optical Fiber Communication Conference and National Fiber Optic Engineers Conference 5–10 March 2006, p.3.

Vlasov, Y. A.

Walker, R. G.

R. G. Walker, “High-speed III-V semiconductor intensity modulators,” IEEE J. Quantum Electron. 27,654–667 (1991).
[CrossRef]

Werner, J.

M. Oehme, J. Werner, E. Kasper, M. Jutzi, and M. Berroth, “High bandwidth Ge p-i-n photodetector integrated on Si,” Appl. Phys. Lett. 89,071117–071117-3 (2006).
[CrossRef]

Wu, X. S.

A. Alping, X. S. Wu, T. R. Hausken, and L. A. Coldren, “Highly efficient waveguide phase modulator for integrated optoelectronics,” Appl. Phys. Lett. 48,243–245 (1986).
[CrossRef]

Xu, Q.

Yamada, E.

K. Tsuzuki, K. Sano, N. Kikuchi, N. Kashio, E. Yamada, Y., Shibata, T. Ishibashi, M. Tokumitsu, and H. Yasaka, “0.3 Vpp single-drive push-pull InP Mach-Zehnder modulator module for 43-Gbit/s systems,” in Technical Digest of 2006 Optical Fiber Communication Conference and National Fiber Optic Engineers Conference 5–10 March 2006, p.3.

Yamada, K.

K. Yamada, et. al. “All-optical efficient wavelength conversion using silicon photonic wire waveguide,” IEEE Photon. Technol. Lett. 18,1046–1048 (2006).
[CrossRef]

Yan, R. H.

J. G. Mendoza-Alvarez, L. A. Coldren, A. Alping, R. H. Yan, T. Hausken, K. Lee, and K. Pedrotti, “Analysis of depletion edge translation lightwave modulators,” IEEE J. Lightwave Technol. 6,793–807 (1988).
[CrossRef]

Yasaka, H.

K. Tsuzuki, K. Sano, N. Kikuchi, N. Kashio, E. Yamada, Y., Shibata, T. Ishibashi, M. Tokumitsu, and H. Yasaka, “0.3 Vpp single-drive push-pull InP Mach-Zehnder modulator module for 43-Gbit/s systems,” in Technical Digest of 2006 Optical Fiber Communication Conference and National Fiber Optic Engineers Conference 5–10 March 2006, p.3.

Appl. Phys. Lett. (2)

A. Alping, X. S. Wu, T. R. Hausken, and L. A. Coldren, “Highly efficient waveguide phase modulator for integrated optoelectronics,” Appl. Phys. Lett. 48,243–245 (1986).
[CrossRef]

M. Oehme, J. Werner, E. Kasper, M. Jutzi, and M. Berroth, “High bandwidth Ge p-i-n photodetector integrated on Si,” Appl. Phys. Lett. 89,071117–071117-3 (2006).
[CrossRef]

Electron. Express (1)

O. Boyraz and B. Jalali, “Demonstration of 11 dB fiber-to-fiber gain in a silicon Raman amplifier,” Electron. Express 1,429–434 (2004).
[CrossRef]

Electron. Lett. (1)

C. K. Tang and G. T. Reed, “Highly efficient optical phase modulator in SOI waveguides,” Electron. Lett. 31,451–452 (1995).
[CrossRef]

IEEE Electron Device Lett. (1)

S. Pae, T. Su, J. P. Denton, and G. W. Neudeck, “Multiple layers of silicon-on-insulator islands fabrication by selective epitaxial growth,” IEEE Electron Device Lett. 20,194–196 (1999).
[CrossRef]

IEEE J. Lightwave Technol. (2)

J. G. Mendoza-Alvarez, L. A. Coldren, A. Alping, R. H. Yan, T. Hausken, K. Lee, and K. Pedrotti, “Analysis of depletion edge translation lightwave modulators,” IEEE J. Lightwave Technol. 6,793–807 (1988).
[CrossRef]

Y. Cui and P. Berini, “Modeling and design of GaAs traveling-wave electrooptic modulators based on capacitively loaded coplanar strips,” IEEE J. Lightwave Technol. 24,544–554 (2006).
[CrossRef]

IEEE J. Quantum Electron. (3)

R. G. Walker, “High-speed III-V semiconductor intensity modulators,” IEEE J. Quantum Electron. 27,654–667 (1991).
[CrossRef]

R. A. Soref and P. J. Lorenzo, “All-silicon active and passive guided-wave components for λ=1.3 and 1.6 μm,” IEEE J. Quantum Electron. QE-22,873–879 (1986).
[CrossRef]

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. QE-23,123–129 (1987).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

K. Tsuzuki, T. Ishibashi, T. Ito, S. Oku, Y. Shibata, T. Ito, R. Iga, Y. Kondo, and Y. Tohmori, “A 40-Gb/s InGaAlAs-InAlAs MQW n-i-n Mach-Zehnder modulator with a drive voltage of 2.3 V,” IEEE Photon. Technol. Lett. 17,46–48 (2005).
[CrossRef]

F. Gan and F. X. Kartner, “High-speed silicon electrooptic modulator design,” IEEE Photon. Technol. Lett. 17,1007–1009 (2005).
[CrossRef]

K. Yamada, et. al. “All-optical efficient wavelength conversion using silicon photonic wire waveguide,” IEEE Photon. Technol. Lett. 18,1046–1048 (2006).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

R. C. Alferness, “Waveguide electrooptic modulators,” IEEE Trans. Microwave Theory Tech. 30,1121–1137 (1982).
[CrossRef]

in Technical Digest of 2005 2nd IEEE International Conference on Group IV Photonics (1)

S. J. Koester, G. Dehlinger, J. D. Schaub, J. O. Chu, Q. C. Ouyang, and A. Grill, “Germanium-on- insulator photodetectors,” in Technical Digest of 2005 2nd IEEE International Conference on Group IV Photonics, pp.171–173.

J. Lightwave Technol. (1)

Nature (5)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427,615–618 (2004).
[CrossRef] [PubMed]

H. Rong, et. al. “A continuous-wave Raman silicon laser,” Nature 433,725–728 (2005).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435,325–327 (2005).
[CrossRef] [PubMed]

R. S. Jacobsen, et al. “Strained silicon as a new electro-optic material,” Nature 441,199–202 (2006).
[CrossRef] [PubMed]

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437,1334–1336 (2005).
[CrossRef] [PubMed]

Opt. Express (7)

Opt. Lett. (1)

Optics Express (1)

F. Y. Gardes, G. T. Reed, N. G. Emerson, and C. E. Png, “A sub-micron depletion-type photonic modulator in Silicon on Insulator,” Optics Express 13,8845–8853 (2006).
[CrossRef]

Other (4)

S. L. Chuang, Physics of Optoelectronics Devices. (John Wiley, New York, 1995).

G. T. Reed and A. P. Knights, Silicon Photonics: an introduction (John Wiley, Chichester, 2004).

K. Tsuzuki, K. Sano, N. Kikuchi, N. Kashio, E. Yamada, Y., Shibata, T. Ishibashi, M. Tokumitsu, and H. Yasaka, “0.3 Vpp single-drive push-pull InP Mach-Zehnder modulator module for 43-Gbit/s systems,” in Technical Digest of 2006 Optical Fiber Communication Conference and National Fiber Optic Engineers Conference 5–10 March 2006, p.3.

A. Huang, G. Gunn, G.-L. Li, Y. Liang, S. Mirsaidi, A. Narasimha, and T. Pinguet, “A 10 Gb/s photonic modulator and WDM MUX/DEMUX integrated with electronics in 0.13 μm SOI CMOS,” in Technical Digest of 2006 IEEE International Solid-State Circuits Conference, Session 13/ Optical Communication/13.7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(A) Top view of an asymmetric Mach-Zehnder interferometer silicon modulator containing two pn junction based phase shifters. The waveguide splitter is an 1x2 multi-mode interference (MMI) coupler. The RF signal is coupled to the travelling wave electrode from the optical input side and termination load is added to the output side. (B) Cross-sectional view of a pn junction waveguide phase shifter in Silicon-On-Insulator. The coplanar waveguide electrode has a signal metal width of ∼6 μm and a signal-ground metal separation of ∼3 μm. The metal thickness is ∼1.5 μm. The high-frequency characteristic impedance of the travelling wave electrode is ∼20 Ω. (C) Scanning electron microscope (SEM) image of a pn diode phase shifter waveguide.

Fig. 2.
Fig. 2.

(A) The output spectra of a MZI modulator having 3 mm long phase shifters for various voltages applied to one of the arms. The MZI output is normalized to the output of a straight waveguide with the same waveguide length without pn junction and drive voltage. (B) The phase shift of an individual phase shifter vs. the drive voltage for the wavelength round 1550 nm for different phase shifter lengths.

Fig. 3.
Fig. 3.

Experimental setup for MZI high speed optical frequency response and data transmission measurements.

Fig. 4.
Fig. 4.

(A) Optical response of a silicon modulator as a function of the RF frequency for a MZI having 1 mm long phase shifter. (B) Optical eye diagram of the MZI modulator having a 1 mm long phase shifter. The bit rate is 30 Gb/s.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

W D = ( 2 ε 0 ε r ( V Bi + V app ) e N A ) 1 2

Metrics