Abstract

Nanoscale polymer movement is induced by a tightly focused laser beam in an azo-polymer film just at the diffraction limit of light. The deformation pattern that is produced by photoisomerization of the azo dye is strongly dependent on the incident laser polarization and the longitudinal focus position of the laser beam along the optical axis. The anisotropic photo-fluidity of the polymer film and the optical gradient force played important roles in the light induced polymer movement. We also explored the limits of the size of the photo-induced deformation, and we found that the deformation depends on the laser intensity and the exposure time. The smallest deformation size achieved was 200 nm in full width of half maximum; a value which is nearly equal to the size of the diffraction limited laser spot.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Photoreactive Organic Thin Films, Z. Sekkat and W. Knoll ed., (Academic Press, USA, 2002).
  2. K. Koyayashi, C. Egami, and Y. Kawata, “Optical Storage Media with Dye-Doped Minute Sphere on Polymer Films,” Opt. Rev. 10,262–266 (2003).
    [CrossRef]
  3. C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S-H Chang, S. K. Gray, G. P. Wiederrecht, and G. C. Schatz, “Near-Field Photochemical Imaging of Nobel Metal Nanostructures,” Nano Lett. 5,615–619 (2005).
    [CrossRef] [PubMed]
  4. Y. Gilbert, R. Bachelot, A. Vial, G. Lerondel, P. Royer, A. Bouhelier, and G. P. Wiederrecht, “Photoresponsive polymers for topographic simulation of the optical near-field of a nanometer sized gold tip in a highly focused laser beam,” Opt. Express 13,3619–3624 (2005).
    [CrossRef] [PubMed]
  5. P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nature Materials 4,699–703 (2005).
    [CrossRef] [PubMed]
  6. Z. Sekkat and M. Dumont, “Photoassisted Poling of Azo Dye Doped Polymeric Films at Room Temperature,” Appl. Phys. B 54,486–489 (1992).
    [CrossRef]
  7. F. Charra, F. Kajzar, J. M. Nunzi, P. Raimond, and E. Idiart, “Light-induced second-harmonic generation in azo-dye polymers,” Opt. Lett. 18,941–943 (1993).
    [CrossRef] [PubMed]
  8. P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66,136–138 (1995).
    [CrossRef]
  9. D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66,1166–1168 (1995).
    [CrossRef]
  10. Z. Sekkat, D. Yasumatsu, and S. Kawata, “Pure Photoorientation of Azo Dye in Polyurethanes and Quantification of Orientation of Spectrally Overlapping Isomers,” J. Phys. Chem. B 106,12407–12417 (2002).
    [CrossRef]
  11. P. Lefin, C. Fiorini, and J. M. Nunzi, “Anisotropy of the photoinduced translation diffusion of azo-dyes,” Opt. Mater. 9,323–328 (1998).
    [CrossRef]
  12. F. L. Labarthet, J. L. Bruneel, T. Buffeteau, and C. Sourisseau, “Chromophore Orientations upon Irradiation in Gratings Inscribed on Azo-Dye Polymer Films: A Combined AFM and Confocal Raman Microscopic Study,” J. Phys. Chem. B 108,6949–6960 (2004).
    [CrossRef]
  13. A. Natansohn and P. Rochon, “Photoinduced Motions in Azobenzene-Based Polymers,” in Photoreactive Organic Thin Films, Z. Sekkat and W. Knoll, ed. (Academic Press, USA, 2002), Chap. 13, and references therein.
  14. O. N. Oliveira, L. Li, J. Kumar, and S. Tripathy, “Surface-Relief Gratings on Azobenzene-Containing Films,” in Photoreactive Organic Thin Films, Z. Sekkat and W. Knoll, ed. (Academic Press, USA, 2002), Chap. 14 and references therein.
  15. S. Bian, J. M. Williams, D. Y. Kim, L. Lin, S. Balasubramanian, J. Kumar, and S. Tripathy, “Photoinduced surface deformations on azobenzene polymer films,” J. Appl. Phys. 86,4498–4508 (1999).
    [CrossRef]
  16. Y. Gilbert, R. Bachelot, P. Royer, A. Bouhelier, G. P. Wiederrecht, and L Novotny, “Longitudinal anisotropy of he photoinduced molecular migration in azobenzene polymer films,” Opt. Lett. 31,613–615 (2006).
    [CrossRef] [PubMed]
  17. T. Grosjean and D Courjon, “Photopolymers as vectorial sensors of the electric field,” Opt. Express 14,2203–2210 (2006).
    [CrossRef] [PubMed]
  18. Z. Sekkat, J. Wood, W. Knoll, W. Volksen, and R. D. Miller, “Light-induced orientation in a high glass transition temperature polyimide with polar azo dyes in the side chain,” J. Opt. Soc. Am. B 13,1713–1724 (1996).
    [CrossRef]
  19. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11,288–290 (1986).
    [CrossRef] [PubMed]

2006 (2)

2005 (3)

C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S-H Chang, S. K. Gray, G. P. Wiederrecht, and G. C. Schatz, “Near-Field Photochemical Imaging of Nobel Metal Nanostructures,” Nano Lett. 5,615–619 (2005).
[CrossRef] [PubMed]

Y. Gilbert, R. Bachelot, A. Vial, G. Lerondel, P. Royer, A. Bouhelier, and G. P. Wiederrecht, “Photoresponsive polymers for topographic simulation of the optical near-field of a nanometer sized gold tip in a highly focused laser beam,” Opt. Express 13,3619–3624 (2005).
[CrossRef] [PubMed]

P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nature Materials 4,699–703 (2005).
[CrossRef] [PubMed]

2004 (1)

F. L. Labarthet, J. L. Bruneel, T. Buffeteau, and C. Sourisseau, “Chromophore Orientations upon Irradiation in Gratings Inscribed on Azo-Dye Polymer Films: A Combined AFM and Confocal Raman Microscopic Study,” J. Phys. Chem. B 108,6949–6960 (2004).
[CrossRef]

2003 (1)

K. Koyayashi, C. Egami, and Y. Kawata, “Optical Storage Media with Dye-Doped Minute Sphere on Polymer Films,” Opt. Rev. 10,262–266 (2003).
[CrossRef]

2002 (1)

Z. Sekkat, D. Yasumatsu, and S. Kawata, “Pure Photoorientation of Azo Dye in Polyurethanes and Quantification of Orientation of Spectrally Overlapping Isomers,” J. Phys. Chem. B 106,12407–12417 (2002).
[CrossRef]

1999 (1)

S. Bian, J. M. Williams, D. Y. Kim, L. Lin, S. Balasubramanian, J. Kumar, and S. Tripathy, “Photoinduced surface deformations on azobenzene polymer films,” J. Appl. Phys. 86,4498–4508 (1999).
[CrossRef]

1998 (1)

P. Lefin, C. Fiorini, and J. M. Nunzi, “Anisotropy of the photoinduced translation diffusion of azo-dyes,” Opt. Mater. 9,323–328 (1998).
[CrossRef]

1996 (1)

1995 (2)

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66,136–138 (1995).
[CrossRef]

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66,1166–1168 (1995).
[CrossRef]

1993 (1)

1992 (1)

Z. Sekkat and M. Dumont, “Photoassisted Poling of Azo Dye Doped Polymeric Films at Room Temperature,” Appl. Phys. B 54,486–489 (1992).
[CrossRef]

1986 (1)

Ashkin, A.

Bachelot, R.

Balasubramanian, S.

S. Bian, J. M. Williams, D. Y. Kim, L. Lin, S. Balasubramanian, J. Kumar, and S. Tripathy, “Photoinduced surface deformations on azobenzene polymer films,” J. Appl. Phys. 86,4498–4508 (1999).
[CrossRef]

Batalla, E.

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66,136–138 (1995).
[CrossRef]

Bian, S.

S. Bian, J. M. Williams, D. Y. Kim, L. Lin, S. Balasubramanian, J. Kumar, and S. Tripathy, “Photoinduced surface deformations on azobenzene polymer films,” J. Appl. Phys. 86,4498–4508 (1999).
[CrossRef]

Billot, L.

C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S-H Chang, S. K. Gray, G. P. Wiederrecht, and G. C. Schatz, “Near-Field Photochemical Imaging of Nobel Metal Nanostructures,” Nano Lett. 5,615–619 (2005).
[CrossRef] [PubMed]

Bjorkholm, J. E.

Bouhelier, A.

Brehmer, L.

P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nature Materials 4,699–703 (2005).
[CrossRef] [PubMed]

Bruneel, J. L.

F. L. Labarthet, J. L. Bruneel, T. Buffeteau, and C. Sourisseau, “Chromophore Orientations upon Irradiation in Gratings Inscribed on Azo-Dye Polymer Films: A Combined AFM and Confocal Raman Microscopic Study,” J. Phys. Chem. B 108,6949–6960 (2004).
[CrossRef]

Buffeteau, T.

F. L. Labarthet, J. L. Bruneel, T. Buffeteau, and C. Sourisseau, “Chromophore Orientations upon Irradiation in Gratings Inscribed on Azo-Dye Polymer Films: A Combined AFM and Confocal Raman Microscopic Study,” J. Phys. Chem. B 108,6949–6960 (2004).
[CrossRef]

Chang, S-H

C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S-H Chang, S. K. Gray, G. P. Wiederrecht, and G. C. Schatz, “Near-Field Photochemical Imaging of Nobel Metal Nanostructures,” Nano Lett. 5,615–619 (2005).
[CrossRef] [PubMed]

Charra, F.

Chu, S.

Courjon, D

Dumont, M.

Z. Sekkat and M. Dumont, “Photoassisted Poling of Azo Dye Doped Polymeric Films at Room Temperature,” Appl. Phys. B 54,486–489 (1992).
[CrossRef]

Dziedzic, J. M.

Egami, C.

K. Koyayashi, C. Egami, and Y. Kawata, “Optical Storage Media with Dye-Doped Minute Sphere on Polymer Films,” Opt. Rev. 10,262–266 (2003).
[CrossRef]

Fiorini, C.

P. Lefin, C. Fiorini, and J. M. Nunzi, “Anisotropy of the photoinduced translation diffusion of azo-dyes,” Opt. Mater. 9,323–328 (1998).
[CrossRef]

Giersig, M.

P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nature Materials 4,699–703 (2005).
[CrossRef] [PubMed]

Gilbert, Y.

Grand, J.

C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S-H Chang, S. K. Gray, G. P. Wiederrecht, and G. C. Schatz, “Near-Field Photochemical Imaging of Nobel Metal Nanostructures,” Nano Lett. 5,615–619 (2005).
[CrossRef] [PubMed]

Gray, S. K.

C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S-H Chang, S. K. Gray, G. P. Wiederrecht, and G. C. Schatz, “Near-Field Photochemical Imaging of Nobel Metal Nanostructures,” Nano Lett. 5,615–619 (2005).
[CrossRef] [PubMed]

Grosjean, T.

Hubert, C.

C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S-H Chang, S. K. Gray, G. P. Wiederrecht, and G. C. Schatz, “Near-Field Photochemical Imaging of Nobel Metal Nanostructures,” Nano Lett. 5,615–619 (2005).
[CrossRef] [PubMed]

Idiart, E.

Kajzar, F.

Karageorgiev, P.

P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nature Materials 4,699–703 (2005).
[CrossRef] [PubMed]

Kawata, S.

Z. Sekkat, D. Yasumatsu, and S. Kawata, “Pure Photoorientation of Azo Dye in Polyurethanes and Quantification of Orientation of Spectrally Overlapping Isomers,” J. Phys. Chem. B 106,12407–12417 (2002).
[CrossRef]

Kawata, Y.

K. Koyayashi, C. Egami, and Y. Kawata, “Optical Storage Media with Dye-Doped Minute Sphere on Polymer Films,” Opt. Rev. 10,262–266 (2003).
[CrossRef]

Kim, D. Y.

S. Bian, J. M. Williams, D. Y. Kim, L. Lin, S. Balasubramanian, J. Kumar, and S. Tripathy, “Photoinduced surface deformations on azobenzene polymer films,” J. Appl. Phys. 86,4498–4508 (1999).
[CrossRef]

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66,1166–1168 (1995).
[CrossRef]

Knoll, W.

Kostcheev, S.

C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S-H Chang, S. K. Gray, G. P. Wiederrecht, and G. C. Schatz, “Near-Field Photochemical Imaging of Nobel Metal Nanostructures,” Nano Lett. 5,615–619 (2005).
[CrossRef] [PubMed]

Koyayashi, K.

K. Koyayashi, C. Egami, and Y. Kawata, “Optical Storage Media with Dye-Doped Minute Sphere on Polymer Films,” Opt. Rev. 10,262–266 (2003).
[CrossRef]

Kumar, J.

S. Bian, J. M. Williams, D. Y. Kim, L. Lin, S. Balasubramanian, J. Kumar, and S. Tripathy, “Photoinduced surface deformations on azobenzene polymer films,” J. Appl. Phys. 86,4498–4508 (1999).
[CrossRef]

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66,1166–1168 (1995).
[CrossRef]

O. N. Oliveira, L. Li, J. Kumar, and S. Tripathy, “Surface-Relief Gratings on Azobenzene-Containing Films,” in Photoreactive Organic Thin Films, Z. Sekkat and W. Knoll, ed. (Academic Press, USA, 2002), Chap. 14 and references therein.

Labarthet, F. L.

F. L. Labarthet, J. L. Bruneel, T. Buffeteau, and C. Sourisseau, “Chromophore Orientations upon Irradiation in Gratings Inscribed on Azo-Dye Polymer Films: A Combined AFM and Confocal Raman Microscopic Study,” J. Phys. Chem. B 108,6949–6960 (2004).
[CrossRef]

Lefin, P.

P. Lefin, C. Fiorini, and J. M. Nunzi, “Anisotropy of the photoinduced translation diffusion of azo-dyes,” Opt. Mater. 9,323–328 (1998).
[CrossRef]

Lerondel, G.

C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S-H Chang, S. K. Gray, G. P. Wiederrecht, and G. C. Schatz, “Near-Field Photochemical Imaging of Nobel Metal Nanostructures,” Nano Lett. 5,615–619 (2005).
[CrossRef] [PubMed]

Y. Gilbert, R. Bachelot, A. Vial, G. Lerondel, P. Royer, A. Bouhelier, and G. P. Wiederrecht, “Photoresponsive polymers for topographic simulation of the optical near-field of a nanometer sized gold tip in a highly focused laser beam,” Opt. Express 13,3619–3624 (2005).
[CrossRef] [PubMed]

Li, L.

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66,1166–1168 (1995).
[CrossRef]

O. N. Oliveira, L. Li, J. Kumar, and S. Tripathy, “Surface-Relief Gratings on Azobenzene-Containing Films,” in Photoreactive Organic Thin Films, Z. Sekkat and W. Knoll, ed. (Academic Press, USA, 2002), Chap. 14 and references therein.

Lin, L.

S. Bian, J. M. Williams, D. Y. Kim, L. Lin, S. Balasubramanian, J. Kumar, and S. Tripathy, “Photoinduced surface deformations on azobenzene polymer films,” J. Appl. Phys. 86,4498–4508 (1999).
[CrossRef]

Miller, R. D.

Natansohn, A.

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66,136–138 (1995).
[CrossRef]

A. Natansohn and P. Rochon, “Photoinduced Motions in Azobenzene-Based Polymers,” in Photoreactive Organic Thin Films, Z. Sekkat and W. Knoll, ed. (Academic Press, USA, 2002), Chap. 13, and references therein.

Neher, D.

P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nature Materials 4,699–703 (2005).
[CrossRef] [PubMed]

Novotny, L

Nunzi, J. M.

P. Lefin, C. Fiorini, and J. M. Nunzi, “Anisotropy of the photoinduced translation diffusion of azo-dyes,” Opt. Mater. 9,323–328 (1998).
[CrossRef]

F. Charra, F. Kajzar, J. M. Nunzi, P. Raimond, and E. Idiart, “Light-induced second-harmonic generation in azo-dye polymers,” Opt. Lett. 18,941–943 (1993).
[CrossRef] [PubMed]

Oliveira, O. N.

O. N. Oliveira, L. Li, J. Kumar, and S. Tripathy, “Surface-Relief Gratings on Azobenzene-Containing Films,” in Photoreactive Organic Thin Films, Z. Sekkat and W. Knoll, ed. (Academic Press, USA, 2002), Chap. 14 and references therein.

Pietsch, U.

P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nature Materials 4,699–703 (2005).
[CrossRef] [PubMed]

Raimond, P.

Rochon, P.

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66,136–138 (1995).
[CrossRef]

A. Natansohn and P. Rochon, “Photoinduced Motions in Azobenzene-Based Polymers,” in Photoreactive Organic Thin Films, Z. Sekkat and W. Knoll, ed. (Academic Press, USA, 2002), Chap. 13, and references therein.

Royer, P.

Rumyantseva, A.

C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S-H Chang, S. K. Gray, G. P. Wiederrecht, and G. C. Schatz, “Near-Field Photochemical Imaging of Nobel Metal Nanostructures,” Nano Lett. 5,615–619 (2005).
[CrossRef] [PubMed]

Schatz, G. C.

C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S-H Chang, S. K. Gray, G. P. Wiederrecht, and G. C. Schatz, “Near-Field Photochemical Imaging of Nobel Metal Nanostructures,” Nano Lett. 5,615–619 (2005).
[CrossRef] [PubMed]

Schulz, B.

P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nature Materials 4,699–703 (2005).
[CrossRef] [PubMed]

Sekkat, Z.

Z. Sekkat, D. Yasumatsu, and S. Kawata, “Pure Photoorientation of Azo Dye in Polyurethanes and Quantification of Orientation of Spectrally Overlapping Isomers,” J. Phys. Chem. B 106,12407–12417 (2002).
[CrossRef]

Z. Sekkat, J. Wood, W. Knoll, W. Volksen, and R. D. Miller, “Light-induced orientation in a high glass transition temperature polyimide with polar azo dyes in the side chain,” J. Opt. Soc. Am. B 13,1713–1724 (1996).
[CrossRef]

Z. Sekkat and M. Dumont, “Photoassisted Poling of Azo Dye Doped Polymeric Films at Room Temperature,” Appl. Phys. B 54,486–489 (1992).
[CrossRef]

Sourisseau, C.

F. L. Labarthet, J. L. Bruneel, T. Buffeteau, and C. Sourisseau, “Chromophore Orientations upon Irradiation in Gratings Inscribed on Azo-Dye Polymer Films: A Combined AFM and Confocal Raman Microscopic Study,” J. Phys. Chem. B 108,6949–6960 (2004).
[CrossRef]

Stiller, B.

P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nature Materials 4,699–703 (2005).
[CrossRef] [PubMed]

Tripathy, S.

S. Bian, J. M. Williams, D. Y. Kim, L. Lin, S. Balasubramanian, J. Kumar, and S. Tripathy, “Photoinduced surface deformations on azobenzene polymer films,” J. Appl. Phys. 86,4498–4508 (1999).
[CrossRef]

O. N. Oliveira, L. Li, J. Kumar, and S. Tripathy, “Surface-Relief Gratings on Azobenzene-Containing Films,” in Photoreactive Organic Thin Films, Z. Sekkat and W. Knoll, ed. (Academic Press, USA, 2002), Chap. 14 and references therein.

Tripathy, S. K.

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66,1166–1168 (1995).
[CrossRef]

Vial, A.

C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S-H Chang, S. K. Gray, G. P. Wiederrecht, and G. C. Schatz, “Near-Field Photochemical Imaging of Nobel Metal Nanostructures,” Nano Lett. 5,615–619 (2005).
[CrossRef] [PubMed]

Y. Gilbert, R. Bachelot, A. Vial, G. Lerondel, P. Royer, A. Bouhelier, and G. P. Wiederrecht, “Photoresponsive polymers for topographic simulation of the optical near-field of a nanometer sized gold tip in a highly focused laser beam,” Opt. Express 13,3619–3624 (2005).
[CrossRef] [PubMed]

Volksen, W.

Wiederrecht, G. P.

Williams, J. M.

S. Bian, J. M. Williams, D. Y. Kim, L. Lin, S. Balasubramanian, J. Kumar, and S. Tripathy, “Photoinduced surface deformations on azobenzene polymer films,” J. Appl. Phys. 86,4498–4508 (1999).
[CrossRef]

Wood, J.

Yasumatsu, D.

Z. Sekkat, D. Yasumatsu, and S. Kawata, “Pure Photoorientation of Azo Dye in Polyurethanes and Quantification of Orientation of Spectrally Overlapping Isomers,” J. Phys. Chem. B 106,12407–12417 (2002).
[CrossRef]

Appl. Phys. B (1)

Z. Sekkat and M. Dumont, “Photoassisted Poling of Azo Dye Doped Polymeric Films at Room Temperature,” Appl. Phys. B 54,486–489 (1992).
[CrossRef]

Appl. Phys. Lett. (2)

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66,136–138 (1995).
[CrossRef]

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66,1166–1168 (1995).
[CrossRef]

J. Appl. Phys. (1)

S. Bian, J. M. Williams, D. Y. Kim, L. Lin, S. Balasubramanian, J. Kumar, and S. Tripathy, “Photoinduced surface deformations on azobenzene polymer films,” J. Appl. Phys. 86,4498–4508 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (2)

F. L. Labarthet, J. L. Bruneel, T. Buffeteau, and C. Sourisseau, “Chromophore Orientations upon Irradiation in Gratings Inscribed on Azo-Dye Polymer Films: A Combined AFM and Confocal Raman Microscopic Study,” J. Phys. Chem. B 108,6949–6960 (2004).
[CrossRef]

Z. Sekkat, D. Yasumatsu, and S. Kawata, “Pure Photoorientation of Azo Dye in Polyurethanes and Quantification of Orientation of Spectrally Overlapping Isomers,” J. Phys. Chem. B 106,12407–12417 (2002).
[CrossRef]

Nano Lett. (1)

C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S-H Chang, S. K. Gray, G. P. Wiederrecht, and G. C. Schatz, “Near-Field Photochemical Imaging of Nobel Metal Nanostructures,” Nano Lett. 5,615–619 (2005).
[CrossRef] [PubMed]

Nature Materials (1)

P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nature Materials 4,699–703 (2005).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Opt. Mater. (1)

P. Lefin, C. Fiorini, and J. M. Nunzi, “Anisotropy of the photoinduced translation diffusion of azo-dyes,” Opt. Mater. 9,323–328 (1998).
[CrossRef]

Opt. Rev. (1)

K. Koyayashi, C. Egami, and Y. Kawata, “Optical Storage Media with Dye-Doped Minute Sphere on Polymer Films,” Opt. Rev. 10,262–266 (2003).
[CrossRef]

Other (3)

Photoreactive Organic Thin Films, Z. Sekkat and W. Knoll ed., (Academic Press, USA, 2002).

A. Natansohn and P. Rochon, “Photoinduced Motions in Azobenzene-Based Polymers,” in Photoreactive Organic Thin Films, Z. Sekkat and W. Knoll, ed. (Academic Press, USA, 2002), Chap. 13, and references therein.

O. N. Oliveira, L. Li, J. Kumar, and S. Tripathy, “Surface-Relief Gratings on Azobenzene-Containing Films,” in Photoreactive Organic Thin Films, Z. Sekkat and W. Knoll, ed. (Academic Press, USA, 2002), Chap. 14 and references therein.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Chemical structure (inset) and absorption spectrum of the trans-PMA-DR1 thin film. The wavelength of excitation is indicated.

Fig. 2.
Fig. 2.

AFM images of the deformation induced by a tightly focused laser beam polarized (a) horizontally, (b) vertically, and (c) circularly, respectively.

Fig. 3.
Fig. 3.

Calculated distributions of squared electric field components created by a tightly focused linearly polarized laser beam. The each components of electric field of (a) Ex, (b) Ey, and (c) Ez are shown. The polarization direction is X, Z is perpendicular to the film, and Y is perpendicular to both X and Z. The distribution was calculated assuming a refractive index of the surrounding medium equal to 1.5.

Fig. 4.
Fig. 4.

AFM images of the surface deformation induced by changing the Z-position of the focused laser spot. The Z-position was varied from -500 nm to +500 nm with an interval of 100 nm. The values inside each figure represent the Z-position of the focus (unit is nm). The polarization direction is indicated.

Fig. 5.
Fig. 5.

(Left column) Line plots of the surface deformation at (a) Z = +500 nm, (b) Z = 0 nm, and (c) Z = -500 nm. The positions of the each plot correspond to the directions that are between the arrows indicated in Fig. 4. (Right column) Schematics describing the relationship between the Z-position of the focus and the film surface. The arrows oriented laterally and longitudinally in these schematics indicate the direction of the anisotropic photo-fluidity and the optical gradient force, respectively.

Fig. 6.
Fig. 6.

Size dependence of the surface deformation on the irradiation intensity and the exposure time. A typical deformation pattern and the corresponding line pot are shown in the left of the figure and the definitions of the height and FWHM are indicated. Scatters are experimental data, and solid lines are exponential empirical theoretical fits.

Metrics