Abstract

The design of an ultra-wideband waveguide magneto-optical isolator is described. The isolator is based on a Mach-Zehnder interferometer employing nonreciprocal phase shift. The ultra-wideband design is realized by adjusting the wavelength dependence of reciprocal phase difference to compensate for that of nonreciprocal phase difference in the backward direction. We obtained the ultra-wideband design that provides isolation > 35dB from 1.25μm to >1.65μm. This is the proposal of magneto-optical isolator that operates both in 1.31μm band and 1.55μm band.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Auracher and H. H. Witte, "A new design for an integrated optical isolator," Opt. Commun. 13,435-438 (1975).
    [CrossRef]
  2. T. Mizumoto, K. Oochi, T. Harada, and Y. Naito, "Measurement of optical nonreciprocal phase shift in a Bi-substituted Gd3Fe5O12 film and application to waveguide-type optical circulator," J. Lightwave Technol. LT-4,347-352 (1986).
    [CrossRef]
  3. J. Fujita, M. Levy, R. M. Osgood, Jr. L. Wilkens, and H. Dötsch, "Waveguide optical isolator based on Mach-Zehnder interferometer," Appl. Phys. Lett. 76,2158-2160 (2000).
    [CrossRef]
  4. H. Dötsch, N. Bahlmann, O. Zhuromskyy, M. Hammer, L. Wilkens, R. Gerhardt, and P. Hertel, "Application of magneto-optical waveguides in integrated optics: review," J. Opt. Soc. Am. B 22,240-253 (2005).
    [CrossRef]
  5. H. Yokoi, T. Mizumoto, N. Shinjo, N. Futakuchi, and Y. Nakano, "Demonstration of an optical isolator, with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift," Appl. Opt. 39,6158-6164 (2000).
    [CrossRef]
  6. Y. Shoji and T. Mizumoto, "Wideband design of nonreciprocal phase shift magneto-optical isolators using phase adjustment in Mach-Zehnder interferometer," Appl. Opt. 45,7144-7150 (2006).
    [CrossRef] [PubMed]

2006

2005

2000

H. Yokoi, T. Mizumoto, N. Shinjo, N. Futakuchi, and Y. Nakano, "Demonstration of an optical isolator, with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift," Appl. Opt. 39,6158-6164 (2000).
[CrossRef]

J. Fujita, M. Levy, R. M. Osgood, Jr. L. Wilkens, and H. Dötsch, "Waveguide optical isolator based on Mach-Zehnder interferometer," Appl. Phys. Lett. 76,2158-2160 (2000).
[CrossRef]

1986

T. Mizumoto, K. Oochi, T. Harada, and Y. Naito, "Measurement of optical nonreciprocal phase shift in a Bi-substituted Gd3Fe5O12 film and application to waveguide-type optical circulator," J. Lightwave Technol. LT-4,347-352 (1986).
[CrossRef]

1975

F. Auracher and H. H. Witte, "A new design for an integrated optical isolator," Opt. Commun. 13,435-438 (1975).
[CrossRef]

Auracher, F.

F. Auracher and H. H. Witte, "A new design for an integrated optical isolator," Opt. Commun. 13,435-438 (1975).
[CrossRef]

Bahlmann, N.

Dötsch, H.

Fujita, J.

J. Fujita, M. Levy, R. M. Osgood, Jr. L. Wilkens, and H. Dötsch, "Waveguide optical isolator based on Mach-Zehnder interferometer," Appl. Phys. Lett. 76,2158-2160 (2000).
[CrossRef]

Futakuchi, N.

Gerhardt, R.

Hammer, M.

Harada, T.

T. Mizumoto, K. Oochi, T. Harada, and Y. Naito, "Measurement of optical nonreciprocal phase shift in a Bi-substituted Gd3Fe5O12 film and application to waveguide-type optical circulator," J. Lightwave Technol. LT-4,347-352 (1986).
[CrossRef]

Hertel, P.

Levy, M.

J. Fujita, M. Levy, R. M. Osgood, Jr. L. Wilkens, and H. Dötsch, "Waveguide optical isolator based on Mach-Zehnder interferometer," Appl. Phys. Lett. 76,2158-2160 (2000).
[CrossRef]

Mizumoto, T.

Naito, Y.

T. Mizumoto, K. Oochi, T. Harada, and Y. Naito, "Measurement of optical nonreciprocal phase shift in a Bi-substituted Gd3Fe5O12 film and application to waveguide-type optical circulator," J. Lightwave Technol. LT-4,347-352 (1986).
[CrossRef]

Nakano, Y.

Oochi, K.

T. Mizumoto, K. Oochi, T. Harada, and Y. Naito, "Measurement of optical nonreciprocal phase shift in a Bi-substituted Gd3Fe5O12 film and application to waveguide-type optical circulator," J. Lightwave Technol. LT-4,347-352 (1986).
[CrossRef]

Osgood, R. M.

J. Fujita, M. Levy, R. M. Osgood, Jr. L. Wilkens, and H. Dötsch, "Waveguide optical isolator based on Mach-Zehnder interferometer," Appl. Phys. Lett. 76,2158-2160 (2000).
[CrossRef]

Shinjo, N.

Shoji, Y.

Wilkens, L.

Witte, H. H.

F. Auracher and H. H. Witte, "A new design for an integrated optical isolator," Opt. Commun. 13,435-438 (1975).
[CrossRef]

Yokoi, H.

Zhuromskyy, O.

Appl. Opt.

Appl. Phys. Lett.

J. Fujita, M. Levy, R. M. Osgood, Jr. L. Wilkens, and H. Dötsch, "Waveguide optical isolator based on Mach-Zehnder interferometer," Appl. Phys. Lett. 76,2158-2160 (2000).
[CrossRef]

J. Lightwave Technol.

T. Mizumoto, K. Oochi, T. Harada, and Y. Naito, "Measurement of optical nonreciprocal phase shift in a Bi-substituted Gd3Fe5O12 film and application to waveguide-type optical circulator," J. Lightwave Technol. LT-4,347-352 (1986).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

F. Auracher and H. H. Witte, "A new design for an integrated optical isolator," Opt. Commun. 13,435-438 (1975).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic diagram of MZI configuration of nonreciprocal phase shift isolator.

Fig. 2.
Fig. 2.

Tailoring waveguide width and length to adjust a reciprocal phase difference.

Fig. 3.
Fig. 3.

Schematic illustration of wavelength dependence of (a) the nonreciprocal and the reciprocal phase difference and (b) total phase differences for forward and backward propagation in a wideband isolator.

Fig. 4.
Fig. 4.

(a). Wavelength dependence of propagation constant as a parameter of waveguide width, (b) the difference in propagation constant β2 -β1 as a function of wavelength, and (c) variation of reciprocal phase difference θR =β2 L2 -β1 L1 as a function of wavelength with a parameter of the difference in section length.

Fig. 5.
Fig. 5.

Calculated wavelength dependence of reciprocal phase difference as a parameter of (a) waveguide width or (b) optical path length.

Fig. 6.
Fig. 6.

Calculated wavelength dependence of phase differences in the proposed ultra-wideband design.

Fig. 7.
Fig. 7.

Calculated wavelength dependence of forward and backward losses in (a) the conventional design and (b) the ultra-wideband design.

Tables (1)

Tables Icon

Table 1. Optimized design parameters of reciprocal phase shifter a

Metrics