Abstract

We demonstrate four-wave-mixing based wavelength conversion at 1.55 μm in a 2.2 m-long dispersion-shifted lead-silicate holey fiber. For a pump peak power of ~6 W, a conversion efficiency of -6 dB is achieved over a 3-dB bandwidth of ~30 nm. Numerical simulations are used to predict the performance of the fiber for different experimental conditions and to address the potential of dispersion-tailored lead silicate holey fibers in wavelength conversion applications utilizing four-wave-mixing. It is shown that highly efficient and broadband wavelength conversion, covering the entire C-band, can be achieved for such fibers at reasonable optical pump powers and for fiber lengths as short as ~2 m.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. B. Yoo, "Wavelength conversion technologies for WDM network applications," J. Lightwave Technol. 14, 955-966 (1996).
    [CrossRef]
  2. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506 - 519 (2002).
    [CrossRef]
  3. O. Aso, S. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, "Broadband four-wave mixing generation in short optical fibres," Electron. Lett. 36, 709 - 711 (2000).
    [CrossRef]
  4. W. Westlund, J. Hansrd, P. A. Andrekson, and S. N. Knudsen, "Transparent wavelength conversion in fibre with 24nm pump tuning range," Electron. Lett. 38, 85 - 86 (2002).
    [CrossRef]
  5. M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, "Broadband wavelength conversion over 193-nm by HNL-DSF improving higher-order dispersion performance," presented at the European Conference in Optical Communication, Glasgow, United Kingdom, 25-29 Sep.2005, paper Th4.4.4.
  6. T. Tanemura, C. S. Goh, K. Kikuchi, and S. Y. Set, "Highly efficient arbitrary wavelength conversion within entire C-band based on nondegenerate fiber four-wave mixing," IEEE Photon. Technol. Lett. 16, 551 - 553 (2004).
    [CrossRef]
  7. M. Karlsson, "Four -wave mixing in fibers with randomly varying zero-dispersion wavelength, " J. Opt. Soc. Am. B 15, 1573-1575 (2003).
  8. A. Zhang, and M. S. Demokan, "Broadband wavelength converter based on four-wave mixing in a highly nonlinear photonic crystal fiber," Opt. Lett. 30, 2375 - 2377 (2005).
    [CrossRef] [PubMed]
  9. J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, "Four-wave mixing based 10Gbit/s tuneable wavelength conversion using a holey fiber with a high SBS threshold, "IEEE Photon. Technol. Lett. 15, 440 -442 (2003).
    [CrossRef]
  10. R. Jiang, R. Saperstein, N. Alic, M. Nezhad, C. McKinstrie, J. Ford, Y. Fainman, and S. Radic, "375 THz parametric translation of modulated signal from 1550nm to visible band," in Proc. Optical Fiber Communications Conference (OFC 2006), Anaheim, USA, 5-10 Mar.2006, PDP16 (Postdeadline paper).
  11. J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, "Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber, " IEEE Photon. Technol. Lett. 17, 1474-1476 (2005).
    [CrossRef]
  12. J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, "High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-µm pumped supercontinuum generation," J. Lightwave Technol. 24, 183-190 (2006).
    [CrossRef]
  13. H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, "Bismuth glass holey fibers with high nonlinearity," Opt. Express 12, 5082-5087 (2004).
    [CrossRef] [PubMed]
  14. A. Mori, K. Shikano, K. Enbutsu, K. Oikawa, K. Naganuma, M. Kato, and S. Aozasa, "1.5μm band zero-dispersion shifted tellurite photonic crystal fibre with a nonlinear coefficient γ of 675W-1km-1," presented at the European Conference in Optical Communication, Stockholm, Sweden, 5-9 Sept. (2004), paper Th3.3.6.
  15. J. Y. Y. Leong, S. Asimakis, F. Poletti, P. Petropoulos, X. Feng, R. Moore, K. Frampton, T. M. Monro, H. Ebendorff-Heidepriem, W. Loh, and D. J. Richardson, "Towards zero dispersion highly nonlinear lead silicate glass holey fibres at 1550nm by structured-element-stacking, " presented at the European Conference in Optical Communication, Glasgow, United Kingdom, 25-29 Sept. (2005), paper Th4.4.5.
  16. K. Inoue and T. Mukai, "Signal wavelength dependence of gain saturation in a fiber optical parametric amplifier," Opt. Lett. 26, 10 - 12 (2001).
    [CrossRef]
  17. K. Inoue, "Four-wave mixing in an optical fiber in the zero-dispersion wavelength region," J. Lightwave Technol. 10, 1553-1561 (1992).
    [CrossRef]
  18. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. St. J. Russel, "Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber," Opt. Lett. 28, 2225-2227 (2003).
    [CrossRef] [PubMed]

2006

2005

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, "Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber, " IEEE Photon. Technol. Lett. 17, 1474-1476 (2005).
[CrossRef]

A. Zhang, and M. S. Demokan, "Broadband wavelength converter based on four-wave mixing in a highly nonlinear photonic crystal fiber," Opt. Lett. 30, 2375 - 2377 (2005).
[CrossRef] [PubMed]

2004

T. Tanemura, C. S. Goh, K. Kikuchi, and S. Y. Set, "Highly efficient arbitrary wavelength conversion within entire C-band based on nondegenerate fiber four-wave mixing," IEEE Photon. Technol. Lett. 16, 551 - 553 (2004).
[CrossRef]

H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, "Bismuth glass holey fibers with high nonlinearity," Opt. Express 12, 5082-5087 (2004).
[CrossRef] [PubMed]

2003

J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. St. J. Russel, "Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber," Opt. Lett. 28, 2225-2227 (2003).
[CrossRef] [PubMed]

M. Karlsson, "Four -wave mixing in fibers with randomly varying zero-dispersion wavelength, " J. Opt. Soc. Am. B 15, 1573-1575 (2003).

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, "Four-wave mixing based 10Gbit/s tuneable wavelength conversion using a holey fiber with a high SBS threshold, "IEEE Photon. Technol. Lett. 15, 440 -442 (2003).
[CrossRef]

2002

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506 - 519 (2002).
[CrossRef]

W. Westlund, J. Hansrd, P. A. Andrekson, and S. N. Knudsen, "Transparent wavelength conversion in fibre with 24nm pump tuning range," Electron. Lett. 38, 85 - 86 (2002).
[CrossRef]

2001

2000

O. Aso, S. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, "Broadband four-wave mixing generation in short optical fibres," Electron. Lett. 36, 709 - 711 (2000).
[CrossRef]

1996

S. J. B. Yoo, "Wavelength conversion technologies for WDM network applications," J. Lightwave Technol. 14, 955-966 (1996).
[CrossRef]

1992

K. Inoue, "Four-wave mixing in an optical fiber in the zero-dispersion wavelength region," J. Lightwave Technol. 10, 1553-1561 (1992).
[CrossRef]

Andrekson, P. A.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506 - 519 (2002).
[CrossRef]

W. Westlund, J. Hansrd, P. A. Andrekson, and S. N. Knudsen, "Transparent wavelength conversion in fibre with 24nm pump tuning range," Electron. Lett. 38, 85 - 86 (2002).
[CrossRef]

Arai, S.

O. Aso, S. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, "Broadband four-wave mixing generation in short optical fibres," Electron. Lett. 36, 709 - 711 (2000).
[CrossRef]

Asimakis, S.

Aso, O.

O. Aso, S. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, "Broadband four-wave mixing generation in short optical fibres," Electron. Lett. 36, 709 - 711 (2000).
[CrossRef]

Belardi, W.

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, "Four-wave mixing based 10Gbit/s tuneable wavelength conversion using a holey fiber with a high SBS threshold, "IEEE Photon. Technol. Lett. 15, 440 -442 (2003).
[CrossRef]

Coen, S.

Demokan, M. S.

Ebendorff-Heidepriem, H.

Feng, X.

Finazzi, V.

Frampton, K.

Frampton, K. E.

Furusawa, K.

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, "Four-wave mixing based 10Gbit/s tuneable wavelength conversion using a holey fiber with a high SBS threshold, "IEEE Photon. Technol. Lett. 15, 440 -442 (2003).
[CrossRef]

Goh, C. S.

T. Tanemura, C. S. Goh, K. Kikuchi, and S. Y. Set, "Highly efficient arbitrary wavelength conversion within entire C-band based on nondegenerate fiber four-wave mixing," IEEE Photon. Technol. Lett. 16, 551 - 553 (2004).
[CrossRef]

Hansrd, J.

W. Westlund, J. Hansrd, P. A. Andrekson, and S. N. Knudsen, "Transparent wavelength conversion in fibre with 24nm pump tuning range," Electron. Lett. 38, 85 - 86 (2002).
[CrossRef]

Hansryd, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506 - 519 (2002).
[CrossRef]

Harvey, J. D.

Hasegawa, T.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, "Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber, " IEEE Photon. Technol. Lett. 17, 1474-1476 (2005).
[CrossRef]

Hedekvist, P.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506 - 519 (2002).
[CrossRef]

Inoue, K.

K. Inoue and T. Mukai, "Signal wavelength dependence of gain saturation in a fiber optical parametric amplifier," Opt. Lett. 26, 10 - 12 (2001).
[CrossRef]

K. Inoue, "Four-wave mixing in an optical fiber in the zero-dispersion wavelength region," J. Lightwave Technol. 10, 1553-1561 (1992).
[CrossRef]

Karlsson, M.

M. Karlsson, "Four -wave mixing in fibers with randomly varying zero-dispersion wavelength, " J. Opt. Soc. Am. B 15, 1573-1575 (2003).

Kikuchi, K.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, "Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber, " IEEE Photon. Technol. Lett. 17, 1474-1476 (2005).
[CrossRef]

T. Tanemura, C. S. Goh, K. Kikuchi, and S. Y. Set, "Highly efficient arbitrary wavelength conversion within entire C-band based on nondegenerate fiber four-wave mixing," IEEE Photon. Technol. Lett. 16, 551 - 553 (2004).
[CrossRef]

Knight, J. C.

Knudsen, S. N.

W. Westlund, J. Hansrd, P. A. Andrekson, and S. N. Knudsen, "Transparent wavelength conversion in fibre with 24nm pump tuning range," Electron. Lett. 38, 85 - 86 (2002).
[CrossRef]

Koizumi, F.

Lee, J. H.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, "Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber, " IEEE Photon. Technol. Lett. 17, 1474-1476 (2005).
[CrossRef]

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, "Four-wave mixing based 10Gbit/s tuneable wavelength conversion using a holey fiber with a high SBS threshold, "IEEE Photon. Technol. Lett. 15, 440 -442 (2003).
[CrossRef]

Leong, J. Y. Y.

Leonhardt, R.

Li, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506 - 519 (2002).
[CrossRef]

Monro, T. M.

Moore, R. C.

Mukai, T.

Nagashima, T.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, "Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber, " IEEE Photon. Technol. Lett. 17, 1474-1476 (2005).
[CrossRef]

Namiki, S.

O. Aso, S. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, "Broadband four-wave mixing generation in short optical fibres," Electron. Lett. 36, 709 - 711 (2000).
[CrossRef]

Ohara, S.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, "Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber, " IEEE Photon. Technol. Lett. 17, 1474-1476 (2005).
[CrossRef]

Petropoulos, P.

Price, J. H. V.

Richardson, D. J.

Russel, P. St. J.

Set, S. Y.

T. Tanemura, C. S. Goh, K. Kikuchi, and S. Y. Set, "Highly efficient arbitrary wavelength conversion within entire C-band based on nondegenerate fiber four-wave mixing," IEEE Photon. Technol. Lett. 16, 551 - 553 (2004).
[CrossRef]

Sugimoto, N.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, "Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber, " IEEE Photon. Technol. Lett. 17, 1474-1476 (2005).
[CrossRef]

Suzuki, Y.

O. Aso, S. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, "Broadband four-wave mixing generation in short optical fibres," Electron. Lett. 36, 709 - 711 (2000).
[CrossRef]

Tadakuma, M.

O. Aso, S. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, "Broadband four-wave mixing generation in short optical fibres," Electron. Lett. 36, 709 - 711 (2000).
[CrossRef]

Tanemura, T.

T. Tanemura, C. S. Goh, K. Kikuchi, and S. Y. Set, "Highly efficient arbitrary wavelength conversion within entire C-band based on nondegenerate fiber four-wave mixing," IEEE Photon. Technol. Lett. 16, 551 - 553 (2004).
[CrossRef]

Wadsworth, W. J.

Westlund, M.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506 - 519 (2002).
[CrossRef]

Westlund, W.

W. Westlund, J. Hansrd, P. A. Andrekson, and S. N. Knudsen, "Transparent wavelength conversion in fibre with 24nm pump tuning range," Electron. Lett. 38, 85 - 86 (2002).
[CrossRef]

Wong, G. K. L.

Yagi, T.

O. Aso, S. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, "Broadband four-wave mixing generation in short optical fibres," Electron. Lett. 36, 709 - 711 (2000).
[CrossRef]

Yoo, S. J. B.

S. J. B. Yoo, "Wavelength conversion technologies for WDM network applications," J. Lightwave Technol. 14, 955-966 (1996).
[CrossRef]

Yusoff, Z.

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, "Four-wave mixing based 10Gbit/s tuneable wavelength conversion using a holey fiber with a high SBS threshold, "IEEE Photon. Technol. Lett. 15, 440 -442 (2003).
[CrossRef]

Zhang, A.

Electron. Lett.

O. Aso, S. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, "Broadband four-wave mixing generation in short optical fibres," Electron. Lett. 36, 709 - 711 (2000).
[CrossRef]

W. Westlund, J. Hansrd, P. A. Andrekson, and S. N. Knudsen, "Transparent wavelength conversion in fibre with 24nm pump tuning range," Electron. Lett. 38, 85 - 86 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506 - 519 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

T. Tanemura, C. S. Goh, K. Kikuchi, and S. Y. Set, "Highly efficient arbitrary wavelength conversion within entire C-band based on nondegenerate fiber four-wave mixing," IEEE Photon. Technol. Lett. 16, 551 - 553 (2004).
[CrossRef]

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, "Four-wave mixing based 10Gbit/s tuneable wavelength conversion using a holey fiber with a high SBS threshold, "IEEE Photon. Technol. Lett. 15, 440 -442 (2003).
[CrossRef]

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, "Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber, " IEEE Photon. Technol. Lett. 17, 1474-1476 (2005).
[CrossRef]

J. Lightwave Technol.

J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, "High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-µm pumped supercontinuum generation," J. Lightwave Technol. 24, 183-190 (2006).
[CrossRef]

K. Inoue, "Four-wave mixing in an optical fiber in the zero-dispersion wavelength region," J. Lightwave Technol. 10, 1553-1561 (1992).
[CrossRef]

S. J. B. Yoo, "Wavelength conversion technologies for WDM network applications," J. Lightwave Technol. 14, 955-966 (1996).
[CrossRef]

J. Opt. Soc. Am. B

M. Karlsson, "Four -wave mixing in fibers with randomly varying zero-dispersion wavelength, " J. Opt. Soc. Am. B 15, 1573-1575 (2003).

Opt. Express

Opt. Lett.

Other

R. Jiang, R. Saperstein, N. Alic, M. Nezhad, C. McKinstrie, J. Ford, Y. Fainman, and S. Radic, "375 THz parametric translation of modulated signal from 1550nm to visible band," in Proc. Optical Fiber Communications Conference (OFC 2006), Anaheim, USA, 5-10 Mar.2006, PDP16 (Postdeadline paper).

M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, "Broadband wavelength conversion over 193-nm by HNL-DSF improving higher-order dispersion performance," presented at the European Conference in Optical Communication, Glasgow, United Kingdom, 25-29 Sep.2005, paper Th4.4.4.

A. Mori, K. Shikano, K. Enbutsu, K. Oikawa, K. Naganuma, M. Kato, and S. Aozasa, "1.5μm band zero-dispersion shifted tellurite photonic crystal fibre with a nonlinear coefficient γ of 675W-1km-1," presented at the European Conference in Optical Communication, Stockholm, Sweden, 5-9 Sept. (2004), paper Th3.3.6.

J. Y. Y. Leong, S. Asimakis, F. Poletti, P. Petropoulos, X. Feng, R. Moore, K. Frampton, T. M. Monro, H. Ebendorff-Heidepriem, W. Loh, and D. J. Richardson, "Towards zero dispersion highly nonlinear lead silicate glass holey fibres at 1550nm by structured-element-stacking, " presented at the European Conference in Optical Communication, Glasgow, United Kingdom, 25-29 Sept. (2005), paper Th4.4.5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

The experimental set-up for the demonstration of FWM in 2.2m of SEST-HF.

Fig. 2.
Fig. 2.

(a) Typical spectral trace obtained at the output of the SEST-HF; (b) Experimental (symbols) and fitted numerical (solid lines) conversion efficiency curves for a pump power of 6.2 W and two different pump wavelengths (1563.0 and 1559.7 nm).

Fig. 3.
Fig. 3.

Dependence of the conversion efficiency (solid lines) and the 3dB-wavelengh conversion bandwidth (dashed lines) on: (a) the SEST-HF length for a 6.2W pump placed at 1563nm; (b) the pump power for a 2.2m long SEST-HF and a pump wavelength of 1563nm; and (c) the pump wavelength for a 2.2m long SEST-HF and pump powers of 6.2 W (blue and red lines) and 2W (pink and cyan lines). (d) Conversion efficiency curves of the optimized SEST-HF for a pump placed at 1547.5nm and pump powers of 1.5W (dashed line) and 2W (solid line). The experimentally measured values of conversion efficiency and bandwidth are also presented (symbols).The insets depict the microstructrure design and the dispersion profile of this fiber. The following color convention applies to all graphs: red and pink lines – >fabricated 3.2dB/m loss SEST-HF, blue and cyan lines-> 2.0dB/m loss SEST-HF, black line->optimized SEST-HF.

Metrics