Abstract

A novel waveguide for difference frequency generation in the mid-IR spectral region at 3.52 μm is characterized. High mid-IR power of 15 mW and an external conversion efficiency of up to 19 %W -1 have been obtained. An optical beam propagation factor M2=1.18 was determined using the second moment method. A simple 2-f absorption spectra demonstrates the potential of this mid-IR source for high precision trace gas sensing applications.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Fried and D. Richter, "Infrared absorption Spectroscopy," in Analytical Techniques for Atmospheric Measurement, D. Heard, ed. (Blackwell Publishing, 2006), pp.72-146.
    [CrossRef]
  2. D. Richter and P. Weibring, "Ultra-high precision mid-IR spectrometer I: Difference-frequency generation source design," Appl. Phys. B 82, 479 - 486 (2006).
    [CrossRef]
  3. P. Weibring, D. Richter, A. Fried, C. Dyroff, and J. Walega, "Ultra-high precision mid-IR spectrometer II: Spectroscopic performance and characterization," Appl. Phys. B 85, 207 - 218 (2006).
    [CrossRef]
  4. R. Provencal,M. Gupta, T. G. Owano, D. S. Baer, K. N. Ricci, A. O’Keefe, and J. R. Podolske, "Cavity-enhanced quantum-cascade laser-based instrument for carbon monoxide measurements," Appl. Opt. 44, 6712-6717 (2005).
    [CrossRef] [PubMed]
  5. O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, "Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguide," Appl. Phys. Lett. 88, 1101-1103 (2006).
    [CrossRef]
  6. K. Petrov, A. Ryan, T. Patterson, L. Huang, S. Field, and D. Bamford, "Mid-infrared spectroscopic detection of trace gases using guided-wave difference-frequency generation," Appl. Phys. B 67, 357-361 (1998).
    [CrossRef]
  7. O. Tadanaga, Y. Nishida, T. Yanagawa, H. Miyazawa, K. Magari, T. Umeki, K. Yoshino, M. Asobe, and H. Suzuki, "Laser-diode based 3-mW DFG at 3.4-μm from wavelength conversion module using direct-bonded QPM-LN ridge waveguide," Electron. Lett. 42, 988 - 989 (2006).
    [CrossRef]
  8. M. Asobe, O. Tadanaga, T. Yanagawa, H. Ito, and H. Suzuki, "Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters," Appl. Phys. Lett. 78, 3163 - 3165 (2001).
    [CrossRef]

2006 (4)

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, "Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguide," Appl. Phys. Lett. 88, 1101-1103 (2006).
[CrossRef]

O. Tadanaga, Y. Nishida, T. Yanagawa, H. Miyazawa, K. Magari, T. Umeki, K. Yoshino, M. Asobe, and H. Suzuki, "Laser-diode based 3-mW DFG at 3.4-μm from wavelength conversion module using direct-bonded QPM-LN ridge waveguide," Electron. Lett. 42, 988 - 989 (2006).
[CrossRef]

D. Richter and P. Weibring, "Ultra-high precision mid-IR spectrometer I: Difference-frequency generation source design," Appl. Phys. B 82, 479 - 486 (2006).
[CrossRef]

P. Weibring, D. Richter, A. Fried, C. Dyroff, and J. Walega, "Ultra-high precision mid-IR spectrometer II: Spectroscopic performance and characterization," Appl. Phys. B 85, 207 - 218 (2006).
[CrossRef]

2005 (1)

2001 (1)

M. Asobe, O. Tadanaga, T. Yanagawa, H. Ito, and H. Suzuki, "Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters," Appl. Phys. Lett. 78, 3163 - 3165 (2001).
[CrossRef]

1998 (1)

K. Petrov, A. Ryan, T. Patterson, L. Huang, S. Field, and D. Bamford, "Mid-infrared spectroscopic detection of trace gases using guided-wave difference-frequency generation," Appl. Phys. B 67, 357-361 (1998).
[CrossRef]

Asobe, M.

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, "Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguide," Appl. Phys. Lett. 88, 1101-1103 (2006).
[CrossRef]

O. Tadanaga, Y. Nishida, T. Yanagawa, H. Miyazawa, K. Magari, T. Umeki, K. Yoshino, M. Asobe, and H. Suzuki, "Laser-diode based 3-mW DFG at 3.4-μm from wavelength conversion module using direct-bonded QPM-LN ridge waveguide," Electron. Lett. 42, 988 - 989 (2006).
[CrossRef]

M. Asobe, O. Tadanaga, T. Yanagawa, H. Ito, and H. Suzuki, "Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters," Appl. Phys. Lett. 78, 3163 - 3165 (2001).
[CrossRef]

Baer, D. S.

Bamford, D.

K. Petrov, A. Ryan, T. Patterson, L. Huang, S. Field, and D. Bamford, "Mid-infrared spectroscopic detection of trace gases using guided-wave difference-frequency generation," Appl. Phys. B 67, 357-361 (1998).
[CrossRef]

Dyroff, C.

P. Weibring, D. Richter, A. Fried, C. Dyroff, and J. Walega, "Ultra-high precision mid-IR spectrometer II: Spectroscopic performance and characterization," Appl. Phys. B 85, 207 - 218 (2006).
[CrossRef]

Field, S.

K. Petrov, A. Ryan, T. Patterson, L. Huang, S. Field, and D. Bamford, "Mid-infrared spectroscopic detection of trace gases using guided-wave difference-frequency generation," Appl. Phys. B 67, 357-361 (1998).
[CrossRef]

Fried, A.

P. Weibring, D. Richter, A. Fried, C. Dyroff, and J. Walega, "Ultra-high precision mid-IR spectrometer II: Spectroscopic performance and characterization," Appl. Phys. B 85, 207 - 218 (2006).
[CrossRef]

Gupta, M.

Huang, L.

K. Petrov, A. Ryan, T. Patterson, L. Huang, S. Field, and D. Bamford, "Mid-infrared spectroscopic detection of trace gases using guided-wave difference-frequency generation," Appl. Phys. B 67, 357-361 (1998).
[CrossRef]

Ito, H.

M. Asobe, O. Tadanaga, T. Yanagawa, H. Ito, and H. Suzuki, "Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters," Appl. Phys. Lett. 78, 3163 - 3165 (2001).
[CrossRef]

Magari, K.

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, "Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguide," Appl. Phys. Lett. 88, 1101-1103 (2006).
[CrossRef]

O. Tadanaga, Y. Nishida, T. Yanagawa, H. Miyazawa, K. Magari, T. Umeki, K. Yoshino, M. Asobe, and H. Suzuki, "Laser-diode based 3-mW DFG at 3.4-μm from wavelength conversion module using direct-bonded QPM-LN ridge waveguide," Electron. Lett. 42, 988 - 989 (2006).
[CrossRef]

Miyazawa, H.

O. Tadanaga, Y. Nishida, T. Yanagawa, H. Miyazawa, K. Magari, T. Umeki, K. Yoshino, M. Asobe, and H. Suzuki, "Laser-diode based 3-mW DFG at 3.4-μm from wavelength conversion module using direct-bonded QPM-LN ridge waveguide," Electron. Lett. 42, 988 - 989 (2006).
[CrossRef]

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, "Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguide," Appl. Phys. Lett. 88, 1101-1103 (2006).
[CrossRef]

Nishida, Y.

O. Tadanaga, Y. Nishida, T. Yanagawa, H. Miyazawa, K. Magari, T. Umeki, K. Yoshino, M. Asobe, and H. Suzuki, "Laser-diode based 3-mW DFG at 3.4-μm from wavelength conversion module using direct-bonded QPM-LN ridge waveguide," Electron. Lett. 42, 988 - 989 (2006).
[CrossRef]

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, "Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguide," Appl. Phys. Lett. 88, 1101-1103 (2006).
[CrossRef]

O’Keefe, A.

Owano, T. G.

Patterson, T.

K. Petrov, A. Ryan, T. Patterson, L. Huang, S. Field, and D. Bamford, "Mid-infrared spectroscopic detection of trace gases using guided-wave difference-frequency generation," Appl. Phys. B 67, 357-361 (1998).
[CrossRef]

Petrov, K.

K. Petrov, A. Ryan, T. Patterson, L. Huang, S. Field, and D. Bamford, "Mid-infrared spectroscopic detection of trace gases using guided-wave difference-frequency generation," Appl. Phys. B 67, 357-361 (1998).
[CrossRef]

Podolske, J. R.

Provencal, R.

Ricci, K. N.

Richter, D.

P. Weibring, D. Richter, A. Fried, C. Dyroff, and J. Walega, "Ultra-high precision mid-IR spectrometer II: Spectroscopic performance and characterization," Appl. Phys. B 85, 207 - 218 (2006).
[CrossRef]

D. Richter and P. Weibring, "Ultra-high precision mid-IR spectrometer I: Difference-frequency generation source design," Appl. Phys. B 82, 479 - 486 (2006).
[CrossRef]

Ryan, A.

K. Petrov, A. Ryan, T. Patterson, L. Huang, S. Field, and D. Bamford, "Mid-infrared spectroscopic detection of trace gases using guided-wave difference-frequency generation," Appl. Phys. B 67, 357-361 (1998).
[CrossRef]

Suzuki, H.

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, "Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguide," Appl. Phys. Lett. 88, 1101-1103 (2006).
[CrossRef]

O. Tadanaga, Y. Nishida, T. Yanagawa, H. Miyazawa, K. Magari, T. Umeki, K. Yoshino, M. Asobe, and H. Suzuki, "Laser-diode based 3-mW DFG at 3.4-μm from wavelength conversion module using direct-bonded QPM-LN ridge waveguide," Electron. Lett. 42, 988 - 989 (2006).
[CrossRef]

M. Asobe, O. Tadanaga, T. Yanagawa, H. Ito, and H. Suzuki, "Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters," Appl. Phys. Lett. 78, 3163 - 3165 (2001).
[CrossRef]

Tadanaga, O.

O. Tadanaga, Y. Nishida, T. Yanagawa, H. Miyazawa, K. Magari, T. Umeki, K. Yoshino, M. Asobe, and H. Suzuki, "Laser-diode based 3-mW DFG at 3.4-μm from wavelength conversion module using direct-bonded QPM-LN ridge waveguide," Electron. Lett. 42, 988 - 989 (2006).
[CrossRef]

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, "Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguide," Appl. Phys. Lett. 88, 1101-1103 (2006).
[CrossRef]

M. Asobe, O. Tadanaga, T. Yanagawa, H. Ito, and H. Suzuki, "Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters," Appl. Phys. Lett. 78, 3163 - 3165 (2001).
[CrossRef]

Umeki, T.

O. Tadanaga, Y. Nishida, T. Yanagawa, H. Miyazawa, K. Magari, T. Umeki, K. Yoshino, M. Asobe, and H. Suzuki, "Laser-diode based 3-mW DFG at 3.4-μm from wavelength conversion module using direct-bonded QPM-LN ridge waveguide," Electron. Lett. 42, 988 - 989 (2006).
[CrossRef]

Walega, J.

P. Weibring, D. Richter, A. Fried, C. Dyroff, and J. Walega, "Ultra-high precision mid-IR spectrometer II: Spectroscopic performance and characterization," Appl. Phys. B 85, 207 - 218 (2006).
[CrossRef]

Weibring, P.

D. Richter and P. Weibring, "Ultra-high precision mid-IR spectrometer I: Difference-frequency generation source design," Appl. Phys. B 82, 479 - 486 (2006).
[CrossRef]

P. Weibring, D. Richter, A. Fried, C. Dyroff, and J. Walega, "Ultra-high precision mid-IR spectrometer II: Spectroscopic performance and characterization," Appl. Phys. B 85, 207 - 218 (2006).
[CrossRef]

Yanagawa, T.

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, "Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguide," Appl. Phys. Lett. 88, 1101-1103 (2006).
[CrossRef]

O. Tadanaga, Y. Nishida, T. Yanagawa, H. Miyazawa, K. Magari, T. Umeki, K. Yoshino, M. Asobe, and H. Suzuki, "Laser-diode based 3-mW DFG at 3.4-μm from wavelength conversion module using direct-bonded QPM-LN ridge waveguide," Electron. Lett. 42, 988 - 989 (2006).
[CrossRef]

M. Asobe, O. Tadanaga, T. Yanagawa, H. Ito, and H. Suzuki, "Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters," Appl. Phys. Lett. 78, 3163 - 3165 (2001).
[CrossRef]

Yoshino, K.

O. Tadanaga, Y. Nishida, T. Yanagawa, H. Miyazawa, K. Magari, T. Umeki, K. Yoshino, M. Asobe, and H. Suzuki, "Laser-diode based 3-mW DFG at 3.4-μm from wavelength conversion module using direct-bonded QPM-LN ridge waveguide," Electron. Lett. 42, 988 - 989 (2006).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (3)

D. Richter and P. Weibring, "Ultra-high precision mid-IR spectrometer I: Difference-frequency generation source design," Appl. Phys. B 82, 479 - 486 (2006).
[CrossRef]

P. Weibring, D. Richter, A. Fried, C. Dyroff, and J. Walega, "Ultra-high precision mid-IR spectrometer II: Spectroscopic performance and characterization," Appl. Phys. B 85, 207 - 218 (2006).
[CrossRef]

K. Petrov, A. Ryan, T. Patterson, L. Huang, S. Field, and D. Bamford, "Mid-infrared spectroscopic detection of trace gases using guided-wave difference-frequency generation," Appl. Phys. B 67, 357-361 (1998).
[CrossRef]

Appl. Phys. Lett. (2)

M. Asobe, O. Tadanaga, T. Yanagawa, H. Ito, and H. Suzuki, "Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters," Appl. Phys. Lett. 78, 3163 - 3165 (2001).
[CrossRef]

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, "Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguide," Appl. Phys. Lett. 88, 1101-1103 (2006).
[CrossRef]

Electron. Lett. (1)

O. Tadanaga, Y. Nishida, T. Yanagawa, H. Miyazawa, K. Magari, T. Umeki, K. Yoshino, M. Asobe, and H. Suzuki, "Laser-diode based 3-mW DFG at 3.4-μm from wavelength conversion module using direct-bonded QPM-LN ridge waveguide," Electron. Lett. 42, 988 - 989 (2006).
[CrossRef]

Other (1)

A. Fried and D. Richter, "Infrared absorption Spectroscopy," in Analytical Techniques for Atmospheric Measurement, D. Heard, ed. (Blackwell Publishing, 2006), pp.72-146.
[CrossRef]

Supplementary Material (2)

» Media 1: MOV (800 KB)     
» Media 2: MOV (268 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Optical set-up of WG-PPLN based DFG laser source

Fig. 2.
Fig. 2.

Movie showing the idler beam cross section as a function of input fiber translation with respect to the WG-PPLN input facet. The movie was recorded using a 320×256 Sterling-cooled InSb array (30 μm × 30 μm pixel size).[Media 1]

Fig. 3.
Fig. 3.

Idler power and conversion efficiency as a function of signal and pump power product. The applied pump and signal power ranges are marked. The idler power was measured using a calibrated thermopile power meter. All measurements were taken without change of alignment.

Fig. 4.
Fig. 4.

Measured beam radius using the second moment method (ISO11146) and selected beam intensity cross sections measured before, at, and past the beam waist. The data is fitted to the gaussian beam equation to yield a propagation factor M2=1.18.

Fig. 5.
Fig. 5.

Images of the idler beam cross section while translating the collimating lens away from the WG-PPLN output facet. [Media 2]

Fig. 6.
Fig. 6.

2-f signals as a function of time (displayed as acquisition channel). Shown are a CH2O absorption line as well as the spectroscopic background without the reference gas cell in the beam path.

Metrics