Abstract

We present an adaptive interferometer based on the reflection dynamic hologram recorded in photorefractive CdTe:V crystal with no external electric field. Linear phase-to-intensity transformation is achieved by vectorial mixing of two waves with different polarization states (linear and elliptical) in the anisotropic diffraction geometry. Comparison of reflection and transmission geometries considering both sensitivity and adaptability is carried out. It is shown that the reflection geometry is characterized by better combination of these parameters provided that the crystal possesses high enough concentration of photorefractive centers.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. I. Stepanov, "Application of photorefractive crystals," Rep. Prog. Phys. 57, 39-116 (1994).
    [CrossRef]
  2. I. M. Rossomakhin and S. I. Stepanov, "Linear adaptive interferometers via diffusion recording in cubic photorefractive crystals," Opt. Commun. 86, 199-204 (1991).
    [CrossRef]
  3. R. K. Ing and J.-P. Monchalin, "Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal," Appl. Phys. Lett. 59, 3233-3235 (1991).
    [CrossRef]
  4. P. Delaye, A. Blouin, D. Drolet, L.-A. de Montmorillon, G. Roosen, and J.-P. Monchalin, "Detection of ultrasonic motion of a scattering surface using photorefractive InP:Fe under an applied dc field," J. Opt. Soc. Am. B 14, 1723-1734 (1997).
    [CrossRef]
  5. A. Blouin and J.-P. Monchalin, "Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive GaAs crystal," Appl. Phys. Lett. 65, 932-934 (1994).
    [CrossRef]
  6. B. Campagne, A. Blouin, L. Pujol, and J.-P. Monchalin, "Compact and fast response ultrasonic detection device based on two-wave mixing in a gallium arsenide photorefractive crystal," Rev. Sci. Instrum. 72, 2478-2482 (2001).
    [CrossRef]
  7. A. A. Kamshilin and A. I. Grachev, "Adaptive interferometer based on wave mixing in a photorefractive crystal under alternating electric field," Appl. Phys. Lett. 81, 2923-2925 (2002).
    [CrossRef]
  8. M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive crystals in coherent optical systems (Springer-Verlag, Berlin, Germany 1991).
  9. B. I. Sturman, E. V. Podivilov, K. H. Ringhofer, E. Shamonina, V. P. Kamenov, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, "Theory of photorefractive vectorial wave coupling in cubic crystals," Phys. Rev. E 60, 3332-3352 (1999).
    [CrossRef]
  10. A. A. Kamshilin, E. Raita, and A. I. Grachev, "Polarization degree of freedom in photorefractive two-wave coupling," in Trends in Optics and Photonics: Photorefractive Effects, Materials, and Devices, P. Delaye, C. Denz, L. Mager, and G. Montemezzani, eds., 87, 476-482 (2003).
  11. R. V. Romashko, Y. N. Kulchin, and A. A. Kamshilin, "Linear phase demodulation via reflection photorefractive holograms," in Trends in Optics and Photonics (TOPS): Photorefractive Effects, Materials, and Devices, G. Zhang, D. Kip, D. D. Nolte, and J. Xu, eds., Vol. 99 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 2005), pp. 675-680.
  12. L.-A. de Montmorillon, P. Delaye, J.-C. Launay, and G. Roosen, "Novel theoretical aspects on photorefractive ultrasonic detection and implementation of a sensor with an optimum sensitivity," J. Appl. Phys. 82, 5913-5922 (1997).
    [CrossRef]
  13. J. W. Wagner and J. B. Spicer, "Theoretical noise-limited sensitivity of classical interferometry," J. Opt. Soc. Am. B 4, 1316-1326 (1987).
    [CrossRef]
  14. K. Paivasaari, H. Tuovinen, A. A. Kamshilin, and E. Raita, "Highly sensitive photorefractive interferometry using external ac-field," in Trends in Optics and Photonics (TOPS): Photorefractive Effects, Materials, and Devices, G. Zhang, D. Kip, D. D. Nolte, and J. Xu, eds., Vol. 99 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 2005), pp.681-686.

2002 (1)

A. A. Kamshilin and A. I. Grachev, "Adaptive interferometer based on wave mixing in a photorefractive crystal under alternating electric field," Appl. Phys. Lett. 81, 2923-2925 (2002).
[CrossRef]

2001 (1)

B. Campagne, A. Blouin, L. Pujol, and J.-P. Monchalin, "Compact and fast response ultrasonic detection device based on two-wave mixing in a gallium arsenide photorefractive crystal," Rev. Sci. Instrum. 72, 2478-2482 (2001).
[CrossRef]

1999 (1)

B. I. Sturman, E. V. Podivilov, K. H. Ringhofer, E. Shamonina, V. P. Kamenov, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, "Theory of photorefractive vectorial wave coupling in cubic crystals," Phys. Rev. E 60, 3332-3352 (1999).
[CrossRef]

1997 (2)

L.-A. de Montmorillon, P. Delaye, J.-C. Launay, and G. Roosen, "Novel theoretical aspects on photorefractive ultrasonic detection and implementation of a sensor with an optimum sensitivity," J. Appl. Phys. 82, 5913-5922 (1997).
[CrossRef]

P. Delaye, A. Blouin, D. Drolet, L.-A. de Montmorillon, G. Roosen, and J.-P. Monchalin, "Detection of ultrasonic motion of a scattering surface using photorefractive InP:Fe under an applied dc field," J. Opt. Soc. Am. B 14, 1723-1734 (1997).
[CrossRef]

1994 (2)

A. Blouin and J.-P. Monchalin, "Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive GaAs crystal," Appl. Phys. Lett. 65, 932-934 (1994).
[CrossRef]

S. I. Stepanov, "Application of photorefractive crystals," Rep. Prog. Phys. 57, 39-116 (1994).
[CrossRef]

1991 (2)

I. M. Rossomakhin and S. I. Stepanov, "Linear adaptive interferometers via diffusion recording in cubic photorefractive crystals," Opt. Commun. 86, 199-204 (1991).
[CrossRef]

R. K. Ing and J.-P. Monchalin, "Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal," Appl. Phys. Lett. 59, 3233-3235 (1991).
[CrossRef]

1987 (1)

Blouin, A.

B. Campagne, A. Blouin, L. Pujol, and J.-P. Monchalin, "Compact and fast response ultrasonic detection device based on two-wave mixing in a gallium arsenide photorefractive crystal," Rev. Sci. Instrum. 72, 2478-2482 (2001).
[CrossRef]

P. Delaye, A. Blouin, D. Drolet, L.-A. de Montmorillon, G. Roosen, and J.-P. Monchalin, "Detection of ultrasonic motion of a scattering surface using photorefractive InP:Fe under an applied dc field," J. Opt. Soc. Am. B 14, 1723-1734 (1997).
[CrossRef]

A. Blouin and J.-P. Monchalin, "Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive GaAs crystal," Appl. Phys. Lett. 65, 932-934 (1994).
[CrossRef]

Campagne, B.

B. Campagne, A. Blouin, L. Pujol, and J.-P. Monchalin, "Compact and fast response ultrasonic detection device based on two-wave mixing in a gallium arsenide photorefractive crystal," Rev. Sci. Instrum. 72, 2478-2482 (2001).
[CrossRef]

de Montmorillon, L.-A.

P. Delaye, A. Blouin, D. Drolet, L.-A. de Montmorillon, G. Roosen, and J.-P. Monchalin, "Detection of ultrasonic motion of a scattering surface using photorefractive InP:Fe under an applied dc field," J. Opt. Soc. Am. B 14, 1723-1734 (1997).
[CrossRef]

L.-A. de Montmorillon, P. Delaye, J.-C. Launay, and G. Roosen, "Novel theoretical aspects on photorefractive ultrasonic detection and implementation of a sensor with an optimum sensitivity," J. Appl. Phys. 82, 5913-5922 (1997).
[CrossRef]

Delaye, P.

L.-A. de Montmorillon, P. Delaye, J.-C. Launay, and G. Roosen, "Novel theoretical aspects on photorefractive ultrasonic detection and implementation of a sensor with an optimum sensitivity," J. Appl. Phys. 82, 5913-5922 (1997).
[CrossRef]

P. Delaye, A. Blouin, D. Drolet, L.-A. de Montmorillon, G. Roosen, and J.-P. Monchalin, "Detection of ultrasonic motion of a scattering surface using photorefractive InP:Fe under an applied dc field," J. Opt. Soc. Am. B 14, 1723-1734 (1997).
[CrossRef]

Drolet, D.

Grachev, A. I.

A. A. Kamshilin and A. I. Grachev, "Adaptive interferometer based on wave mixing in a photorefractive crystal under alternating electric field," Appl. Phys. Lett. 81, 2923-2925 (2002).
[CrossRef]

Ing, R. K.

R. K. Ing and J.-P. Monchalin, "Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal," Appl. Phys. Lett. 59, 3233-3235 (1991).
[CrossRef]

Kamenov, V. P.

B. I. Sturman, E. V. Podivilov, K. H. Ringhofer, E. Shamonina, V. P. Kamenov, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, "Theory of photorefractive vectorial wave coupling in cubic crystals," Phys. Rev. E 60, 3332-3352 (1999).
[CrossRef]

Kamshilin, A. A.

A. A. Kamshilin and A. I. Grachev, "Adaptive interferometer based on wave mixing in a photorefractive crystal under alternating electric field," Appl. Phys. Lett. 81, 2923-2925 (2002).
[CrossRef]

B. I. Sturman, E. V. Podivilov, K. H. Ringhofer, E. Shamonina, V. P. Kamenov, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, "Theory of photorefractive vectorial wave coupling in cubic crystals," Phys. Rev. E 60, 3332-3352 (1999).
[CrossRef]

Launay, J.-C.

L.-A. de Montmorillon, P. Delaye, J.-C. Launay, and G. Roosen, "Novel theoretical aspects on photorefractive ultrasonic detection and implementation of a sensor with an optimum sensitivity," J. Appl. Phys. 82, 5913-5922 (1997).
[CrossRef]

Monchalin, J.-P.

B. Campagne, A. Blouin, L. Pujol, and J.-P. Monchalin, "Compact and fast response ultrasonic detection device based on two-wave mixing in a gallium arsenide photorefractive crystal," Rev. Sci. Instrum. 72, 2478-2482 (2001).
[CrossRef]

P. Delaye, A. Blouin, D. Drolet, L.-A. de Montmorillon, G. Roosen, and J.-P. Monchalin, "Detection of ultrasonic motion of a scattering surface using photorefractive InP:Fe under an applied dc field," J. Opt. Soc. Am. B 14, 1723-1734 (1997).
[CrossRef]

A. Blouin and J.-P. Monchalin, "Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive GaAs crystal," Appl. Phys. Lett. 65, 932-934 (1994).
[CrossRef]

R. K. Ing and J.-P. Monchalin, "Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal," Appl. Phys. Lett. 59, 3233-3235 (1991).
[CrossRef]

Nippolainen, E.

B. I. Sturman, E. V. Podivilov, K. H. Ringhofer, E. Shamonina, V. P. Kamenov, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, "Theory of photorefractive vectorial wave coupling in cubic crystals," Phys. Rev. E 60, 3332-3352 (1999).
[CrossRef]

Podivilov, E. V.

B. I. Sturman, E. V. Podivilov, K. H. Ringhofer, E. Shamonina, V. P. Kamenov, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, "Theory of photorefractive vectorial wave coupling in cubic crystals," Phys. Rev. E 60, 3332-3352 (1999).
[CrossRef]

Prokofiev, V. V.

B. I. Sturman, E. V. Podivilov, K. H. Ringhofer, E. Shamonina, V. P. Kamenov, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, "Theory of photorefractive vectorial wave coupling in cubic crystals," Phys. Rev. E 60, 3332-3352 (1999).
[CrossRef]

Pujol, L.

B. Campagne, A. Blouin, L. Pujol, and J.-P. Monchalin, "Compact and fast response ultrasonic detection device based on two-wave mixing in a gallium arsenide photorefractive crystal," Rev. Sci. Instrum. 72, 2478-2482 (2001).
[CrossRef]

Ringhofer, K. H.

B. I. Sturman, E. V. Podivilov, K. H. Ringhofer, E. Shamonina, V. P. Kamenov, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, "Theory of photorefractive vectorial wave coupling in cubic crystals," Phys. Rev. E 60, 3332-3352 (1999).
[CrossRef]

Roosen, G.

L.-A. de Montmorillon, P. Delaye, J.-C. Launay, and G. Roosen, "Novel theoretical aspects on photorefractive ultrasonic detection and implementation of a sensor with an optimum sensitivity," J. Appl. Phys. 82, 5913-5922 (1997).
[CrossRef]

P. Delaye, A. Blouin, D. Drolet, L.-A. de Montmorillon, G. Roosen, and J.-P. Monchalin, "Detection of ultrasonic motion of a scattering surface using photorefractive InP:Fe under an applied dc field," J. Opt. Soc. Am. B 14, 1723-1734 (1997).
[CrossRef]

Rossomakhin, I. M.

I. M. Rossomakhin and S. I. Stepanov, "Linear adaptive interferometers via diffusion recording in cubic photorefractive crystals," Opt. Commun. 86, 199-204 (1991).
[CrossRef]

Shamonina, E.

B. I. Sturman, E. V. Podivilov, K. H. Ringhofer, E. Shamonina, V. P. Kamenov, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, "Theory of photorefractive vectorial wave coupling in cubic crystals," Phys. Rev. E 60, 3332-3352 (1999).
[CrossRef]

Spicer, J. B.

Stepanov, S. I.

S. I. Stepanov, "Application of photorefractive crystals," Rep. Prog. Phys. 57, 39-116 (1994).
[CrossRef]

I. M. Rossomakhin and S. I. Stepanov, "Linear adaptive interferometers via diffusion recording in cubic photorefractive crystals," Opt. Commun. 86, 199-204 (1991).
[CrossRef]

Sturman, B. I.

B. I. Sturman, E. V. Podivilov, K. H. Ringhofer, E. Shamonina, V. P. Kamenov, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, "Theory of photorefractive vectorial wave coupling in cubic crystals," Phys. Rev. E 60, 3332-3352 (1999).
[CrossRef]

Wagner, J. W.

Appl. Phys. Lett. (3)

A. Blouin and J.-P. Monchalin, "Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive GaAs crystal," Appl. Phys. Lett. 65, 932-934 (1994).
[CrossRef]

A. A. Kamshilin and A. I. Grachev, "Adaptive interferometer based on wave mixing in a photorefractive crystal under alternating electric field," Appl. Phys. Lett. 81, 2923-2925 (2002).
[CrossRef]

R. K. Ing and J.-P. Monchalin, "Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal," Appl. Phys. Lett. 59, 3233-3235 (1991).
[CrossRef]

J. Appl. Phys. (1)

L.-A. de Montmorillon, P. Delaye, J.-C. Launay, and G. Roosen, "Novel theoretical aspects on photorefractive ultrasonic detection and implementation of a sensor with an optimum sensitivity," J. Appl. Phys. 82, 5913-5922 (1997).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

I. M. Rossomakhin and S. I. Stepanov, "Linear adaptive interferometers via diffusion recording in cubic photorefractive crystals," Opt. Commun. 86, 199-204 (1991).
[CrossRef]

Phys. Rev. E (1)

B. I. Sturman, E. V. Podivilov, K. H. Ringhofer, E. Shamonina, V. P. Kamenov, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, "Theory of photorefractive vectorial wave coupling in cubic crystals," Phys. Rev. E 60, 3332-3352 (1999).
[CrossRef]

Rep. Prog. Phys. (1)

S. I. Stepanov, "Application of photorefractive crystals," Rep. Prog. Phys. 57, 39-116 (1994).
[CrossRef]

Rev. Sci. Instrum. (1)

B. Campagne, A. Blouin, L. Pujol, and J.-P. Monchalin, "Compact and fast response ultrasonic detection device based on two-wave mixing in a gallium arsenide photorefractive crystal," Rev. Sci. Instrum. 72, 2478-2482 (2001).
[CrossRef]

Other (4)

M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive crystals in coherent optical systems (Springer-Verlag, Berlin, Germany 1991).

A. A. Kamshilin, E. Raita, and A. I. Grachev, "Polarization degree of freedom in photorefractive two-wave coupling," in Trends in Optics and Photonics: Photorefractive Effects, Materials, and Devices, P. Delaye, C. Denz, L. Mager, and G. Montemezzani, eds., 87, 476-482 (2003).

R. V. Romashko, Y. N. Kulchin, and A. A. Kamshilin, "Linear phase demodulation via reflection photorefractive holograms," in Trends in Optics and Photonics (TOPS): Photorefractive Effects, Materials, and Devices, G. Zhang, D. Kip, D. D. Nolte, and J. Xu, eds., Vol. 99 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 2005), pp. 675-680.

K. Paivasaari, H. Tuovinen, A. A. Kamshilin, and E. Raita, "Highly sensitive photorefractive interferometry using external ac-field," in Trends in Optics and Photonics (TOPS): Photorefractive Effects, Materials, and Devices, G. Zhang, D. Kip, D. D. Nolte, and J. Xu, eds., Vol. 99 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 2005), pp.681-686.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Adaptive interferometer based on diffusion hologram recorded in photorefractive crystal in reflection (a) and transmission (b) geometry; RB and OB are reference and object beams respectively.

Fig. 2.
Fig. 2.

Schematics of adaptive interferometer based on diffusion dynamic hologram recorded in CdTe crystal: BS is beam splitter; QWP, HWP are quarter- and half-wave plates, respectively; M is a mirror; SWG is a sine wave generator; PET is piezoelectric transducer; MOF is a multimode optical fiber; P is polarizer; PD is photo-detector.

Fig. 3.
Fig. 3.

Relative detection limit of the interferometer as a function of the grating period. Circles relate to the sample BR-4Z-05, squares – to the sample BL-07-B1; open marks correspond to the transmission geometry of hologram recording, while the filled marks – to the reflection geometry.

Fig. 4.
Fig. 4.

Frequency response of the adaptive interferometer based on the reflection hologram recorded in CdTe:V crystal. Circles relate to the sample BR-4Z-05, squares – to the sample BL-07-B1.

Tables (1)

Tables Icon

Table 1. Parameters of CdTe:V samples

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

{ ( z + α 2 ) A R =κH̑ A s ( g z + α 2 ) A s = κH̑ A R .
κ = 2 R 1 + R π n 0 3 r 41 λ E D 1 + E D E q with  E D = 2 π Λ k B T e and  E q = e N A ε ε 0 Λ 2 π ,
P s = P 0 exp ( αL ) [ cos 2 ( κL ) + R sin 2 ( κL ) R 2 sin ( 2 κL ) sin ( 2 Ψ φ ) ] .
SNR = ΔP S Q P S with Q = 4 Δ f    hv η ,
φ c lim = Q 2 P 0 = 2 Δ f   hv η P 0 .
φ A lim = Q exp ( αL 2 ) 2 cos 2 ( κ L ) + R sin 2 ( κ L ) sin ( 2 κ L ) RP 0
δ rel = φ A lim φ c lim = exp ( α L 2 ) 1 2 R sin 2 ( κ L ) + 1 2 cos 2 ( κ L )
δ rel = φ A lim φ c lim = SNR c SNR A = 2 P 0 P s Δ P s φ .
δ rel = 2 exp ( α L 2 ) P S Δ P s φ .
f cut = e 2 πε ε 0 αμτ hv I ,

Metrics