Abstract

We numerically demonstrate negative refraction of the Poynting vector and sub-wavelength focusing in the visible part of the spectrum using a transparent multilayer, metallo-dielectric photonic band gap structure. Our results reveal that in the wavelength regime of interest evanescent waves are not transmitted by the structure, and that the main underlying physical mechanisms for sub-wavelength focusing are resonance tunneling, field localization, and propagation effects. These structures offer several advantages: tunability and high transmittance (50% or better) across the visible and near IR ranges; large object-image distances, with image planes located beyond the range where the evanescent waves have decayed. From a practical point of view, our findings point to a simpler way to fabricate a material that exhibits negative refraction and maintains high transparency across a broad wavelength range. Transparent metallo-dielectric stacks also provide an opportunity to expand the exploration of wave propagation phenomena in metals, both in the linear and nonlinear regimes.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966 (2000).
    [CrossRef] [PubMed]
  2. V. G. Veselago, "Electrodynamics of substances with simultaneously negative electrical and magnetic permeabilities," Sov. Phys. USPEKHI 10, 509 (1968).
    [CrossRef]
  3. D. O. S. Melville, and R. J. Blaikie, "Super-resolution imaging through a planar silver layer," Opt. Express 13, 2127 (2005).
    [CrossRef] [PubMed]
  4. N. Fang, H. Lee, C. Sun, and C. X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534 (2005).
    [CrossRef] [PubMed]
  5. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
    [CrossRef]
  6. R. A. Shelby, D. A. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77 (2001).
    [CrossRef] [PubMed]
  7. C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's law," Phys. Rev. Lett. 90, 107401 (2003)
    [CrossRef] [PubMed]
  8. V. M. Shalaev, W. Cai, U. K. Chettiar, H-K Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett. 30, 3356 (2005).
    [CrossRef]
  9. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, "Negative index metamaterial at 780nm wavelength," http://arxiv.org/abs/physics/0607135.
  10. S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near field," J. Mod. Opt. 50, 1419 (2003).
  11. K. J. Webb and M. Yang "Subwavelength imaging with a multilayer silver film structure," Opt. Lett. 31, 2130 (2006).
    [CrossRef] [PubMed]
  12. B. Wood, J. P. Pendry, and D. P. Tsai, "Directed sub-wavelength imaging using metallo-dielectric system," Phys. Rev. B 74, 115116 (2006).
    [CrossRef]
  13. P. A. Belov and Y. Hao, "Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metallo-dielectric structure operating in the canalization regime," Phys. Rev. B 73, 113110 (2006).
    [CrossRef]
  14. M. Scalora, M. J. Bloemer, A. S. Manka, S. D. Pethel, J. P. Dowling, and C. M. Bowden, "Transparent, metallo-dielectric one dimensional photonic band gap structures," J. Appl. Phys. 83, 2377 (1998).
    [CrossRef]
  15. M. J. Bloemer, and M. Scalora, "Transmissive properties of Ag/MgF2 Photonic Band Gaps," Appl. Phys. Lett. 72, 1676-1678 (1998).
    [CrossRef]
  16. M. Scalora, M. J. Bloemer, and C. M. Bowden, "Laminated photonic band structures with high conductivity and high transparency: Metals under a new light," Opt. Photon. News 10, 23 (1999).
    [CrossRef]
  17. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1985).
  18. M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, "Accessing the optical limiting properties of Metallo-Dielectric Photonic band gap structures,", J. Appl. Phys. 93, 5013 (2003).
    [CrossRef]
  19. R. S. Bennink, Y. K. Yoon, R. W. Boyd, and J. E. Sipe, "Accessing the optical non-linearity of metals with metallo-dielectric photonic band gap structures" Opt. Lett. 24, 1416 (1999).
    [CrossRef]
  20. N. N. Lepeshkin, A. Schweinsberg, G. Piredda, R. S. Bennink, and R. W. Boyd, "Enhanced nonlinear optical response Metallo-dielectric photonic crystals," Phys. Rev. Lett. 93, 123902 (2004).
    [CrossRef] [PubMed]
  21. M. Scalora, N. Mattiucci, G. D’Aguanno, M. C. Larciprete, and M. J. Bloemer, "Nonlinear pulse propagation in one-dimensional metallo-dielectric multilayer stacks: Ultrawide bandwidth optical limiting," Phys. Rev. E 73, 016603 (2006).
    [CrossRef]
  22. J. D. Jackson, Classical Electrodynamics, 2nd edition, (Wiley, New York, 1975).
  23. D.R. Smith, D. Schurig, "Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors," Phys. Rev. Lett. 90, 077405 (2003).
    [CrossRef] [PubMed]
  24. D. R. Smith, P. Kolinko, D. Schurig, "Negative refraction in indefinite media," J. Opt. Soc. Am. B 21, 1032 (2004).
    [CrossRef]
  25. R. Wanberg, J. Elser, E. E. Narimanov, and V. A. Podolsky, "Nonmagnetic nanocomposites for optical and infrared negative refractive index media," J. Opt. Soc. Am. B 23, 498 (2006).
    [CrossRef]
  26. A. A. Govyadinov, and V. A. Podolsky, "Material photonic funnels for subdiffraction light compression and propagation," Phys. Rev. B 73, 155108 (2006).
    [CrossRef]
  27. S. Feng, and J. M. Elson, "Diffraction-suppressed high-resolution imaging through metallodielectric nanofilms," Opt. Express 14, 216 (2006).
    [CrossRef] [PubMed]
  28. M. J. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, "Broadband super resolving lens with high transparency for propagating and evanescent waves in the visible range," http://www.arxiv.org/abs/physics/0611162.

2006 (7)

B. Wood, J. P. Pendry, and D. P. Tsai, "Directed sub-wavelength imaging using metallo-dielectric system," Phys. Rev. B 74, 115116 (2006).
[CrossRef]

P. A. Belov and Y. Hao, "Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metallo-dielectric structure operating in the canalization regime," Phys. Rev. B 73, 113110 (2006).
[CrossRef]

M. Scalora, N. Mattiucci, G. D’Aguanno, M. C. Larciprete, and M. J. Bloemer, "Nonlinear pulse propagation in one-dimensional metallo-dielectric multilayer stacks: Ultrawide bandwidth optical limiting," Phys. Rev. E 73, 016603 (2006).
[CrossRef]

A. A. Govyadinov, and V. A. Podolsky, "Material photonic funnels for subdiffraction light compression and propagation," Phys. Rev. B 73, 155108 (2006).
[CrossRef]

S. Feng, and J. M. Elson, "Diffraction-suppressed high-resolution imaging through metallodielectric nanofilms," Opt. Express 14, 216 (2006).
[CrossRef] [PubMed]

R. Wanberg, J. Elser, E. E. Narimanov, and V. A. Podolsky, "Nonmagnetic nanocomposites for optical and infrared negative refractive index media," J. Opt. Soc. Am. B 23, 498 (2006).
[CrossRef]

K. J. Webb and M. Yang "Subwavelength imaging with a multilayer silver film structure," Opt. Lett. 31, 2130 (2006).
[CrossRef] [PubMed]

2005 (3)

2004 (2)

N. N. Lepeshkin, A. Schweinsberg, G. Piredda, R. S. Bennink, and R. W. Boyd, "Enhanced nonlinear optical response Metallo-dielectric photonic crystals," Phys. Rev. Lett. 93, 123902 (2004).
[CrossRef] [PubMed]

D. R. Smith, P. Kolinko, D. Schurig, "Negative refraction in indefinite media," J. Opt. Soc. Am. B 21, 1032 (2004).
[CrossRef]

2003 (4)

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's law," Phys. Rev. Lett. 90, 107401 (2003)
[CrossRef] [PubMed]

D.R. Smith, D. Schurig, "Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors," Phys. Rev. Lett. 90, 077405 (2003).
[CrossRef] [PubMed]

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near field," J. Mod. Opt. 50, 1419 (2003).

M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, "Accessing the optical limiting properties of Metallo-Dielectric Photonic band gap structures,", J. Appl. Phys. 93, 5013 (2003).
[CrossRef]

2001 (1)

R. A. Shelby, D. A. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77 (2001).
[CrossRef] [PubMed]

2000 (1)

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

1999 (3)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[CrossRef]

M. Scalora, M. J. Bloemer, and C. M. Bowden, "Laminated photonic band structures with high conductivity and high transparency: Metals under a new light," Opt. Photon. News 10, 23 (1999).
[CrossRef]

R. S. Bennink, Y. K. Yoon, R. W. Boyd, and J. E. Sipe, "Accessing the optical non-linearity of metals with metallo-dielectric photonic band gap structures" Opt. Lett. 24, 1416 (1999).
[CrossRef]

1998 (2)

M. Scalora, M. J. Bloemer, A. S. Manka, S. D. Pethel, J. P. Dowling, and C. M. Bowden, "Transparent, metallo-dielectric one dimensional photonic band gap structures," J. Appl. Phys. 83, 2377 (1998).
[CrossRef]

M. J. Bloemer, and M. Scalora, "Transmissive properties of Ag/MgF2 Photonic Band Gaps," Appl. Phys. Lett. 72, 1676-1678 (1998).
[CrossRef]

1968 (1)

V. G. Veselago, "Electrodynamics of substances with simultaneously negative electrical and magnetic permeabilities," Sov. Phys. USPEKHI 10, 509 (1968).
[CrossRef]

Belov, P. A.

P. A. Belov and Y. Hao, "Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metallo-dielectric structure operating in the canalization regime," Phys. Rev. B 73, 113110 (2006).
[CrossRef]

Bennink, R. S.

N. N. Lepeshkin, A. Schweinsberg, G. Piredda, R. S. Bennink, and R. W. Boyd, "Enhanced nonlinear optical response Metallo-dielectric photonic crystals," Phys. Rev. Lett. 93, 123902 (2004).
[CrossRef] [PubMed]

R. S. Bennink, Y. K. Yoon, R. W. Boyd, and J. E. Sipe, "Accessing the optical non-linearity of metals with metallo-dielectric photonic band gap structures" Opt. Lett. 24, 1416 (1999).
[CrossRef]

Bertolotti, M.

M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, "Accessing the optical limiting properties of Metallo-Dielectric Photonic band gap structures,", J. Appl. Phys. 93, 5013 (2003).
[CrossRef]

Blaikie, R. J.

Bloemer, M. J.

M. Scalora, N. Mattiucci, G. D’Aguanno, M. C. Larciprete, and M. J. Bloemer, "Nonlinear pulse propagation in one-dimensional metallo-dielectric multilayer stacks: Ultrawide bandwidth optical limiting," Phys. Rev. E 73, 016603 (2006).
[CrossRef]

M. Scalora, M. J. Bloemer, and C. M. Bowden, "Laminated photonic band structures with high conductivity and high transparency: Metals under a new light," Opt. Photon. News 10, 23 (1999).
[CrossRef]

M. J. Bloemer, and M. Scalora, "Transmissive properties of Ag/MgF2 Photonic Band Gaps," Appl. Phys. Lett. 72, 1676-1678 (1998).
[CrossRef]

M. Scalora, M. J. Bloemer, A. S. Manka, S. D. Pethel, J. P. Dowling, and C. M. Bowden, "Transparent, metallo-dielectric one dimensional photonic band gap structures," J. Appl. Phys. 83, 2377 (1998).
[CrossRef]

Bowden, C. M.

M. Scalora, M. J. Bloemer, and C. M. Bowden, "Laminated photonic band structures with high conductivity and high transparency: Metals under a new light," Opt. Photon. News 10, 23 (1999).
[CrossRef]

M. Scalora, M. J. Bloemer, A. S. Manka, S. D. Pethel, J. P. Dowling, and C. M. Bowden, "Transparent, metallo-dielectric one dimensional photonic band gap structures," J. Appl. Phys. 83, 2377 (1998).
[CrossRef]

Boyd, R. W.

N. N. Lepeshkin, A. Schweinsberg, G. Piredda, R. S. Bennink, and R. W. Boyd, "Enhanced nonlinear optical response Metallo-dielectric photonic crystals," Phys. Rev. Lett. 93, 123902 (2004).
[CrossRef] [PubMed]

R. S. Bennink, Y. K. Yoon, R. W. Boyd, and J. E. Sipe, "Accessing the optical non-linearity of metals with metallo-dielectric photonic band gap structures" Opt. Lett. 24, 1416 (1999).
[CrossRef]

Cai, W.

Chettiar, U. K.

D’Aguanno, G.

M. Scalora, N. Mattiucci, G. D’Aguanno, M. C. Larciprete, and M. J. Bloemer, "Nonlinear pulse propagation in one-dimensional metallo-dielectric multilayer stacks: Ultrawide bandwidth optical limiting," Phys. Rev. E 73, 016603 (2006).
[CrossRef]

Dowling, J. P.

M. Scalora, M. J. Bloemer, A. S. Manka, S. D. Pethel, J. P. Dowling, and C. M. Bowden, "Transparent, metallo-dielectric one dimensional photonic band gap structures," J. Appl. Phys. 83, 2377 (1998).
[CrossRef]

Drachev, V. P.

Elser, J.

Elson, J. M.

Fang, N.

N. Fang, H. Lee, C. Sun, and C. X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534 (2005).
[CrossRef] [PubMed]

Feng, S.

Govyadinov, A. A.

A. A. Govyadinov, and V. A. Podolsky, "Material photonic funnels for subdiffraction light compression and propagation," Phys. Rev. B 73, 155108 (2006).
[CrossRef]

Greegor, R. B.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's law," Phys. Rev. Lett. 90, 107401 (2003)
[CrossRef] [PubMed]

Hao, Y.

P. A. Belov and Y. Hao, "Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metallo-dielectric structure operating in the canalization regime," Phys. Rev. B 73, 113110 (2006).
[CrossRef]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[CrossRef]

Kildishev, A. V.

Kolinko, P.

Koltenbah, B. E. C.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's law," Phys. Rev. Lett. 90, 107401 (2003)
[CrossRef] [PubMed]

Larciprete, M. C.

M. Scalora, N. Mattiucci, G. D’Aguanno, M. C. Larciprete, and M. J. Bloemer, "Nonlinear pulse propagation in one-dimensional metallo-dielectric multilayer stacks: Ultrawide bandwidth optical limiting," Phys. Rev. E 73, 016603 (2006).
[CrossRef]

M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, "Accessing the optical limiting properties of Metallo-Dielectric Photonic band gap structures,", J. Appl. Phys. 93, 5013 (2003).
[CrossRef]

Lee, H.

N. Fang, H. Lee, C. Sun, and C. X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534 (2005).
[CrossRef] [PubMed]

Lepeshkin, N. N.

N. N. Lepeshkin, A. Schweinsberg, G. Piredda, R. S. Bennink, and R. W. Boyd, "Enhanced nonlinear optical response Metallo-dielectric photonic crystals," Phys. Rev. Lett. 93, 123902 (2004).
[CrossRef] [PubMed]

Li, K.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's law," Phys. Rev. Lett. 90, 107401 (2003)
[CrossRef] [PubMed]

Manka, A. S.

M. Scalora, M. J. Bloemer, A. S. Manka, S. D. Pethel, J. P. Dowling, and C. M. Bowden, "Transparent, metallo-dielectric one dimensional photonic band gap structures," J. Appl. Phys. 83, 2377 (1998).
[CrossRef]

Mattiucci, N.

M. Scalora, N. Mattiucci, G. D’Aguanno, M. C. Larciprete, and M. J. Bloemer, "Nonlinear pulse propagation in one-dimensional metallo-dielectric multilayer stacks: Ultrawide bandwidth optical limiting," Phys. Rev. E 73, 016603 (2006).
[CrossRef]

Melville, D. O. S.

Narimanov, E. E.

Paoloni, S.

M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, "Accessing the optical limiting properties of Metallo-Dielectric Photonic band gap structures,", J. Appl. Phys. 93, 5013 (2003).
[CrossRef]

Parazzoli, C. G.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's law," Phys. Rev. Lett. 90, 107401 (2003)
[CrossRef] [PubMed]

Pendry, J. B.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near field," J. Mod. Opt. 50, 1419 (2003).

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[CrossRef]

Pendry, J. P.

B. Wood, J. P. Pendry, and D. P. Tsai, "Directed sub-wavelength imaging using metallo-dielectric system," Phys. Rev. B 74, 115116 (2006).
[CrossRef]

Pethel, S. D.

M. Scalora, M. J. Bloemer, A. S. Manka, S. D. Pethel, J. P. Dowling, and C. M. Bowden, "Transparent, metallo-dielectric one dimensional photonic band gap structures," J. Appl. Phys. 83, 2377 (1998).
[CrossRef]

Piredda, G.

N. N. Lepeshkin, A. Schweinsberg, G. Piredda, R. S. Bennink, and R. W. Boyd, "Enhanced nonlinear optical response Metallo-dielectric photonic crystals," Phys. Rev. Lett. 93, 123902 (2004).
[CrossRef] [PubMed]

Podolsky, V. A.

A. A. Govyadinov, and V. A. Podolsky, "Material photonic funnels for subdiffraction light compression and propagation," Phys. Rev. B 73, 155108 (2006).
[CrossRef]

R. Wanberg, J. Elser, E. E. Narimanov, and V. A. Podolsky, "Nonmagnetic nanocomposites for optical and infrared negative refractive index media," J. Opt. Soc. Am. B 23, 498 (2006).
[CrossRef]

Ramakrishna, S. A.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near field," J. Mod. Opt. 50, 1419 (2003).

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[CrossRef]

Sarto, F.

M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, "Accessing the optical limiting properties of Metallo-Dielectric Photonic band gap structures,", J. Appl. Phys. 93, 5013 (2003).
[CrossRef]

Sarychev, A. K.

Scalora, M.

M. Scalora, N. Mattiucci, G. D’Aguanno, M. C. Larciprete, and M. J. Bloemer, "Nonlinear pulse propagation in one-dimensional metallo-dielectric multilayer stacks: Ultrawide bandwidth optical limiting," Phys. Rev. E 73, 016603 (2006).
[CrossRef]

M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, "Accessing the optical limiting properties of Metallo-Dielectric Photonic band gap structures,", J. Appl. Phys. 93, 5013 (2003).
[CrossRef]

M. Scalora, M. J. Bloemer, and C. M. Bowden, "Laminated photonic band structures with high conductivity and high transparency: Metals under a new light," Opt. Photon. News 10, 23 (1999).
[CrossRef]

M. J. Bloemer, and M. Scalora, "Transmissive properties of Ag/MgF2 Photonic Band Gaps," Appl. Phys. Lett. 72, 1676-1678 (1998).
[CrossRef]

M. Scalora, M. J. Bloemer, A. S. Manka, S. D. Pethel, J. P. Dowling, and C. M. Bowden, "Transparent, metallo-dielectric one dimensional photonic band gap structures," J. Appl. Phys. 83, 2377 (1998).
[CrossRef]

Schultz, S.

R. A. Shelby, D. A. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77 (2001).
[CrossRef] [PubMed]

Schurig, D.

D. R. Smith, P. Kolinko, D. Schurig, "Negative refraction in indefinite media," J. Opt. Soc. Am. B 21, 1032 (2004).
[CrossRef]

D.R. Smith, D. Schurig, "Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors," Phys. Rev. Lett. 90, 077405 (2003).
[CrossRef] [PubMed]

Schweinsberg, A.

N. N. Lepeshkin, A. Schweinsberg, G. Piredda, R. S. Bennink, and R. W. Boyd, "Enhanced nonlinear optical response Metallo-dielectric photonic crystals," Phys. Rev. Lett. 93, 123902 (2004).
[CrossRef] [PubMed]

Shalaev, V. M.

Shelby, R. A.

R. A. Shelby, D. A. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77 (2001).
[CrossRef] [PubMed]

Sibilia, C.

M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, "Accessing the optical limiting properties of Metallo-Dielectric Photonic band gap structures,", J. Appl. Phys. 93, 5013 (2003).
[CrossRef]

Sipe, J. E.

Smith, D. A.

R. A. Shelby, D. A. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77 (2001).
[CrossRef] [PubMed]

Smith, D. R.

Smith, D.R.

D.R. Smith, D. Schurig, "Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors," Phys. Rev. Lett. 90, 077405 (2003).
[CrossRef] [PubMed]

Stewart, W. J.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near field," J. Mod. Opt. 50, 1419 (2003).

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[CrossRef]

Sun, C.

N. Fang, H. Lee, C. Sun, and C. X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534 (2005).
[CrossRef] [PubMed]

Tanielian, M.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's law," Phys. Rev. Lett. 90, 107401 (2003)
[CrossRef] [PubMed]

Tsai, D. P.

B. Wood, J. P. Pendry, and D. P. Tsai, "Directed sub-wavelength imaging using metallo-dielectric system," Phys. Rev. B 74, 115116 (2006).
[CrossRef]

Veselago, V. G.

V. G. Veselago, "Electrodynamics of substances with simultaneously negative electrical and magnetic permeabilities," Sov. Phys. USPEKHI 10, 509 (1968).
[CrossRef]

Wanberg, R.

Webb, K. J.

Wiltshire, M. C. K.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near field," J. Mod. Opt. 50, 1419 (2003).

Wood, B.

B. Wood, J. P. Pendry, and D. P. Tsai, "Directed sub-wavelength imaging using metallo-dielectric system," Phys. Rev. B 74, 115116 (2006).
[CrossRef]

Yang, M.

Yoon, Y. K.

Yuan, H-K

Zhang, C. X.

N. Fang, H. Lee, C. Sun, and C. X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

M. J. Bloemer, and M. Scalora, "Transmissive properties of Ag/MgF2 Photonic Band Gaps," Appl. Phys. Lett. 72, 1676-1678 (1998).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[CrossRef]

J. Appl. Phys. (2)

M. Scalora, M. J. Bloemer, A. S. Manka, S. D. Pethel, J. P. Dowling, and C. M. Bowden, "Transparent, metallo-dielectric one dimensional photonic band gap structures," J. Appl. Phys. 83, 2377 (1998).
[CrossRef]

M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, "Accessing the optical limiting properties of Metallo-Dielectric Photonic band gap structures,", J. Appl. Phys. 93, 5013 (2003).
[CrossRef]

J. Mod. Opt. (1)

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near field," J. Mod. Opt. 50, 1419 (2003).

J. Opt. Soc. Am. B (2)

Opt. Express (2)

Opt. Lett. (3)

Opt. Photon. News (1)

M. Scalora, M. J. Bloemer, and C. M. Bowden, "Laminated photonic band structures with high conductivity and high transparency: Metals under a new light," Opt. Photon. News 10, 23 (1999).
[CrossRef]

Phys. Rev. B (3)

B. Wood, J. P. Pendry, and D. P. Tsai, "Directed sub-wavelength imaging using metallo-dielectric system," Phys. Rev. B 74, 115116 (2006).
[CrossRef]

P. A. Belov and Y. Hao, "Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metallo-dielectric structure operating in the canalization regime," Phys. Rev. B 73, 113110 (2006).
[CrossRef]

A. A. Govyadinov, and V. A. Podolsky, "Material photonic funnels for subdiffraction light compression and propagation," Phys. Rev. B 73, 155108 (2006).
[CrossRef]

Phys. Rev. E (1)

M. Scalora, N. Mattiucci, G. D’Aguanno, M. C. Larciprete, and M. J. Bloemer, "Nonlinear pulse propagation in one-dimensional metallo-dielectric multilayer stacks: Ultrawide bandwidth optical limiting," Phys. Rev. E 73, 016603 (2006).
[CrossRef]

Phys. Rev. Lett. (4)

N. N. Lepeshkin, A. Schweinsberg, G. Piredda, R. S. Bennink, and R. W. Boyd, "Enhanced nonlinear optical response Metallo-dielectric photonic crystals," Phys. Rev. Lett. 93, 123902 (2004).
[CrossRef] [PubMed]

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's law," Phys. Rev. Lett. 90, 107401 (2003)
[CrossRef] [PubMed]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

D.R. Smith, D. Schurig, "Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors," Phys. Rev. Lett. 90, 077405 (2003).
[CrossRef] [PubMed]

Science (2)

R. A. Shelby, D. A. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77 (2001).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and C. X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534 (2005).
[CrossRef] [PubMed]

Sov. Phys. USPEKHI (1)

V. G. Veselago, "Electrodynamics of substances with simultaneously negative electrical and magnetic permeabilities," Sov. Phys. USPEKHI 10, 509 (1968).
[CrossRef]

Other (4)

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, "Negative index metamaterial at 780nm wavelength," http://arxiv.org/abs/physics/0607135.

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1985).

J. D. Jackson, Classical Electrodynamics, 2nd edition, (Wiley, New York, 1975).

M. J. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, "Broadband super resolving lens with high transparency for propagating and evanescent waves in the visible range," http://www.arxiv.org/abs/physics/0611162.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Transmittance vs. separation distance between two metal layers 32nm thick, for a dielectric spacer medium having n=2 (inset), and incident wavelength of 500nm. The resonance tunneling condition occurs for dielectric layer thickness of 72nm, or 0.29λ, where λ is the wavelength in the material.

Fig. 2.
Fig. 2.

Plane-wave transmittance vs. wavelength at normal incidence from a symmetric, 13-layer stack composed of Ag(32nm)/X(21nm), inclusive of entry and exit X layers 11nm thick (transparent metal), and from a periodic stack composed of 6 periods of Ag(32nm)/X(21nm). Halving the thickness of first and last layers increases transmittance significantly across the transparency range, and affects field localization properties (Fig. 8 below).

Fig. 3.
Fig. 3.

A Gaussian, TM-polarized wave packet is incident at 45° on the transparent metal stack described in Fig. 2. The figure shows several snapshots of the magnetic field intensity. The centroid of the pulse that exits to the right of the stack is shifted upward by approximately 266nm. Plane-wave reflectance is ∼5% at 400nm.

Fig. 4.
Fig. 4.

A TM-polarized beam or pulse is incident from vacuum (or other medium with positive permittivity) on a metal layer, at frequencies below the plasma frequency where the real part of its dielectric constant is negative. The x inside the circle indicates that the H field points inside the page. Then, preservation of the continuity of the longitudinal component of the displacement field, D out z = D in z , requires that ε out E out z = ε in E in z . As a result, a sign change of the field Ez occurs when the dielectric constants have opposite signs.

Fig. 5.
Fig. 5.

Schematic representation of the refraction that occurs inside the stack. P T is the total, averaged momentum inside the stack. Upper right: the local momenta inside two adjacent metal and dielectric layers are shown. The local momentum density, i.e. the Poynting vector, generally differs from the total momentum within a given layer. The refraction process should be viewed from a global perspective, by collecting information across the entire layer.

Fig. 6.
Fig. 6.

Schematic representation of twin momentum vectors that lead to the formation of internal and external foci, based on the results depicted in Fig. 5. In this picture the location of both foci are approximate, as the averaging process neglects effects of field curvature. Both internal and external focal points generally depend on the slit-stack distance.

Fig. 7.
Fig. 7.

Negative refraction angle as a function of incident wavelength. The incident angle is fixed at 45°. The angle decreases as the carrier wavelength is increased. This is due in large part to the metal dispersion, which causes a drop in the magnetic field intensity inside the metal layers only, resulting in a reduction of anomalous momentum.

Fig. 8.
Fig. 8.

On-axis ∣E∣2 and ∣H∣2 vs. position inside the chirped stack described in Fig. 2, for a field incident from the left. The real part of the dielectric constant alternates between the values of 16 and -3.77 (thin, black curve; right axis). The fields are unusually intense inside each metal layer, leading to large energy and momentum values inside each metal layer. At 500nm, for silver Re(ε)= -8.57. The shape and amplitude of the electric field intensity change little across the stack. While the shape of ∣H∣2 remains almost identical, it decreases by an average factor of 3 only inside the metal layers, causing a drop in stored anomalous momentum, and a consequent reduction of the negative refraction angle.

Fig. 9.
Fig. 9.

A quasi-monochromatic Gaussian wave packet is incident from the bottom on a 140nm-thick germanium substrate with an aperture ∼125nm wide. The transparent metal stack is described in the caption of Fig. 2, and is located ∼50nm away from the slit. The distance to the collection point (screen) may vary.

Fig. 10.
Fig. 10.

Bird’s eye-view of a snapshot of the magnetic field intensity inside and passed the stack. A focal point is clearly visible outside the stack.

Fig. 11.
Fig. 11.

Image produced by the slit on the image plane indicated on Fig. 9. The full width at half maximum of the H-field that propagates through the stack is ∼200nm and it is roughly five times narrower compared to the same field propagating in free space.

Fig. 12.
Fig. 12.

Bird’s eye-view of a snapshot of the magnetic field intensity inside and passed the transparent metal stack. The image is produced by two 125nm apertures located on the Ge substrate, having a center-to-center distance of ∼325nm. The slits are resolved with a visibility of approximately 40%, yielding diffraction-limited, sub-wavelength resolution. A third bright spot, Poisson’ spot, appears down-range, as a result of constructive interference between the primary spots, which in turn become secondary sources in the Poisson’ spot formation process.

Fig. 13.
Fig. 13.

Sz(ky/k0,z) is the Fourier transform of the longitudinal Poynting vector Sz(y,z). The contiguous arrows to the left indicate the beginning and the end of the stack, and where vacuum begins. This spectral snapshot reveals the longitudinal dynamics of each transverse k-vector. It is evident that in this example evanescent wave vectors (ky/k0>1) are hardly excited, an indication that in this regime surface waves are not supported.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P ( t ) = z = z = y = y = S y z t c 2 dy dz = z = z = y = y = E x H 4 πc dy dz

Metrics