Abstract

Magnetic metamaterials with magnetic-dipole resonances around 1.2-μm wavelength are fabricated using an extremely compact and robust version of two- or three-beam interference lithography for 1D and 2D structures, respectively. Our approach employs a single laser beam at 532-nm wavelength impinging onto a suitably shaped dielectric object (roof-top prism or pyramid) – bringing the complexity of fabricating magnetic metamaterials down to that of evaporating usual dielectric/metallic coatings. The measured optical spectra agree well with theory; the retrieval reveals a negative magnetic permeability. Importantly, the large-scale sample homogeneity is explicitly demonstrated by optical experiments.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Smith, J.B. Pendry, and M.C.K. Wiltshire, "Metamaterials and negative refractive index," Science 305, 788-792 (2004).
    [CrossRef] [PubMed]
  2. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C.M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science 306, 1351-1353 (2004).
    [CrossRef] [PubMed]
  3. S. Zhang, W. Fan, B.K. Minhas, A. Frauenglass, K.J. Malloy, and S.R.J. Brueck, "Midinfrared resonant magnetic nanostructures exhibiting a negative permeability," Phys. Rev. Lett. 94, 037402 (2005).
    [CrossRef] [PubMed]
  4. C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. Zhou, T. Koschny, C.M. Soukoulis, M. Wegener, and S. Linden, "Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials," Adv. Mater. 17, 2547-2549 (2005).
    [CrossRef]
  5. S. Zhang, W. Fan, N.C. Panoiu, K.J. Malloy, R.M. Osgood, and S.R.J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
    [CrossRef] [PubMed]
  6. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. Zhou, T. Koschny, and C.M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Phys. Rev. Lett. 95, 203901 (2005).
    [CrossRef] [PubMed]
  7. A.N. Grigorenko, A.K. Geim, H.F. Gleeson, Y. Zhang, A.A. Firsov, I.Y. Khrushchev, and J. Petrovic, "Nanofabricated media with negative permeability at visible frequencies," Nature 438, 335-338 (2005).
    [CrossRef] [PubMed]
  8. G. Dolling, C. Enkrich, M. Wegener, J. Zhou, C.M. Soukoulis, and S. Linden, "Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials," Opt. Lett. 30, 3198-3200 (2005).
    [CrossRef] [PubMed]
  9. V.M. Shalaev, W. Cai, U.K. Chettiar, H. Yuan, A.K. Sarychev, V.P. Drachev, and A.V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett. 30, 3356-3358 (2005).
    [CrossRef]
  10. M.W. Klein, C. Enkrich, M. Wegener, C.M. Soukoulis, and S. Linden, "Single-slit split-ring resonators at optical frequencies: limits of size scaling," Opt. Lett. 31, 1259-1261 (2006).
    [CrossRef] [PubMed]
  11. G. Dolling, C. Enkrich, M. Wegener, C.M. Soukoulis, and S. Linden, "Simultaneous negative phase and group velocity of light in a metamaterial," Science 312, 892-894 (2006).
    [CrossRef] [PubMed]
  12. G. Dolling, C. Enkrich, M. Wegener, C.M. Soukoulis, and S. Linden, "Low-loss negative-index metamaterial at telecommunication wavelengths," Opt. Lett. 31, 1800-1802 (2006).
    [CrossRef] [PubMed]
  13. H.C. Guo, D. Nau, A. Radke, X.P. Zhang, J. Stodolka, X.L. Yang, S.G. Tikhodeev, N.A. Gippius, and H. Giessen, "Large-area metallic photonic crystal fabrication with interference lithography and dry etching," Appl. Phys. B 81, 271-275 (2005).
    [CrossRef]
  14. W. Fan, S. Zhang, K.J. Malloy, and S.R.J. Brueck, "Large-area, infrared nanophotonic materials fabricated using interferometric lithography," Jour. Vac. Sci. Tech. B 23, 2700-2704 (2005).
    [CrossRef]
  15. A.N. Lagarkov and A.K. Sarychev, "Electromagnetic properties of composites containing elongated conducting inclusions," Phys. Rev B 53, 6318-6336 (1996).
    [CrossRef]
  16. L. Wu, Y. Zhong, C.T. Chan, K.S. Wong, and G.P. Wang, "Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography," Appl. Phys. Lett. 86, 241102 (2005).
    [CrossRef]
  17. S. Linden, M. Decker, and M. Wegener, "Model system for a one-dimensional magnetic photonic crystal," Phys. Rev. Lett.,  97, 083902 (2006).
    [CrossRef] [PubMed]
  18. S.G. Tikhodeev, A.L. Yablonskii, E.A. Muljarov, N.A. Gippius, and T. Ishihara, "Quasiguided modes and optical properties of photonic crystal slabs," Phys. Rev. B 66, 045102 (2002).
    [CrossRef]
  19. D.M. Whittaker and I.S. Culshaw, "Scattering-matrix treatment of patterned multilayer photonic structures," Phys. Rev. B 60, 2610-2618 (1999).
    [CrossRef]
  20. D.R. Smith, D.C. Vier, T. Koschny, C.M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E 71, 036617 (2005).
    [CrossRef]
  21. T. Koschny, P. Markos, E.N. Economou, D.R. Smith, D.C. Vier, and C.M. Soukoulis, "Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials," Phys. Rev. B 71, 245105 (2005).
    [CrossRef]
  22. G. Dolling, M. Wegener, A. Schädle, S. Burger, and S. Linden, "Observation of magnetization waves in negative-index photonic metamaterials," Appl. Phys. Lett. 89,231118 (2006)
    [CrossRef]

2006 (5)

M.W. Klein, C. Enkrich, M. Wegener, C.M. Soukoulis, and S. Linden, "Single-slit split-ring resonators at optical frequencies: limits of size scaling," Opt. Lett. 31, 1259-1261 (2006).
[CrossRef] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C.M. Soukoulis, and S. Linden, "Simultaneous negative phase and group velocity of light in a metamaterial," Science 312, 892-894 (2006).
[CrossRef] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C.M. Soukoulis, and S. Linden, "Low-loss negative-index metamaterial at telecommunication wavelengths," Opt. Lett. 31, 1800-1802 (2006).
[CrossRef] [PubMed]

S. Linden, M. Decker, and M. Wegener, "Model system for a one-dimensional magnetic photonic crystal," Phys. Rev. Lett.,  97, 083902 (2006).
[CrossRef] [PubMed]

G. Dolling, M. Wegener, A. Schädle, S. Burger, and S. Linden, "Observation of magnetization waves in negative-index photonic metamaterials," Appl. Phys. Lett. 89,231118 (2006)
[CrossRef]

2005 (12)

L. Wu, Y. Zhong, C.T. Chan, K.S. Wong, and G.P. Wang, "Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography," Appl. Phys. Lett. 86, 241102 (2005).
[CrossRef]

D.R. Smith, D.C. Vier, T. Koschny, C.M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E 71, 036617 (2005).
[CrossRef]

T. Koschny, P. Markos, E.N. Economou, D.R. Smith, D.C. Vier, and C.M. Soukoulis, "Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials," Phys. Rev. B 71, 245105 (2005).
[CrossRef]

H.C. Guo, D. Nau, A. Radke, X.P. Zhang, J. Stodolka, X.L. Yang, S.G. Tikhodeev, N.A. Gippius, and H. Giessen, "Large-area metallic photonic crystal fabrication with interference lithography and dry etching," Appl. Phys. B 81, 271-275 (2005).
[CrossRef]

W. Fan, S. Zhang, K.J. Malloy, and S.R.J. Brueck, "Large-area, infrared nanophotonic materials fabricated using interferometric lithography," Jour. Vac. Sci. Tech. B 23, 2700-2704 (2005).
[CrossRef]

S. Zhang, W. Fan, B.K. Minhas, A. Frauenglass, K.J. Malloy, and S.R.J. Brueck, "Midinfrared resonant magnetic nanostructures exhibiting a negative permeability," Phys. Rev. Lett. 94, 037402 (2005).
[CrossRef] [PubMed]

C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. Zhou, T. Koschny, C.M. Soukoulis, M. Wegener, and S. Linden, "Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials," Adv. Mater. 17, 2547-2549 (2005).
[CrossRef]

S. Zhang, W. Fan, N.C. Panoiu, K.J. Malloy, R.M. Osgood, and S.R.J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. Zhou, T. Koschny, and C.M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

A.N. Grigorenko, A.K. Geim, H.F. Gleeson, Y. Zhang, A.A. Firsov, I.Y. Khrushchev, and J. Petrovic, "Nanofabricated media with negative permeability at visible frequencies," Nature 438, 335-338 (2005).
[CrossRef] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, J. Zhou, C.M. Soukoulis, and S. Linden, "Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials," Opt. Lett. 30, 3198-3200 (2005).
[CrossRef] [PubMed]

V.M. Shalaev, W. Cai, U.K. Chettiar, H. Yuan, A.K. Sarychev, V.P. Drachev, and A.V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett. 30, 3356-3358 (2005).
[CrossRef]

2004 (2)

D. R. Smith, J.B. Pendry, and M.C.K. Wiltshire, "Metamaterials and negative refractive index," Science 305, 788-792 (2004).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C.M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science 306, 1351-1353 (2004).
[CrossRef] [PubMed]

2002 (1)

S.G. Tikhodeev, A.L. Yablonskii, E.A. Muljarov, N.A. Gippius, and T. Ishihara, "Quasiguided modes and optical properties of photonic crystal slabs," Phys. Rev. B 66, 045102 (2002).
[CrossRef]

1999 (1)

D.M. Whittaker and I.S. Culshaw, "Scattering-matrix treatment of patterned multilayer photonic structures," Phys. Rev. B 60, 2610-2618 (1999).
[CrossRef]

1996 (1)

A.N. Lagarkov and A.K. Sarychev, "Electromagnetic properties of composites containing elongated conducting inclusions," Phys. Rev B 53, 6318-6336 (1996).
[CrossRef]

Brueck, S.R.J.

S. Zhang, W. Fan, B.K. Minhas, A. Frauenglass, K.J. Malloy, and S.R.J. Brueck, "Midinfrared resonant magnetic nanostructures exhibiting a negative permeability," Phys. Rev. Lett. 94, 037402 (2005).
[CrossRef] [PubMed]

S. Zhang, W. Fan, N.C. Panoiu, K.J. Malloy, R.M. Osgood, and S.R.J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

W. Fan, S. Zhang, K.J. Malloy, and S.R.J. Brueck, "Large-area, infrared nanophotonic materials fabricated using interferometric lithography," Jour. Vac. Sci. Tech. B 23, 2700-2704 (2005).
[CrossRef]

Burger, S.

G. Dolling, M. Wegener, A. Schädle, S. Burger, and S. Linden, "Observation of magnetization waves in negative-index photonic metamaterials," Appl. Phys. Lett. 89,231118 (2006)
[CrossRef]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. Zhou, T. Koschny, and C.M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Cai, W.

Chan, C.T.

L. Wu, Y. Zhong, C.T. Chan, K.S. Wong, and G.P. Wang, "Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography," Appl. Phys. Lett. 86, 241102 (2005).
[CrossRef]

Chettiar, U.K.

Culshaw, I.S.

D.M. Whittaker and I.S. Culshaw, "Scattering-matrix treatment of patterned multilayer photonic structures," Phys. Rev. B 60, 2610-2618 (1999).
[CrossRef]

Decker, M.

S. Linden, M. Decker, and M. Wegener, "Model system for a one-dimensional magnetic photonic crystal," Phys. Rev. Lett.,  97, 083902 (2006).
[CrossRef] [PubMed]

Dolling, G.

G. Dolling, M. Wegener, A. Schädle, S. Burger, and S. Linden, "Observation of magnetization waves in negative-index photonic metamaterials," Appl. Phys. Lett. 89,231118 (2006)
[CrossRef]

G. Dolling, C. Enkrich, M. Wegener, C.M. Soukoulis, and S. Linden, "Simultaneous negative phase and group velocity of light in a metamaterial," Science 312, 892-894 (2006).
[CrossRef] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C.M. Soukoulis, and S. Linden, "Low-loss negative-index metamaterial at telecommunication wavelengths," Opt. Lett. 31, 1800-1802 (2006).
[CrossRef] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, J. Zhou, C.M. Soukoulis, and S. Linden, "Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials," Opt. Lett. 30, 3198-3200 (2005).
[CrossRef] [PubMed]

Drachev, V.P.

Economou, E.N.

T. Koschny, P. Markos, E.N. Economou, D.R. Smith, D.C. Vier, and C.M. Soukoulis, "Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials," Phys. Rev. B 71, 245105 (2005).
[CrossRef]

Enkrich, C.

M.W. Klein, C. Enkrich, M. Wegener, C.M. Soukoulis, and S. Linden, "Single-slit split-ring resonators at optical frequencies: limits of size scaling," Opt. Lett. 31, 1259-1261 (2006).
[CrossRef] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C.M. Soukoulis, and S. Linden, "Simultaneous negative phase and group velocity of light in a metamaterial," Science 312, 892-894 (2006).
[CrossRef] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C.M. Soukoulis, and S. Linden, "Low-loss negative-index metamaterial at telecommunication wavelengths," Opt. Lett. 31, 1800-1802 (2006).
[CrossRef] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, J. Zhou, C.M. Soukoulis, and S. Linden, "Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials," Opt. Lett. 30, 3198-3200 (2005).
[CrossRef] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. Zhou, T. Koschny, and C.M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. Zhou, T. Koschny, C.M. Soukoulis, M. Wegener, and S. Linden, "Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials," Adv. Mater. 17, 2547-2549 (2005).
[CrossRef]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C.M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science 306, 1351-1353 (2004).
[CrossRef] [PubMed]

Fan, W.

S. Zhang, W. Fan, B.K. Minhas, A. Frauenglass, K.J. Malloy, and S.R.J. Brueck, "Midinfrared resonant magnetic nanostructures exhibiting a negative permeability," Phys. Rev. Lett. 94, 037402 (2005).
[CrossRef] [PubMed]

S. Zhang, W. Fan, N.C. Panoiu, K.J. Malloy, R.M. Osgood, and S.R.J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

W. Fan, S. Zhang, K.J. Malloy, and S.R.J. Brueck, "Large-area, infrared nanophotonic materials fabricated using interferometric lithography," Jour. Vac. Sci. Tech. B 23, 2700-2704 (2005).
[CrossRef]

Firsov, A.A.

A.N. Grigorenko, A.K. Geim, H.F. Gleeson, Y. Zhang, A.A. Firsov, I.Y. Khrushchev, and J. Petrovic, "Nanofabricated media with negative permeability at visible frequencies," Nature 438, 335-338 (2005).
[CrossRef] [PubMed]

Frauenglass, A.

S. Zhang, W. Fan, B.K. Minhas, A. Frauenglass, K.J. Malloy, and S.R.J. Brueck, "Midinfrared resonant magnetic nanostructures exhibiting a negative permeability," Phys. Rev. Lett. 94, 037402 (2005).
[CrossRef] [PubMed]

Geim, A.K.

A.N. Grigorenko, A.K. Geim, H.F. Gleeson, Y. Zhang, A.A. Firsov, I.Y. Khrushchev, and J. Petrovic, "Nanofabricated media with negative permeability at visible frequencies," Nature 438, 335-338 (2005).
[CrossRef] [PubMed]

Gerthsen, D.

C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. Zhou, T. Koschny, C.M. Soukoulis, M. Wegener, and S. Linden, "Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials," Adv. Mater. 17, 2547-2549 (2005).
[CrossRef]

Giessen, H.

H.C. Guo, D. Nau, A. Radke, X.P. Zhang, J. Stodolka, X.L. Yang, S.G. Tikhodeev, N.A. Gippius, and H. Giessen, "Large-area metallic photonic crystal fabrication with interference lithography and dry etching," Appl. Phys. B 81, 271-275 (2005).
[CrossRef]

Gippius, N.A.

H.C. Guo, D. Nau, A. Radke, X.P. Zhang, J. Stodolka, X.L. Yang, S.G. Tikhodeev, N.A. Gippius, and H. Giessen, "Large-area metallic photonic crystal fabrication with interference lithography and dry etching," Appl. Phys. B 81, 271-275 (2005).
[CrossRef]

S.G. Tikhodeev, A.L. Yablonskii, E.A. Muljarov, N.A. Gippius, and T. Ishihara, "Quasiguided modes and optical properties of photonic crystal slabs," Phys. Rev. B 66, 045102 (2002).
[CrossRef]

Gleeson, H.F.

A.N. Grigorenko, A.K. Geim, H.F. Gleeson, Y. Zhang, A.A. Firsov, I.Y. Khrushchev, and J. Petrovic, "Nanofabricated media with negative permeability at visible frequencies," Nature 438, 335-338 (2005).
[CrossRef] [PubMed]

Grigorenko, A.N.

A.N. Grigorenko, A.K. Geim, H.F. Gleeson, Y. Zhang, A.A. Firsov, I.Y. Khrushchev, and J. Petrovic, "Nanofabricated media with negative permeability at visible frequencies," Nature 438, 335-338 (2005).
[CrossRef] [PubMed]

Guo, H.C.

H.C. Guo, D. Nau, A. Radke, X.P. Zhang, J. Stodolka, X.L. Yang, S.G. Tikhodeev, N.A. Gippius, and H. Giessen, "Large-area metallic photonic crystal fabrication with interference lithography and dry etching," Appl. Phys. B 81, 271-275 (2005).
[CrossRef]

Ishihara, T.

S.G. Tikhodeev, A.L. Yablonskii, E.A. Muljarov, N.A. Gippius, and T. Ishihara, "Quasiguided modes and optical properties of photonic crystal slabs," Phys. Rev. B 66, 045102 (2002).
[CrossRef]

Khrushchev, I.Y.

A.N. Grigorenko, A.K. Geim, H.F. Gleeson, Y. Zhang, A.A. Firsov, I.Y. Khrushchev, and J. Petrovic, "Nanofabricated media with negative permeability at visible frequencies," Nature 438, 335-338 (2005).
[CrossRef] [PubMed]

Kildishev, A.V.

Klein, M.W.

Koschny, T.

C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. Zhou, T. Koschny, C.M. Soukoulis, M. Wegener, and S. Linden, "Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials," Adv. Mater. 17, 2547-2549 (2005).
[CrossRef]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. Zhou, T. Koschny, and C.M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

T. Koschny, P. Markos, E.N. Economou, D.R. Smith, D.C. Vier, and C.M. Soukoulis, "Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials," Phys. Rev. B 71, 245105 (2005).
[CrossRef]

D.R. Smith, D.C. Vier, T. Koschny, C.M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E 71, 036617 (2005).
[CrossRef]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C.M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science 306, 1351-1353 (2004).
[CrossRef] [PubMed]

Lagarkov, A.N.

A.N. Lagarkov and A.K. Sarychev, "Electromagnetic properties of composites containing elongated conducting inclusions," Phys. Rev B 53, 6318-6336 (1996).
[CrossRef]

Linden, S.

G. Dolling, C. Enkrich, M. Wegener, C.M. Soukoulis, and S. Linden, "Low-loss negative-index metamaterial at telecommunication wavelengths," Opt. Lett. 31, 1800-1802 (2006).
[CrossRef] [PubMed]

S. Linden, M. Decker, and M. Wegener, "Model system for a one-dimensional magnetic photonic crystal," Phys. Rev. Lett.,  97, 083902 (2006).
[CrossRef] [PubMed]

G. Dolling, M. Wegener, A. Schädle, S. Burger, and S. Linden, "Observation of magnetization waves in negative-index photonic metamaterials," Appl. Phys. Lett. 89,231118 (2006)
[CrossRef]

M.W. Klein, C. Enkrich, M. Wegener, C.M. Soukoulis, and S. Linden, "Single-slit split-ring resonators at optical frequencies: limits of size scaling," Opt. Lett. 31, 1259-1261 (2006).
[CrossRef] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C.M. Soukoulis, and S. Linden, "Simultaneous negative phase and group velocity of light in a metamaterial," Science 312, 892-894 (2006).
[CrossRef] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, J. Zhou, C.M. Soukoulis, and S. Linden, "Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials," Opt. Lett. 30, 3198-3200 (2005).
[CrossRef] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. Zhou, T. Koschny, and C.M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. Zhou, T. Koschny, C.M. Soukoulis, M. Wegener, and S. Linden, "Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials," Adv. Mater. 17, 2547-2549 (2005).
[CrossRef]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C.M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science 306, 1351-1353 (2004).
[CrossRef] [PubMed]

Malloy, K.J.

S. Zhang, W. Fan, B.K. Minhas, A. Frauenglass, K.J. Malloy, and S.R.J. Brueck, "Midinfrared resonant magnetic nanostructures exhibiting a negative permeability," Phys. Rev. Lett. 94, 037402 (2005).
[CrossRef] [PubMed]

S. Zhang, W. Fan, N.C. Panoiu, K.J. Malloy, R.M. Osgood, and S.R.J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

W. Fan, S. Zhang, K.J. Malloy, and S.R.J. Brueck, "Large-area, infrared nanophotonic materials fabricated using interferometric lithography," Jour. Vac. Sci. Tech. B 23, 2700-2704 (2005).
[CrossRef]

Markos, P.

T. Koschny, P. Markos, E.N. Economou, D.R. Smith, D.C. Vier, and C.M. Soukoulis, "Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials," Phys. Rev. B 71, 245105 (2005).
[CrossRef]

Minhas, B.K.

S. Zhang, W. Fan, B.K. Minhas, A. Frauenglass, K.J. Malloy, and S.R.J. Brueck, "Midinfrared resonant magnetic nanostructures exhibiting a negative permeability," Phys. Rev. Lett. 94, 037402 (2005).
[CrossRef] [PubMed]

Muljarov, E.A.

S.G. Tikhodeev, A.L. Yablonskii, E.A. Muljarov, N.A. Gippius, and T. Ishihara, "Quasiguided modes and optical properties of photonic crystal slabs," Phys. Rev. B 66, 045102 (2002).
[CrossRef]

Nau, D.

H.C. Guo, D. Nau, A. Radke, X.P. Zhang, J. Stodolka, X.L. Yang, S.G. Tikhodeev, N.A. Gippius, and H. Giessen, "Large-area metallic photonic crystal fabrication with interference lithography and dry etching," Appl. Phys. B 81, 271-275 (2005).
[CrossRef]

Osgood, R.M.

S. Zhang, W. Fan, N.C. Panoiu, K.J. Malloy, R.M. Osgood, and S.R.J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Panoiu, N.C.

S. Zhang, W. Fan, N.C. Panoiu, K.J. Malloy, R.M. Osgood, and S.R.J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Pendry, J.B.

D. R. Smith, J.B. Pendry, and M.C.K. Wiltshire, "Metamaterials and negative refractive index," Science 305, 788-792 (2004).
[CrossRef] [PubMed]

Pérez-Willard, F.

C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. Zhou, T. Koschny, C.M. Soukoulis, M. Wegener, and S. Linden, "Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials," Adv. Mater. 17, 2547-2549 (2005).
[CrossRef]

Petrovic, J.

A.N. Grigorenko, A.K. Geim, H.F. Gleeson, Y. Zhang, A.A. Firsov, I.Y. Khrushchev, and J. Petrovic, "Nanofabricated media with negative permeability at visible frequencies," Nature 438, 335-338 (2005).
[CrossRef] [PubMed]

Radke, A.

H.C. Guo, D. Nau, A. Radke, X.P. Zhang, J. Stodolka, X.L. Yang, S.G. Tikhodeev, N.A. Gippius, and H. Giessen, "Large-area metallic photonic crystal fabrication with interference lithography and dry etching," Appl. Phys. B 81, 271-275 (2005).
[CrossRef]

Sarychev, A.K.

V.M. Shalaev, W. Cai, U.K. Chettiar, H. Yuan, A.K. Sarychev, V.P. Drachev, and A.V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett. 30, 3356-3358 (2005).
[CrossRef]

A.N. Lagarkov and A.K. Sarychev, "Electromagnetic properties of composites containing elongated conducting inclusions," Phys. Rev B 53, 6318-6336 (1996).
[CrossRef]

Schädle, A.

G. Dolling, M. Wegener, A. Schädle, S. Burger, and S. Linden, "Observation of magnetization waves in negative-index photonic metamaterials," Appl. Phys. Lett. 89,231118 (2006)
[CrossRef]

Schmidt, F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. Zhou, T. Koschny, and C.M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Shalaev, V.M.

Smith, D. R.

D. R. Smith, J.B. Pendry, and M.C.K. Wiltshire, "Metamaterials and negative refractive index," Science 305, 788-792 (2004).
[CrossRef] [PubMed]

Smith, D.R.

T. Koschny, P. Markos, E.N. Economou, D.R. Smith, D.C. Vier, and C.M. Soukoulis, "Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials," Phys. Rev. B 71, 245105 (2005).
[CrossRef]

D.R. Smith, D.C. Vier, T. Koschny, C.M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E 71, 036617 (2005).
[CrossRef]

Soukoulis, C.M.

G. Dolling, C. Enkrich, M. Wegener, C.M. Soukoulis, and S. Linden, "Low-loss negative-index metamaterial at telecommunication wavelengths," Opt. Lett. 31, 1800-1802 (2006).
[CrossRef] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C.M. Soukoulis, and S. Linden, "Simultaneous negative phase and group velocity of light in a metamaterial," Science 312, 892-894 (2006).
[CrossRef] [PubMed]

M.W. Klein, C. Enkrich, M. Wegener, C.M. Soukoulis, and S. Linden, "Single-slit split-ring resonators at optical frequencies: limits of size scaling," Opt. Lett. 31, 1259-1261 (2006).
[CrossRef] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, J. Zhou, C.M. Soukoulis, and S. Linden, "Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials," Opt. Lett. 30, 3198-3200 (2005).
[CrossRef] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. Zhou, T. Koschny, and C.M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. Zhou, T. Koschny, C.M. Soukoulis, M. Wegener, and S. Linden, "Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials," Adv. Mater. 17, 2547-2549 (2005).
[CrossRef]

D.R. Smith, D.C. Vier, T. Koschny, C.M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E 71, 036617 (2005).
[CrossRef]

T. Koschny, P. Markos, E.N. Economou, D.R. Smith, D.C. Vier, and C.M. Soukoulis, "Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials," Phys. Rev. B 71, 245105 (2005).
[CrossRef]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C.M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science 306, 1351-1353 (2004).
[CrossRef] [PubMed]

Stodolka, J.

H.C. Guo, D. Nau, A. Radke, X.P. Zhang, J. Stodolka, X.L. Yang, S.G. Tikhodeev, N.A. Gippius, and H. Giessen, "Large-area metallic photonic crystal fabrication with interference lithography and dry etching," Appl. Phys. B 81, 271-275 (2005).
[CrossRef]

Tikhodeev, S.G.

H.C. Guo, D. Nau, A. Radke, X.P. Zhang, J. Stodolka, X.L. Yang, S.G. Tikhodeev, N.A. Gippius, and H. Giessen, "Large-area metallic photonic crystal fabrication with interference lithography and dry etching," Appl. Phys. B 81, 271-275 (2005).
[CrossRef]

S.G. Tikhodeev, A.L. Yablonskii, E.A. Muljarov, N.A. Gippius, and T. Ishihara, "Quasiguided modes and optical properties of photonic crystal slabs," Phys. Rev. B 66, 045102 (2002).
[CrossRef]

Vier, D.C.

D.R. Smith, D.C. Vier, T. Koschny, C.M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E 71, 036617 (2005).
[CrossRef]

T. Koschny, P. Markos, E.N. Economou, D.R. Smith, D.C. Vier, and C.M. Soukoulis, "Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials," Phys. Rev. B 71, 245105 (2005).
[CrossRef]

Wang, G.P.

L. Wu, Y. Zhong, C.T. Chan, K.S. Wong, and G.P. Wang, "Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography," Appl. Phys. Lett. 86, 241102 (2005).
[CrossRef]

Wegener, M.

S. Linden, M. Decker, and M. Wegener, "Model system for a one-dimensional magnetic photonic crystal," Phys. Rev. Lett.,  97, 083902 (2006).
[CrossRef] [PubMed]

G. Dolling, M. Wegener, A. Schädle, S. Burger, and S. Linden, "Observation of magnetization waves in negative-index photonic metamaterials," Appl. Phys. Lett. 89,231118 (2006)
[CrossRef]

G. Dolling, C. Enkrich, M. Wegener, C.M. Soukoulis, and S. Linden, "Simultaneous negative phase and group velocity of light in a metamaterial," Science 312, 892-894 (2006).
[CrossRef] [PubMed]

M.W. Klein, C. Enkrich, M. Wegener, C.M. Soukoulis, and S. Linden, "Single-slit split-ring resonators at optical frequencies: limits of size scaling," Opt. Lett. 31, 1259-1261 (2006).
[CrossRef] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C.M. Soukoulis, and S. Linden, "Low-loss negative-index metamaterial at telecommunication wavelengths," Opt. Lett. 31, 1800-1802 (2006).
[CrossRef] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, J. Zhou, C.M. Soukoulis, and S. Linden, "Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials," Opt. Lett. 30, 3198-3200 (2005).
[CrossRef] [PubMed]

C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. Zhou, T. Koschny, C.M. Soukoulis, M. Wegener, and S. Linden, "Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials," Adv. Mater. 17, 2547-2549 (2005).
[CrossRef]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. Zhou, T. Koschny, and C.M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C.M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science 306, 1351-1353 (2004).
[CrossRef] [PubMed]

Whittaker, D.M.

D.M. Whittaker and I.S. Culshaw, "Scattering-matrix treatment of patterned multilayer photonic structures," Phys. Rev. B 60, 2610-2618 (1999).
[CrossRef]

Wiltshire, M.C.K.

D. R. Smith, J.B. Pendry, and M.C.K. Wiltshire, "Metamaterials and negative refractive index," Science 305, 788-792 (2004).
[CrossRef] [PubMed]

Wong, K.S.

L. Wu, Y. Zhong, C.T. Chan, K.S. Wong, and G.P. Wang, "Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography," Appl. Phys. Lett. 86, 241102 (2005).
[CrossRef]

Wu, L.

L. Wu, Y. Zhong, C.T. Chan, K.S. Wong, and G.P. Wang, "Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography," Appl. Phys. Lett. 86, 241102 (2005).
[CrossRef]

Yablonskii, A.L.

S.G. Tikhodeev, A.L. Yablonskii, E.A. Muljarov, N.A. Gippius, and T. Ishihara, "Quasiguided modes and optical properties of photonic crystal slabs," Phys. Rev. B 66, 045102 (2002).
[CrossRef]

Yang, X.L.

H.C. Guo, D. Nau, A. Radke, X.P. Zhang, J. Stodolka, X.L. Yang, S.G. Tikhodeev, N.A. Gippius, and H. Giessen, "Large-area metallic photonic crystal fabrication with interference lithography and dry etching," Appl. Phys. B 81, 271-275 (2005).
[CrossRef]

Yuan, H.

Zhang, S.

S. Zhang, W. Fan, B.K. Minhas, A. Frauenglass, K.J. Malloy, and S.R.J. Brueck, "Midinfrared resonant magnetic nanostructures exhibiting a negative permeability," Phys. Rev. Lett. 94, 037402 (2005).
[CrossRef] [PubMed]

S. Zhang, W. Fan, N.C. Panoiu, K.J. Malloy, R.M. Osgood, and S.R.J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

W. Fan, S. Zhang, K.J. Malloy, and S.R.J. Brueck, "Large-area, infrared nanophotonic materials fabricated using interferometric lithography," Jour. Vac. Sci. Tech. B 23, 2700-2704 (2005).
[CrossRef]

Zhang, X.P.

H.C. Guo, D. Nau, A. Radke, X.P. Zhang, J. Stodolka, X.L. Yang, S.G. Tikhodeev, N.A. Gippius, and H. Giessen, "Large-area metallic photonic crystal fabrication with interference lithography and dry etching," Appl. Phys. B 81, 271-275 (2005).
[CrossRef]

Zhang, Y.

A.N. Grigorenko, A.K. Geim, H.F. Gleeson, Y. Zhang, A.A. Firsov, I.Y. Khrushchev, and J. Petrovic, "Nanofabricated media with negative permeability at visible frequencies," Nature 438, 335-338 (2005).
[CrossRef] [PubMed]

Zhong, Y.

L. Wu, Y. Zhong, C.T. Chan, K.S. Wong, and G.P. Wang, "Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography," Appl. Phys. Lett. 86, 241102 (2005).
[CrossRef]

Zhou, J.

G. Dolling, C. Enkrich, M. Wegener, J. Zhou, C.M. Soukoulis, and S. Linden, "Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials," Opt. Lett. 30, 3198-3200 (2005).
[CrossRef] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. Zhou, T. Koschny, and C.M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. Zhou, T. Koschny, C.M. Soukoulis, M. Wegener, and S. Linden, "Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials," Adv. Mater. 17, 2547-2549 (2005).
[CrossRef]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C.M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science 306, 1351-1353 (2004).
[CrossRef] [PubMed]

Zschiedrich, L.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. Zhou, T. Koschny, and C.M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Adv. Mater. (1)

C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. Zhou, T. Koschny, C.M. Soukoulis, M. Wegener, and S. Linden, "Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials," Adv. Mater. 17, 2547-2549 (2005).
[CrossRef]

Appl. Phys. B (1)

H.C. Guo, D. Nau, A. Radke, X.P. Zhang, J. Stodolka, X.L. Yang, S.G. Tikhodeev, N.A. Gippius, and H. Giessen, "Large-area metallic photonic crystal fabrication with interference lithography and dry etching," Appl. Phys. B 81, 271-275 (2005).
[CrossRef]

Appl. Phys. Lett. (2)

L. Wu, Y. Zhong, C.T. Chan, K.S. Wong, and G.P. Wang, "Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography," Appl. Phys. Lett. 86, 241102 (2005).
[CrossRef]

G. Dolling, M. Wegener, A. Schädle, S. Burger, and S. Linden, "Observation of magnetization waves in negative-index photonic metamaterials," Appl. Phys. Lett. 89,231118 (2006)
[CrossRef]

Jour. Vac. Sci. Tech. B (1)

W. Fan, S. Zhang, K.J. Malloy, and S.R.J. Brueck, "Large-area, infrared nanophotonic materials fabricated using interferometric lithography," Jour. Vac. Sci. Tech. B 23, 2700-2704 (2005).
[CrossRef]

Nature (1)

A.N. Grigorenko, A.K. Geim, H.F. Gleeson, Y. Zhang, A.A. Firsov, I.Y. Khrushchev, and J. Petrovic, "Nanofabricated media with negative permeability at visible frequencies," Nature 438, 335-338 (2005).
[CrossRef] [PubMed]

Opt. Lett. (4)

Phys. Rev B (1)

A.N. Lagarkov and A.K. Sarychev, "Electromagnetic properties of composites containing elongated conducting inclusions," Phys. Rev B 53, 6318-6336 (1996).
[CrossRef]

Phys. Rev. B (3)

S.G. Tikhodeev, A.L. Yablonskii, E.A. Muljarov, N.A. Gippius, and T. Ishihara, "Quasiguided modes and optical properties of photonic crystal slabs," Phys. Rev. B 66, 045102 (2002).
[CrossRef]

D.M. Whittaker and I.S. Culshaw, "Scattering-matrix treatment of patterned multilayer photonic structures," Phys. Rev. B 60, 2610-2618 (1999).
[CrossRef]

T. Koschny, P. Markos, E.N. Economou, D.R. Smith, D.C. Vier, and C.M. Soukoulis, "Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials," Phys. Rev. B 71, 245105 (2005).
[CrossRef]

Phys. Rev. E (1)

D.R. Smith, D.C. Vier, T. Koschny, C.M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E 71, 036617 (2005).
[CrossRef]

Phys. Rev. Lett. (4)

S. Linden, M. Decker, and M. Wegener, "Model system for a one-dimensional magnetic photonic crystal," Phys. Rev. Lett.,  97, 083902 (2006).
[CrossRef] [PubMed]

S. Zhang, W. Fan, B.K. Minhas, A. Frauenglass, K.J. Malloy, and S.R.J. Brueck, "Midinfrared resonant magnetic nanostructures exhibiting a negative permeability," Phys. Rev. Lett. 94, 037402 (2005).
[CrossRef] [PubMed]

S. Zhang, W. Fan, N.C. Panoiu, K.J. Malloy, R.M. Osgood, and S.R.J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. Zhou, T. Koschny, and C.M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Science (3)

D. R. Smith, J.B. Pendry, and M.C.K. Wiltshire, "Metamaterials and negative refractive index," Science 305, 788-792 (2004).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C.M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science 306, 1351-1353 (2004).
[CrossRef] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C.M. Soukoulis, and S. Linden, "Simultaneous negative phase and group velocity of light in a metamaterial," Science 312, 892-894 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Our robust interference-lithography setup employs a dielectric object to generate two or three partial waves from one largely expanded incident laser beam. (a) Roof-top prism for two partial waves leading to 1D structures, (b) pyramid for three partial waves leading to hexagonal 2D structures. (c) and (d) illustrate the corresponding digitized interference patterns, precisely, those areas where the local light intensity exceeds a certain threshold value (light-gray areas above threshold, dark-gray areas below threshold). (e) and (f) show electron micrographs of structures fabricated along these lines. The oblique-incidence view in the inset in (f) reveals the layer sequence: 20-nm Au (golden), 60-nm MgF2 (blue), and 20-nm Au on glass substrate.

Fig. 2.
Fig. 2.

Measured normal-incidence transmittance spectra (solid curves) of (a) the 1D metamaterial (see Fig. 1(e)) and (b) the 2D metamaterial (see Fig. 1(f)). The dashed curves exhibit calculated spectra for the experimental parameters. (c) and (d) are the retrieved complex magnetic permeabilities μ for the relevant spectral regime.

Fig. 3.
Fig. 3.

Large-scale homogeneity exemplified on the 1D metamaterial (see left-hand side columns in Figs. 1 and 2). The center shows a photograph of the actual structure on a 22 mm × 22 mm glass substrate. The color depends on the viewing angle and stems from Bragg diffraction at visible wavelengths. Infrared transmittance spectra at four well-separated locations are exemplified (compare Fig. 2(a)).

Metrics