Abstract

An amplifier design for efficient amplification of linearly polarized fundamental mode lasers is presented. The concept was verified by amplifying single-frequency input powers from 1 W to 20 W into output power ranges of 35 W up to 65 W. Beam quality measurements with a mode-analyzer cavity showed only minor beam quality degradation due to the amplification process.

© 2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High power single frequency solid state master oscillator power amplifier for gravitational wave detection

Chandrajit Basu, Peter Weßels, Jörg Neumann, and Dietmar Kracht
Opt. Lett. 37(14) 2862-2864 (2012)

TEM00 mode content of a two stage single-frequency Yb-doped PCF MOPA with 246 W of output power

Malte Karow, Chandrajit Basu, Dietmar Kracht, Jörg Neumann, and Peter Weßels
Opt. Express 20(5) 5319-5324 (2012)

Automatic laser beam characterization of monolithic Nd:YAG nonplanar ring lasers

Patrick Kwee and Benno Willke
Appl. Opt. 47(32) 6022-6032 (2008)

References

  • View by:
  • |
  • |
  • |

  1. S. J. Waldman (for the LIGO Science Collaboration), “Status of LIGO at the start of the fifth science run,” Class. Quantum Grav. 23,653–660 (2006).
    [Crossref]
  2. S. Hild (for the LIGO Scientific Collaboration), “The status of GEO 600,” Class. Quantum Grav. 23,643–651 (2006).
    [Crossref]
  3. F. Acernese, et al., “The Virgo status,” Class. Quantum Grav. 23,635–642 (2006).
    [Crossref]
  4. T. J. Kane and R. L. Byer, “Monolithic, unidirectional single-mode Nd:YAG ring laser,” Opt. Lett. 10,65–67 (1985).
    [Crossref] [PubMed]
  5. B. Willke, et al., “The GEO stabilized laser system and the current-lock technique,” Gravitational waves AIP, Melville, AIP Conf. Proc. 523,215 –221 (2000).
    [Crossref]
  6. R. L. Savage, P. J. King, and S. U. Seel, “A highly stabilized 10-watt Nd:YAG laser for the laser Interferometer Gravitational-Wave Observatory (LIGO),” Laser Phys. 8,679–685 (1998).
  7. F. Bondu, et al.,”The VIRGO injection system,” Class. Quantum Grav. 19,1829–1833 (2002).
    [Crossref]
  8. M. Frede, R. Wilhelm, D. Kracht, and C. Fallnich, “195 W Injection-Locked Single-Frequency Laser System,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications, Systems and Technologies 2005 (Optical Society of America, Washington DC, 2005), CMA1.
  9. M. Tsunekane, et al., “Analytical and experimental studies on the characteristics of composite solid state laser rods in diode end pumped geometry,” in IEEE J. Quantum Electron. 3,9–17 (1997).
    [Crossref]
  10. M. Frede, R. Wilhelm, M. Brendel, C. Fallnich, F. Seifert, B. Willke, and K. Danzmann, “High power fundamental mode Nd:YAG laser with efficient birefringence compensation,”Opt. Express 12,3581–3589 (2004).
    [Crossref] [PubMed]
  11. A. E. Siegmann, Lasers, (University Science Books, Sausalito California, 1986).
  12. Y.-F. Chen, “Design criteria for concentration optimization in scaling Diode end-pumped lasers to high powers: Influence of Thermal Fracture,” IEEE J. Quantum Electron. 35,234–239 (1999).
    [Crossref]
  13. B. Billke, et al., “Spatial and temporal filtering of a 10-W Nd:YAG laser with a Fabry-Perot ring-cavity premode cleaner,” Opt. Lett. 23,1704–1706 (1998).
    [Crossref]
  14. P. Kwee, et al., “Diagnostic Breadboard and Laser Characterization,” LIGO Document, LIGO-G060042-00-Z (2006)
  15. G. Mueller, “Beam jitter coupling in advanced LIGO,” Opt. Express 13,7118–7132 (2005).
    [Crossref] [PubMed]

2006 (3)

S. J. Waldman (for the LIGO Science Collaboration), “Status of LIGO at the start of the fifth science run,” Class. Quantum Grav. 23,653–660 (2006).
[Crossref]

S. Hild (for the LIGO Scientific Collaboration), “The status of GEO 600,” Class. Quantum Grav. 23,643–651 (2006).
[Crossref]

F. Acernese, et al., “The Virgo status,” Class. Quantum Grav. 23,635–642 (2006).
[Crossref]

2005 (1)

2004 (1)

2002 (1)

F. Bondu, et al.,”The VIRGO injection system,” Class. Quantum Grav. 19,1829–1833 (2002).
[Crossref]

2000 (1)

B. Willke, et al., “The GEO stabilized laser system and the current-lock technique,” Gravitational waves AIP, Melville, AIP Conf. Proc. 523,215 –221 (2000).
[Crossref]

1999 (1)

Y.-F. Chen, “Design criteria for concentration optimization in scaling Diode end-pumped lasers to high powers: Influence of Thermal Fracture,” IEEE J. Quantum Electron. 35,234–239 (1999).
[Crossref]

1998 (2)

B. Billke, et al., “Spatial and temporal filtering of a 10-W Nd:YAG laser with a Fabry-Perot ring-cavity premode cleaner,” Opt. Lett. 23,1704–1706 (1998).
[Crossref]

R. L. Savage, P. J. King, and S. U. Seel, “A highly stabilized 10-watt Nd:YAG laser for the laser Interferometer Gravitational-Wave Observatory (LIGO),” Laser Phys. 8,679–685 (1998).

1997 (1)

M. Tsunekane, et al., “Analytical and experimental studies on the characteristics of composite solid state laser rods in diode end pumped geometry,” in IEEE J. Quantum Electron. 3,9–17 (1997).
[Crossref]

1985 (1)

Acernese, F.

F. Acernese, et al., “The Virgo status,” Class. Quantum Grav. 23,635–642 (2006).
[Crossref]

Billke, B.

Bondu, F.

F. Bondu, et al.,”The VIRGO injection system,” Class. Quantum Grav. 19,1829–1833 (2002).
[Crossref]

Brendel, M.

Byer, R. L.

Chen, Y.-F.

Y.-F. Chen, “Design criteria for concentration optimization in scaling Diode end-pumped lasers to high powers: Influence of Thermal Fracture,” IEEE J. Quantum Electron. 35,234–239 (1999).
[Crossref]

Danzmann, K.

Fallnich, C.

M. Frede, R. Wilhelm, M. Brendel, C. Fallnich, F. Seifert, B. Willke, and K. Danzmann, “High power fundamental mode Nd:YAG laser with efficient birefringence compensation,”Opt. Express 12,3581–3589 (2004).
[Crossref] [PubMed]

M. Frede, R. Wilhelm, D. Kracht, and C. Fallnich, “195 W Injection-Locked Single-Frequency Laser System,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications, Systems and Technologies 2005 (Optical Society of America, Washington DC, 2005), CMA1.

Frede, M.

M. Frede, R. Wilhelm, M. Brendel, C. Fallnich, F. Seifert, B. Willke, and K. Danzmann, “High power fundamental mode Nd:YAG laser with efficient birefringence compensation,”Opt. Express 12,3581–3589 (2004).
[Crossref] [PubMed]

M. Frede, R. Wilhelm, D. Kracht, and C. Fallnich, “195 W Injection-Locked Single-Frequency Laser System,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications, Systems and Technologies 2005 (Optical Society of America, Washington DC, 2005), CMA1.

Hild, S.

S. Hild (for the LIGO Scientific Collaboration), “The status of GEO 600,” Class. Quantum Grav. 23,643–651 (2006).
[Crossref]

Kane, T. J.

King, P. J.

R. L. Savage, P. J. King, and S. U. Seel, “A highly stabilized 10-watt Nd:YAG laser for the laser Interferometer Gravitational-Wave Observatory (LIGO),” Laser Phys. 8,679–685 (1998).

Kracht, D.

M. Frede, R. Wilhelm, D. Kracht, and C. Fallnich, “195 W Injection-Locked Single-Frequency Laser System,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications, Systems and Technologies 2005 (Optical Society of America, Washington DC, 2005), CMA1.

Kwee, P.

P. Kwee, et al., “Diagnostic Breadboard and Laser Characterization,” LIGO Document, LIGO-G060042-00-Z (2006)

Mueller, G.

Savage, R. L.

R. L. Savage, P. J. King, and S. U. Seel, “A highly stabilized 10-watt Nd:YAG laser for the laser Interferometer Gravitational-Wave Observatory (LIGO),” Laser Phys. 8,679–685 (1998).

Seel, S. U.

R. L. Savage, P. J. King, and S. U. Seel, “A highly stabilized 10-watt Nd:YAG laser for the laser Interferometer Gravitational-Wave Observatory (LIGO),” Laser Phys. 8,679–685 (1998).

Seifert, F.

Siegmann, A. E.

A. E. Siegmann, Lasers, (University Science Books, Sausalito California, 1986).

Tsunekane, M.

M. Tsunekane, et al., “Analytical and experimental studies on the characteristics of composite solid state laser rods in diode end pumped geometry,” in IEEE J. Quantum Electron. 3,9–17 (1997).
[Crossref]

Waldman, S. J.

S. J. Waldman (for the LIGO Science Collaboration), “Status of LIGO at the start of the fifth science run,” Class. Quantum Grav. 23,653–660 (2006).
[Crossref]

Wilhelm, R.

M. Frede, R. Wilhelm, M. Brendel, C. Fallnich, F. Seifert, B. Willke, and K. Danzmann, “High power fundamental mode Nd:YAG laser with efficient birefringence compensation,”Opt. Express 12,3581–3589 (2004).
[Crossref] [PubMed]

M. Frede, R. Wilhelm, D. Kracht, and C. Fallnich, “195 W Injection-Locked Single-Frequency Laser System,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications, Systems and Technologies 2005 (Optical Society of America, Washington DC, 2005), CMA1.

Willke, B.

M. Frede, R. Wilhelm, M. Brendel, C. Fallnich, F. Seifert, B. Willke, and K. Danzmann, “High power fundamental mode Nd:YAG laser with efficient birefringence compensation,”Opt. Express 12,3581–3589 (2004).
[Crossref] [PubMed]

B. Willke, et al., “The GEO stabilized laser system and the current-lock technique,” Gravitational waves AIP, Melville, AIP Conf. Proc. 523,215 –221 (2000).
[Crossref]

Class. Quantum Grav. (4)

S. J. Waldman (for the LIGO Science Collaboration), “Status of LIGO at the start of the fifth science run,” Class. Quantum Grav. 23,653–660 (2006).
[Crossref]

S. Hild (for the LIGO Scientific Collaboration), “The status of GEO 600,” Class. Quantum Grav. 23,643–651 (2006).
[Crossref]

F. Acernese, et al., “The Virgo status,” Class. Quantum Grav. 23,635–642 (2006).
[Crossref]

F. Bondu, et al.,”The VIRGO injection system,” Class. Quantum Grav. 19,1829–1833 (2002).
[Crossref]

Conf. Proc. (1)

B. Willke, et al., “The GEO stabilized laser system and the current-lock technique,” Gravitational waves AIP, Melville, AIP Conf. Proc. 523,215 –221 (2000).
[Crossref]

IEEE J. Quantum Electron. (1)

Y.-F. Chen, “Design criteria for concentration optimization in scaling Diode end-pumped lasers to high powers: Influence of Thermal Fracture,” IEEE J. Quantum Electron. 35,234–239 (1999).
[Crossref]

in IEEE J. Quantum Electron. (1)

M. Tsunekane, et al., “Analytical and experimental studies on the characteristics of composite solid state laser rods in diode end pumped geometry,” in IEEE J. Quantum Electron. 3,9–17 (1997).
[Crossref]

Laser Phys. (1)

R. L. Savage, P. J. King, and S. U. Seel, “A highly stabilized 10-watt Nd:YAG laser for the laser Interferometer Gravitational-Wave Observatory (LIGO),” Laser Phys. 8,679–685 (1998).

Opt. Express (2)

Opt. Lett. (2)

Other (3)

M. Frede, R. Wilhelm, D. Kracht, and C. Fallnich, “195 W Injection-Locked Single-Frequency Laser System,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications, Systems and Technologies 2005 (Optical Society of America, Washington DC, 2005), CMA1.

P. Kwee, et al., “Diagnostic Breadboard and Laser Characterization,” LIGO Document, LIGO-G060042-00-Z (2006)

A. E. Siegmann, Lasers, (University Science Books, Sausalito California, 1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Setup of the four stage amplifier design with an NPRO seed source.

Fig. 2.
Fig. 2.

Temperature dependency of the laser emission of Nd:YAG and Nd:YVO4.

Fig. 3.
Fig. 3.

(left) Output power and amplification factor versus input power for a single amplifier module pumped with 38W of pump power. (right) Output power versus input power for 1 up to 4 amplifier stages in series.

Fig. 4.
Fig. 4.

Mode-analyser scan to verify the content of the TEM0,0 mode compared to other higher order modes. In the magnified scan some higher order modes can be distinguished.

Fig. 5.
Fig. 5.

Measurement of the relative intensity noise for the two and four stage amplifier design.

Fig. 6.
Fig. 6.

Output power versus input power for the four stage amplifier and seed laser powers up to 18 W.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε = [ ( δα ( f ) θ D ) 2 + ( δx ( f ) ω 0 ) 2 ] 1 2

Metrics