Abstract

We demonstrated high-speed transmission at visible wavelengths over a 1 km photonic crystal fiber (PCF). We achieved a 1 Gbit/s transmission at 783 nm by using the direct modulation of a cost-effective Fabry-Perot laser diode (FP-LD). By employing the external modulation of the longitudinally single-mode grating-stabilized LD, we obtained the first penalty free 10 Gbit/s transmission at 780 nm.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, T. A. Birks, D. M. Atkin, and P. St. J. Russell, "Pure silica single-mode fibre with hexagonal photonic crystal cladding," in Proceedings of Optical Fiber Communication Conference, postdeadline paper PD3, San Jose, USA (1996).
  2. T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]
  3. D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, "Group-velocity dispersion in photonic crystal fibers," Opt. Lett. 23, 1662-1664 (1998).
    [CrossRef]
  4. K. Nakajima, J. Zhou, K. Tajima, K. Kurokawa, C. Fukai, and I. Sankawa, "Ultra wide band 190 Gbit/s WDM transmission over a long length and low loss PCF," in Proceedings of Optical Fiber Communication Conference, postdeadline paper PDP23, Los Angeles, USA (2004).
  5. K. Tajima, J. Zhou, K. Kurokawa and K. Nakajima, "Low water peak photonic crystal fibres," in Proceedings of European Conference on Optical Communication, postdeadline paper Th4.1.6, Rimini, Italy (2003).
  6. C. Peucheret, B. Zsigri, P. A. Andersen, K. S. Berg, A. Tersigni, P. Jeppesen, K. P. Hansen, and M. D. Nielsen, "40 Gbit/s transmission over photonic crystal fibre using mid-span spectral inversion in highly nonlinear photonic crystal fibre," Electron. Lett. 39, 919-921 (2003).
    [CrossRef]
  7. K. Kurokawa, K. Tajima, J. Zhou, K. Nakajima, T. Matsui, and I. Sankawa, "Penalty-free dispersion-managed soliton transmission over 100 km low loss PCF," in Proceedings of Optical Fiber Communication Conference, postdeadline paper PDP21, Anaheim, USA (2005).
  8. K. Tsujikawa, K. Kurokawa, K. Tajima, K. Nakajima, T. Matsui, and I. Sankawa, "Penalty-free 10 Gb/s transmission in 1.0 μm band over 24 km low loss PCF," in Proceedings of European Conference on Optical Communication, paper Tu4.4.2, Glasgow, UK (2005).
  9. W. Li, G. Khoe, H. v. d. Boom, G. Yabre, H. de Waardt, Y. Koike, S. Yamazaki, K. Nakamura, and Y. Kawaharada, "2.5 Gbit/s transmission over 200 m PMMA graded index polymer optical fibre using 645 nm narrow spectrum laser," in Proceedings of Annual Meeting of the IEEE Lasers and Electro-optics Society, paper FB3, Orlando, USA (1998).
  10. T. Koonen, H. v. d. Boom, I. T. Monroy, and G. Khoe, "Broadband data communication techniques in POF-based networks," in Proceedings of European Conference on Optical Communication, paper Mo.A.2.1, Amsterdam, The Netherlands (2001).
  11. K. Ieda, K. Kurokawa, T. Shimizu, K. Tajima, K. Nakajima, T. Matsui, K. Tsujikawa, K. Shiraki, and I. Sankawa, "Visible to infrared WDM transmission over PCF," in Proceedings of European Conference on Optical Communication, paper Tu3.3.4, Cannes, France (2006).
  12. K. Ogawa, "Analysis of mode partition noise in laser transmission systems," IEEE J. Quantum Electron. QE-18, 849-855 (1982).
    [CrossRef]
  13. G. P. Agrawal, Fiber-optic communication systems, (New York, John Wiley & Sons, 1997).
  14. K. Kurokawa, K. Nakajima, K. Tsujikawa, K. Tajima, T. Matsui, and I. Sankawa, "Penalty-free 40 Gb/s transmission in 1000 nm band over low loss PCF", in Proceedings of Optical Fiber Communication Conference, paper OThH2, Anaheim, USA (2006).

2003 (1)

C. Peucheret, B. Zsigri, P. A. Andersen, K. S. Berg, A. Tersigni, P. Jeppesen, K. P. Hansen, and M. D. Nielsen, "40 Gbit/s transmission over photonic crystal fibre using mid-span spectral inversion in highly nonlinear photonic crystal fibre," Electron. Lett. 39, 919-921 (2003).
[CrossRef]

1998 (1)

1997 (1)

1982 (1)

K. Ogawa, "Analysis of mode partition noise in laser transmission systems," IEEE J. Quantum Electron. QE-18, 849-855 (1982).
[CrossRef]

Andersen, P. A.

C. Peucheret, B. Zsigri, P. A. Andersen, K. S. Berg, A. Tersigni, P. Jeppesen, K. P. Hansen, and M. D. Nielsen, "40 Gbit/s transmission over photonic crystal fibre using mid-span spectral inversion in highly nonlinear photonic crystal fibre," Electron. Lett. 39, 919-921 (2003).
[CrossRef]

Berg, K. S.

C. Peucheret, B. Zsigri, P. A. Andersen, K. S. Berg, A. Tersigni, P. Jeppesen, K. P. Hansen, and M. D. Nielsen, "40 Gbit/s transmission over photonic crystal fibre using mid-span spectral inversion in highly nonlinear photonic crystal fibre," Electron. Lett. 39, 919-921 (2003).
[CrossRef]

Birks, T. A.

Hansen, K. P.

C. Peucheret, B. Zsigri, P. A. Andersen, K. S. Berg, A. Tersigni, P. Jeppesen, K. P. Hansen, and M. D. Nielsen, "40 Gbit/s transmission over photonic crystal fibre using mid-span spectral inversion in highly nonlinear photonic crystal fibre," Electron. Lett. 39, 919-921 (2003).
[CrossRef]

Jeppesen, P.

C. Peucheret, B. Zsigri, P. A. Andersen, K. S. Berg, A. Tersigni, P. Jeppesen, K. P. Hansen, and M. D. Nielsen, "40 Gbit/s transmission over photonic crystal fibre using mid-span spectral inversion in highly nonlinear photonic crystal fibre," Electron. Lett. 39, 919-921 (2003).
[CrossRef]

Knight, J. C.

Mogilevtsev, D.

Nielsen, M. D.

C. Peucheret, B. Zsigri, P. A. Andersen, K. S. Berg, A. Tersigni, P. Jeppesen, K. P. Hansen, and M. D. Nielsen, "40 Gbit/s transmission over photonic crystal fibre using mid-span spectral inversion in highly nonlinear photonic crystal fibre," Electron. Lett. 39, 919-921 (2003).
[CrossRef]

Ogawa, K.

K. Ogawa, "Analysis of mode partition noise in laser transmission systems," IEEE J. Quantum Electron. QE-18, 849-855 (1982).
[CrossRef]

Peucheret, C.

C. Peucheret, B. Zsigri, P. A. Andersen, K. S. Berg, A. Tersigni, P. Jeppesen, K. P. Hansen, and M. D. Nielsen, "40 Gbit/s transmission over photonic crystal fibre using mid-span spectral inversion in highly nonlinear photonic crystal fibre," Electron. Lett. 39, 919-921 (2003).
[CrossRef]

Russell, P. St. J.

Tersigni, A.

C. Peucheret, B. Zsigri, P. A. Andersen, K. S. Berg, A. Tersigni, P. Jeppesen, K. P. Hansen, and M. D. Nielsen, "40 Gbit/s transmission over photonic crystal fibre using mid-span spectral inversion in highly nonlinear photonic crystal fibre," Electron. Lett. 39, 919-921 (2003).
[CrossRef]

Zsigri, B.

C. Peucheret, B. Zsigri, P. A. Andersen, K. S. Berg, A. Tersigni, P. Jeppesen, K. P. Hansen, and M. D. Nielsen, "40 Gbit/s transmission over photonic crystal fibre using mid-span spectral inversion in highly nonlinear photonic crystal fibre," Electron. Lett. 39, 919-921 (2003).
[CrossRef]

Electron. Lett. (1)

C. Peucheret, B. Zsigri, P. A. Andersen, K. S. Berg, A. Tersigni, P. Jeppesen, K. P. Hansen, and M. D. Nielsen, "40 Gbit/s transmission over photonic crystal fibre using mid-span spectral inversion in highly nonlinear photonic crystal fibre," Electron. Lett. 39, 919-921 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Ogawa, "Analysis of mode partition noise in laser transmission systems," IEEE J. Quantum Electron. QE-18, 849-855 (1982).
[CrossRef]

Opt. Lett. (2)

Other (10)

K. Nakajima, J. Zhou, K. Tajima, K. Kurokawa, C. Fukai, and I. Sankawa, "Ultra wide band 190 Gbit/s WDM transmission over a long length and low loss PCF," in Proceedings of Optical Fiber Communication Conference, postdeadline paper PDP23, Los Angeles, USA (2004).

K. Tajima, J. Zhou, K. Kurokawa and K. Nakajima, "Low water peak photonic crystal fibres," in Proceedings of European Conference on Optical Communication, postdeadline paper Th4.1.6, Rimini, Italy (2003).

K. Kurokawa, K. Tajima, J. Zhou, K. Nakajima, T. Matsui, and I. Sankawa, "Penalty-free dispersion-managed soliton transmission over 100 km low loss PCF," in Proceedings of Optical Fiber Communication Conference, postdeadline paper PDP21, Anaheim, USA (2005).

K. Tsujikawa, K. Kurokawa, K. Tajima, K. Nakajima, T. Matsui, and I. Sankawa, "Penalty-free 10 Gb/s transmission in 1.0 μm band over 24 km low loss PCF," in Proceedings of European Conference on Optical Communication, paper Tu4.4.2, Glasgow, UK (2005).

W. Li, G. Khoe, H. v. d. Boom, G. Yabre, H. de Waardt, Y. Koike, S. Yamazaki, K. Nakamura, and Y. Kawaharada, "2.5 Gbit/s transmission over 200 m PMMA graded index polymer optical fibre using 645 nm narrow spectrum laser," in Proceedings of Annual Meeting of the IEEE Lasers and Electro-optics Society, paper FB3, Orlando, USA (1998).

T. Koonen, H. v. d. Boom, I. T. Monroy, and G. Khoe, "Broadband data communication techniques in POF-based networks," in Proceedings of European Conference on Optical Communication, paper Mo.A.2.1, Amsterdam, The Netherlands (2001).

K. Ieda, K. Kurokawa, T. Shimizu, K. Tajima, K. Nakajima, T. Matsui, K. Tsujikawa, K. Shiraki, and I. Sankawa, "Visible to infrared WDM transmission over PCF," in Proceedings of European Conference on Optical Communication, paper Tu3.3.4, Cannes, France (2006).

G. P. Agrawal, Fiber-optic communication systems, (New York, John Wiley & Sons, 1997).

K. Kurokawa, K. Nakajima, K. Tsujikawa, K. Tajima, T. Matsui, and I. Sankawa, "Penalty-free 40 Gb/s transmission in 1000 nm band over low loss PCF", in Proceedings of Optical Fiber Communication Conference, paper OThH2, Anaheim, USA (2006).

J. C. Knight, T. A. Birks, D. M. Atkin, and P. St. J. Russell, "Pure silica single-mode fibre with hexagonal photonic crystal cladding," in Proceedings of Optical Fiber Communication Conference, postdeadline paper PD3, San Jose, USA (1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Optical loss and chromatic dispersion of PCF.

Fig. 2.
Fig. 2.

Experimental setup for 1 Gbit/s transmission.

Fig. 3.
Fig. 3.

BER curves before and after transmission.

Fig. 4.
Fig. 4.

Experimental setup for 10 Gbit/s transmission.

Fig. 5.
Fig. 5.

BER curves before and after transmission.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

β 2 L < 1280 ( ps 2 ) ,
D = 2 πc λ 2 β 2 .
β 2 L < 80 ( ps 2 ) .

Metrics