Abstract

A novel Er-doped silica fiber, with heavy Er doping, was specially developed for application to a single frequency fiber laser. Two high temperature-sustainable fiber Bragg gratings, written into Bi-Ge codoped photosensitive fiber, were chosen for the application and spliced to the specialist Er doped silica fiber to form a compact, linear cavity, fiber laser. The fiber laser retained single mode oscillation over a wide temperature range, from room temperature to 400 °C. The wavelength of the laser output could be tuned smoothly, without mode hopping being observed, when the temperature was changed. A narrow linewidth of less than 1 kHz was measured at the output of fiber laser and this indicates the potential of the fibre laser sensing system with extremely high sensitivity and resolution over this wide range.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Mandal, Y. Shen, S. Suchandan,  et al, "Bragg grating tuned fiber laser system for measurement of wider range temperature and strain," Opt. Commun. 244, 111-121 (2005).
    [CrossRef]
  2. J. L. Zyskind, V. Mizrahi, D. J. Digiovanni et al, "Short single frequency erbium-doped fiber laser," Electron. Lett. 28, 1385-1387 (1992).
    [CrossRef]
  3. R. J. Mears, L. Reekie, S. B. Poole and D. N. Payne, "Neodymium-doped silica single-mode fiber laser," Electron Lett. 21, 738-740 (1985).
    [CrossRef]
  4. Y. W. Song, S. A. Havstad, D. Starodubov,  et al. "40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG," IEEE Photon. Technol. Lett. 13,1167-1169 (2001).
    [CrossRef]
  5. D. S. Moon, U. C. Paek, Y. J. Chung, "Polarization controlled multi-wavelength Er-doped fiber laser using fiber Bragg grating written in few-mode side-hole fiber with an elliptical core," Opt. Express 13, 5574-5579 (2005).
    [CrossRef] [PubMed]
  6. L. Dong, W. H. Loh, J. E. Caplen,  et al, "Efficient single-frequency fiber lasers with novel photosensitive Er/Yb optical fibers," Opt. Lett. 22, 694 - 696 (1997).
    [CrossRef] [PubMed]
  7. C. Spiegelberg, J. H. Geng, Y. D. Hu,  et al, "Low-noise narrow-linewidth fiber laser at 1550 nm," J. Lightwave Technol. 22, 57 - 62 (2004).
    [CrossRef]
  8. Y. Shen, J. He, T. Sun and K.T.V. Grattan, "High temperature sustainability of strong FBGs written into Sb/Ge co-doped photosensitive fiber — decay mechanisms involved during annealing," Opt. Lett. 29, 554 - 556 (2004).
    [CrossRef] [PubMed]
  9. Y. Shen, J. He, Y. Qiu et al, "Thermal decay characteristics of strong FBGs showing high temperature sustainability," submitted to JOSA. B
  10. Y. Shen, T. Sun, K. T. V. Grattan and M. Sun, "Highly photosensitive Sb/ Er/Ge codoped silica fiber for fiber Bragg grating (FBG) writing with strong high-temperature sustainability," Opt. Lett. 28, 2025 - 2027 (2003).
    [CrossRef] [PubMed]
  11. F. Auzel, D. Meichenin, A. Mendorioz,  et al, "Determination of the quantum efficiency of Er3+ in glasses: indirect and direct methods," J. Lumin. 72-74, 152 - 154 (1997).
    [CrossRef]
  12. Y. Yao, X. Chen, Y. Dai,  et al, "Dual-wavelength erbium doped fiber laser with a simple linear cavity and its application in microwave generation," IEEE Photon. Technol. Lett. 18, 187 - 189 (2006).
    [CrossRef]
  13. F. Sanchez, P. Le Boudec, P. L. Francois and G. Stephan, "Effects of ion pairs on the dynamics of erbium-doped fiber lasers," Phys. Rev. A 48, 2220-2229 (1992).
    [CrossRef]
  14. W. H. Loh, "Suppression of self-pulsing behavior in erbium-doped fiber lasers with resonant pumping," Opt. Lett. 21, 734 - 736 (1996).
    [CrossRef] [PubMed]
  15. See dBm Optics website: http://www.dbmoptics.com/products/occi/spect.php
  16. S. Pal, Y. Shen, J. Mandal,  et al, "Simultaneous measurement of strain and temperature using a combined Sb-Er-Ge codoped fiber fluorescence and grating-based technique," IEEE Sensors J. 5, 1462-1468 (2005).
    [CrossRef]

2006 (1)

Y. Yao, X. Chen, Y. Dai,  et al, "Dual-wavelength erbium doped fiber laser with a simple linear cavity and its application in microwave generation," IEEE Photon. Technol. Lett. 18, 187 - 189 (2006).
[CrossRef]

2005 (3)

S. Pal, Y. Shen, J. Mandal,  et al, "Simultaneous measurement of strain and temperature using a combined Sb-Er-Ge codoped fiber fluorescence and grating-based technique," IEEE Sensors J. 5, 1462-1468 (2005).
[CrossRef]

J. Mandal, Y. Shen, S. Suchandan,  et al, "Bragg grating tuned fiber laser system for measurement of wider range temperature and strain," Opt. Commun. 244, 111-121 (2005).
[CrossRef]

D. S. Moon, U. C. Paek, Y. J. Chung, "Polarization controlled multi-wavelength Er-doped fiber laser using fiber Bragg grating written in few-mode side-hole fiber with an elliptical core," Opt. Express 13, 5574-5579 (2005).
[CrossRef] [PubMed]

2004 (2)

2003 (1)

2001 (1)

Y. W. Song, S. A. Havstad, D. Starodubov,  et al. "40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG," IEEE Photon. Technol. Lett. 13,1167-1169 (2001).
[CrossRef]

1997 (2)

F. Auzel, D. Meichenin, A. Mendorioz,  et al, "Determination of the quantum efficiency of Er3+ in glasses: indirect and direct methods," J. Lumin. 72-74, 152 - 154 (1997).
[CrossRef]

L. Dong, W. H. Loh, J. E. Caplen,  et al, "Efficient single-frequency fiber lasers with novel photosensitive Er/Yb optical fibers," Opt. Lett. 22, 694 - 696 (1997).
[CrossRef] [PubMed]

1996 (1)

1992 (2)

F. Sanchez, P. Le Boudec, P. L. Francois and G. Stephan, "Effects of ion pairs on the dynamics of erbium-doped fiber lasers," Phys. Rev. A 48, 2220-2229 (1992).
[CrossRef]

J. L. Zyskind, V. Mizrahi, D. J. Digiovanni et al, "Short single frequency erbium-doped fiber laser," Electron. Lett. 28, 1385-1387 (1992).
[CrossRef]

1985 (1)

R. J. Mears, L. Reekie, S. B. Poole and D. N. Payne, "Neodymium-doped silica single-mode fiber laser," Electron Lett. 21, 738-740 (1985).
[CrossRef]

Auzel, F.

F. Auzel, D. Meichenin, A. Mendorioz,  et al, "Determination of the quantum efficiency of Er3+ in glasses: indirect and direct methods," J. Lumin. 72-74, 152 - 154 (1997).
[CrossRef]

Caplen, J. E.

Chen, X.

Y. Yao, X. Chen, Y. Dai,  et al, "Dual-wavelength erbium doped fiber laser with a simple linear cavity and its application in microwave generation," IEEE Photon. Technol. Lett. 18, 187 - 189 (2006).
[CrossRef]

Chung, Y. J.

Dai, Y.

Y. Yao, X. Chen, Y. Dai,  et al, "Dual-wavelength erbium doped fiber laser with a simple linear cavity and its application in microwave generation," IEEE Photon. Technol. Lett. 18, 187 - 189 (2006).
[CrossRef]

Digiovanni, D. J.

J. L. Zyskind, V. Mizrahi, D. J. Digiovanni et al, "Short single frequency erbium-doped fiber laser," Electron. Lett. 28, 1385-1387 (1992).
[CrossRef]

Dong, L.

Francois, P. L.

F. Sanchez, P. Le Boudec, P. L. Francois and G. Stephan, "Effects of ion pairs on the dynamics of erbium-doped fiber lasers," Phys. Rev. A 48, 2220-2229 (1992).
[CrossRef]

Geng, J. H.

Grattan, K. T. V.

Grattan, K.T.V.

Havstad, S. A.

Y. W. Song, S. A. Havstad, D. Starodubov,  et al. "40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG," IEEE Photon. Technol. Lett. 13,1167-1169 (2001).
[CrossRef]

He, J.

Hu, Y. D.

Le Boudec, P.

F. Sanchez, P. Le Boudec, P. L. Francois and G. Stephan, "Effects of ion pairs on the dynamics of erbium-doped fiber lasers," Phys. Rev. A 48, 2220-2229 (1992).
[CrossRef]

Loh, W. H.

Mandal, J.

J. Mandal, Y. Shen, S. Suchandan,  et al, "Bragg grating tuned fiber laser system for measurement of wider range temperature and strain," Opt. Commun. 244, 111-121 (2005).
[CrossRef]

S. Pal, Y. Shen, J. Mandal,  et al, "Simultaneous measurement of strain and temperature using a combined Sb-Er-Ge codoped fiber fluorescence and grating-based technique," IEEE Sensors J. 5, 1462-1468 (2005).
[CrossRef]

Mears, R. J.

R. J. Mears, L. Reekie, S. B. Poole and D. N. Payne, "Neodymium-doped silica single-mode fiber laser," Electron Lett. 21, 738-740 (1985).
[CrossRef]

Meichenin, D.

F. Auzel, D. Meichenin, A. Mendorioz,  et al, "Determination of the quantum efficiency of Er3+ in glasses: indirect and direct methods," J. Lumin. 72-74, 152 - 154 (1997).
[CrossRef]

Mendorioz, A.

F. Auzel, D. Meichenin, A. Mendorioz,  et al, "Determination of the quantum efficiency of Er3+ in glasses: indirect and direct methods," J. Lumin. 72-74, 152 - 154 (1997).
[CrossRef]

Mizrahi, V.

J. L. Zyskind, V. Mizrahi, D. J. Digiovanni et al, "Short single frequency erbium-doped fiber laser," Electron. Lett. 28, 1385-1387 (1992).
[CrossRef]

Moon, D. S.

Paek, U. C.

Pal, S.

S. Pal, Y. Shen, J. Mandal,  et al, "Simultaneous measurement of strain and temperature using a combined Sb-Er-Ge codoped fiber fluorescence and grating-based technique," IEEE Sensors J. 5, 1462-1468 (2005).
[CrossRef]

Payne, D. N.

R. J. Mears, L. Reekie, S. B. Poole and D. N. Payne, "Neodymium-doped silica single-mode fiber laser," Electron Lett. 21, 738-740 (1985).
[CrossRef]

Poole, S. B.

R. J. Mears, L. Reekie, S. B. Poole and D. N. Payne, "Neodymium-doped silica single-mode fiber laser," Electron Lett. 21, 738-740 (1985).
[CrossRef]

Qiu, Y.

Y. Shen, J. He, Y. Qiu et al, "Thermal decay characteristics of strong FBGs showing high temperature sustainability," submitted to JOSA. B

Reekie, L.

R. J. Mears, L. Reekie, S. B. Poole and D. N. Payne, "Neodymium-doped silica single-mode fiber laser," Electron Lett. 21, 738-740 (1985).
[CrossRef]

Sanchez, F.

F. Sanchez, P. Le Boudec, P. L. Francois and G. Stephan, "Effects of ion pairs on the dynamics of erbium-doped fiber lasers," Phys. Rev. A 48, 2220-2229 (1992).
[CrossRef]

Shen, Y.

S. Pal, Y. Shen, J. Mandal,  et al, "Simultaneous measurement of strain and temperature using a combined Sb-Er-Ge codoped fiber fluorescence and grating-based technique," IEEE Sensors J. 5, 1462-1468 (2005).
[CrossRef]

J. Mandal, Y. Shen, S. Suchandan,  et al, "Bragg grating tuned fiber laser system for measurement of wider range temperature and strain," Opt. Commun. 244, 111-121 (2005).
[CrossRef]

Y. Shen, J. He, T. Sun and K.T.V. Grattan, "High temperature sustainability of strong FBGs written into Sb/Ge co-doped photosensitive fiber — decay mechanisms involved during annealing," Opt. Lett. 29, 554 - 556 (2004).
[CrossRef] [PubMed]

Y. Shen, T. Sun, K. T. V. Grattan and M. Sun, "Highly photosensitive Sb/ Er/Ge codoped silica fiber for fiber Bragg grating (FBG) writing with strong high-temperature sustainability," Opt. Lett. 28, 2025 - 2027 (2003).
[CrossRef] [PubMed]

Y. Shen, J. He, Y. Qiu et al, "Thermal decay characteristics of strong FBGs showing high temperature sustainability," submitted to JOSA. B

Song, Y. W.

Y. W. Song, S. A. Havstad, D. Starodubov,  et al. "40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG," IEEE Photon. Technol. Lett. 13,1167-1169 (2001).
[CrossRef]

Spiegelberg, C.

Starodubov, D.

Y. W. Song, S. A. Havstad, D. Starodubov,  et al. "40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG," IEEE Photon. Technol. Lett. 13,1167-1169 (2001).
[CrossRef]

Stephan, G.

F. Sanchez, P. Le Boudec, P. L. Francois and G. Stephan, "Effects of ion pairs on the dynamics of erbium-doped fiber lasers," Phys. Rev. A 48, 2220-2229 (1992).
[CrossRef]

Suchandan, S.

J. Mandal, Y. Shen, S. Suchandan,  et al, "Bragg grating tuned fiber laser system for measurement of wider range temperature and strain," Opt. Commun. 244, 111-121 (2005).
[CrossRef]

Sun, M.

Sun, T.

Yao, Y.

Y. Yao, X. Chen, Y. Dai,  et al, "Dual-wavelength erbium doped fiber laser with a simple linear cavity and its application in microwave generation," IEEE Photon. Technol. Lett. 18, 187 - 189 (2006).
[CrossRef]

Zyskind, J. L.

J. L. Zyskind, V. Mizrahi, D. J. Digiovanni et al, "Short single frequency erbium-doped fiber laser," Electron. Lett. 28, 1385-1387 (1992).
[CrossRef]

Electron Lett. (1)

R. J. Mears, L. Reekie, S. B. Poole and D. N. Payne, "Neodymium-doped silica single-mode fiber laser," Electron Lett. 21, 738-740 (1985).
[CrossRef]

Electron. Lett. (1)

J. L. Zyskind, V. Mizrahi, D. J. Digiovanni et al, "Short single frequency erbium-doped fiber laser," Electron. Lett. 28, 1385-1387 (1992).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Y. W. Song, S. A. Havstad, D. Starodubov,  et al. "40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG," IEEE Photon. Technol. Lett. 13,1167-1169 (2001).
[CrossRef]

Y. Yao, X. Chen, Y. Dai,  et al, "Dual-wavelength erbium doped fiber laser with a simple linear cavity and its application in microwave generation," IEEE Photon. Technol. Lett. 18, 187 - 189 (2006).
[CrossRef]

IEEE Sensors J. (1)

S. Pal, Y. Shen, J. Mandal,  et al, "Simultaneous measurement of strain and temperature using a combined Sb-Er-Ge codoped fiber fluorescence and grating-based technique," IEEE Sensors J. 5, 1462-1468 (2005).
[CrossRef]

J. Lightwave Technol. (1)

J. Lumin. (1)

F. Auzel, D. Meichenin, A. Mendorioz,  et al, "Determination of the quantum efficiency of Er3+ in glasses: indirect and direct methods," J. Lumin. 72-74, 152 - 154 (1997).
[CrossRef]

Opt. Commun. (1)

J. Mandal, Y. Shen, S. Suchandan,  et al, "Bragg grating tuned fiber laser system for measurement of wider range temperature and strain," Opt. Commun. 244, 111-121 (2005).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. A (1)

F. Sanchez, P. Le Boudec, P. L. Francois and G. Stephan, "Effects of ion pairs on the dynamics of erbium-doped fiber lasers," Phys. Rev. A 48, 2220-2229 (1992).
[CrossRef]

Other (2)

See dBm Optics website: http://www.dbmoptics.com/products/occi/spect.php

Y. Shen, J. He, Y. Qiu et al, "Thermal decay characteristics of strong FBGs showing high temperature sustainability," submitted to JOSA. B

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Absorption spectrum of the silicate fiber developed with a high Er3+ concentration

Fig. 2.
Fig. 2.

Experimental setup of the linear cavity fiber laser, in which the pumping laser at 976 nm and the fiber laser output at 1550 nm band are configured to be in one direction via a 980/1550 WDM

Fig. 3.
Fig. 3.

The fiber laser output recorded by using a heterodyne interference approach, showing its narrow linewidth of less than 1 kHz

Fig. 4.
Fig. 4.

Fiber laser output spectra when cycling from room temperature to 400 °C, showing the gradual wavelength change of the laser output and their strong signal when compared to background (30 dB above background)

Fig. 5.
Fig. 5.

Tuning characteristics of the fiber laser output when experiencing heating and cooling from room temperature to 400 °C for the first two rounds

Metrics