Abstract

We demonstrate that our previous loss results [1] in an all-solid photonic bandgap fiber were in fact limited by bend loss. A new design, based on the addition of an extra ring of air holes on the outside of the all-solid photonic bandgap structure, is then proposed, realized and characterized. We demonstrate that it significantly reduces both the fiber diameter and its sensitivity to bend loss.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino and M. Douay, "Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm," Opt. Express 13, 8452-8459 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-21-8452
    [CrossRef] [PubMed]
  2. J.C. Knight, "Photonic crystal fibres, " Nature 424, 847-851 (2003).
    [CrossRef] [PubMed]
  3. A. Bjarklev J. Broeng and A.S. Bjarklev, "Photonic Crystal Fibres" (Kluwer Academic Publishers, Boston, 2003).
  4. W. Belardi, G. Bouwmans, L. Provino and M. Douay, "Form-induced birefringence in elliptical hollow photonic crystal fiber with large mode area," IEEE J. Quantum Electron. 41, 1558-1564 (2005).
    [CrossRef]
  5. G. Bouwmans, F. Luan, J.C. Knight, P.St.J. Russell, L. Farr, B.J. Mangan, and H. Sabert "Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength," Opt. Express 11, 1613-1620 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-14-1613
    [CrossRef]
  6. J Riishede, J. Laegsgaard, J. Broeng and A. Bjarklev, "All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730 nm," J. Opt. A: Pure Appl. Opt. 6, 667-670 (2004).
    [CrossRef]
  7. N.M.  Litchinistser, A.K.  Abeeluck, C.  Headdley and B.J.  Eggleton, "Antiresonant reflecting photonic crystal optical waveguides," Opt. Lett.  27, 1592-1594 (2002).
    [CrossRef]
  8. F. Brechet, P. Roy, J. Marcou and D. Pagnoux, "Singlemode propagation into depressed-core-index photonic-bandgap fiber designed for zero-dispersion propagation at short wavelengths," Electron. Lett. 36 : 514-515 (2000).
    [CrossRef]
  9. F. Luan, A.K. George, T.D. Hedley, G.J. Pearce, D.M. Bird, J.C. Knight and P.St.J. Russell, "All solid photonic bandgap fiber," Opt. Lett. 29, 2369-2371 (2004).
    [CrossRef] [PubMed]
  10. A. Argyros, T.A. Birks, S.G. Leon-Saval, C.B. Cordeiro, F. Luan and P.St.J. Russell, "Photonic bandgap with an index step of one percent," Opt. Express 13, 309-314 (2005). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-309
    [CrossRef] [PubMed]
  11. G. Renversez, P. Boyer and A. Sagrini, "Antiresonant reflecting optical waveguide microstructured fibers revisited: a new analysis based on leaky mode coupling," Opt. Express 14, 5682-5687 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-12-5682
    [CrossRef] [PubMed]
  12. T.A. Birks, F. Luan, G.J. Pearce, A. Wang, J.C. Knight and D.M. Bird, "Bend loss in all-solid bandgap fibres," Opt. Express 14,5688 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-12-5688
    [CrossRef] [PubMed]
  13. J. Jin, "The Finite Element Method in Electromagnetics" (John Wiley & Sons, Inc., New York, 2002).
  14. S. Tomljenovic-Hanic, J.D. Love and A. Ankiewicz, "Low-loss singlemode waveguide and fibre bends," Electron. Lett. 38, 220-222 (2002).
    [CrossRef]
  15. J.M. Stone, G.J. Pearce, F. Luan, T.A. Birks, J.C. Knight, A.K. George and D.M. Bird, "An improved photonic bandgap fiber based on an array of rings," Opt. Express 14, 6291-6296 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-13-6291
    [CrossRef] [PubMed]
  16. S.G. Johnson and J.D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in planewave basis," Opt. Express 8, 173-190 (2001). http://www.opticsexpress.org/abstract.cfm?id=63584.
    [CrossRef] [PubMed]
  17. K. Saitoh and M. Koshiba, "Empirical Relations for simple design of photonic crystal fibers," Opt. Express 13, 267-274 (2005). http://www.opticsexpress.org/abstract.cfm?id=82269
    [CrossRef] [PubMed]
  18. S. Février, R. Jamier, J-M. Blondy, S.L. Semjonov, M.E. Likhachev, M.M. Bubnov, E.M. Dianov, V.F. Khopin, M.Y. Salganskii and A.N. Guryanov, "Low-loss singlemode large mode area all-silica photonic bandgap fiber," Opt. Express 14, 562-569 (2006) http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-2-562.
    [CrossRef] [PubMed]

2006 (4)

2005 (4)

2004 (2)

J Riishede, J. Laegsgaard, J. Broeng and A. Bjarklev, "All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730 nm," J. Opt. A: Pure Appl. Opt. 6, 667-670 (2004).
[CrossRef]

F. Luan, A.K. George, T.D. Hedley, G.J. Pearce, D.M. Bird, J.C. Knight and P.St.J. Russell, "All solid photonic bandgap fiber," Opt. Lett. 29, 2369-2371 (2004).
[CrossRef] [PubMed]

2003 (2)

2002 (2)

N.M.  Litchinistser, A.K.  Abeeluck, C.  Headdley and B.J.  Eggleton, "Antiresonant reflecting photonic crystal optical waveguides," Opt. Lett.  27, 1592-1594 (2002).
[CrossRef]

S. Tomljenovic-Hanic, J.D. Love and A. Ankiewicz, "Low-loss singlemode waveguide and fibre bends," Electron. Lett. 38, 220-222 (2002).
[CrossRef]

2001 (1)

2000 (1)

F. Brechet, P. Roy, J. Marcou and D. Pagnoux, "Singlemode propagation into depressed-core-index photonic-bandgap fiber designed for zero-dispersion propagation at short wavelengths," Electron. Lett. 36 : 514-515 (2000).
[CrossRef]

Abeeluck, A.K.

Ankiewicz, A.

S. Tomljenovic-Hanic, J.D. Love and A. Ankiewicz, "Low-loss singlemode waveguide and fibre bends," Electron. Lett. 38, 220-222 (2002).
[CrossRef]

Argyros, A.

Belardi, W.

W. Belardi, G. Bouwmans, L. Provino and M. Douay, "Form-induced birefringence in elliptical hollow photonic crystal fiber with large mode area," IEEE J. Quantum Electron. 41, 1558-1564 (2005).
[CrossRef]

Bigot, L.

Bird, D.M.

Birks, T.A.

Bjarklev, A.

J Riishede, J. Laegsgaard, J. Broeng and A. Bjarklev, "All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730 nm," J. Opt. A: Pure Appl. Opt. 6, 667-670 (2004).
[CrossRef]

Blondy, J-M.

Bouwmans, G.

Boyer, P.

Brechet, F.

F. Brechet, P. Roy, J. Marcou and D. Pagnoux, "Singlemode propagation into depressed-core-index photonic-bandgap fiber designed for zero-dispersion propagation at short wavelengths," Electron. Lett. 36 : 514-515 (2000).
[CrossRef]

Broeng, J.

J Riishede, J. Laegsgaard, J. Broeng and A. Bjarklev, "All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730 nm," J. Opt. A: Pure Appl. Opt. 6, 667-670 (2004).
[CrossRef]

Bubnov, M.M.

Cordeiro, C.B.

Dianov, E.M.

Douay, M.

Eggleton, B.J.

Farr, L.

Février, S.

George, A.K.

Guryanov, A.N.

Headdley, C.

Hedley, T.D.

Jamier, R.

Joannopoulos, J.D.

Johnson, S.G.

Khopin, V.F.

Knight, J.C.

Koshiba, M.

Laegsgaard, J.

J Riishede, J. Laegsgaard, J. Broeng and A. Bjarklev, "All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730 nm," J. Opt. A: Pure Appl. Opt. 6, 667-670 (2004).
[CrossRef]

Leon-Saval, S.G.

Likhachev, M.E.

Litchinistser, N.M.

Lopez, F.

Love, J.D.

S. Tomljenovic-Hanic, J.D. Love and A. Ankiewicz, "Low-loss singlemode waveguide and fibre bends," Electron. Lett. 38, 220-222 (2002).
[CrossRef]

Luan, F.

Mangan, B.J.

Marcou, J.

F. Brechet, P. Roy, J. Marcou and D. Pagnoux, "Singlemode propagation into depressed-core-index photonic-bandgap fiber designed for zero-dispersion propagation at short wavelengths," Electron. Lett. 36 : 514-515 (2000).
[CrossRef]

Pagnoux, D.

F. Brechet, P. Roy, J. Marcou and D. Pagnoux, "Singlemode propagation into depressed-core-index photonic-bandgap fiber designed for zero-dispersion propagation at short wavelengths," Electron. Lett. 36 : 514-515 (2000).
[CrossRef]

Pearce, G.J.

Provino, L.

Quiquempois, Y.

Renversez, G.

Riishede, J

J Riishede, J. Laegsgaard, J. Broeng and A. Bjarklev, "All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730 nm," J. Opt. A: Pure Appl. Opt. 6, 667-670 (2004).
[CrossRef]

Roy, P.

F. Brechet, P. Roy, J. Marcou and D. Pagnoux, "Singlemode propagation into depressed-core-index photonic-bandgap fiber designed for zero-dispersion propagation at short wavelengths," Electron. Lett. 36 : 514-515 (2000).
[CrossRef]

Russell, P.St.J.

Sabert, H.

Sagrini, A.

Saitoh, K.

Salganskii, M.Y.

Semjonov, S.L.

Stone, J.M.

Tomljenovic-Hanic, S.

S. Tomljenovic-Hanic, J.D. Love and A. Ankiewicz, "Low-loss singlemode waveguide and fibre bends," Electron. Lett. 38, 220-222 (2002).
[CrossRef]

Wang, A.

Electron. Lett. (2)

F. Brechet, P. Roy, J. Marcou and D. Pagnoux, "Singlemode propagation into depressed-core-index photonic-bandgap fiber designed for zero-dispersion propagation at short wavelengths," Electron. Lett. 36 : 514-515 (2000).
[CrossRef]

S. Tomljenovic-Hanic, J.D. Love and A. Ankiewicz, "Low-loss singlemode waveguide and fibre bends," Electron. Lett. 38, 220-222 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

W. Belardi, G. Bouwmans, L. Provino and M. Douay, "Form-induced birefringence in elliptical hollow photonic crystal fiber with large mode area," IEEE J. Quantum Electron. 41, 1558-1564 (2005).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

J Riishede, J. Laegsgaard, J. Broeng and A. Bjarklev, "All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730 nm," J. Opt. A: Pure Appl. Opt. 6, 667-670 (2004).
[CrossRef]

Nature (1)

J.C. Knight, "Photonic crystal fibres, " Nature 424, 847-851 (2003).
[CrossRef] [PubMed]

Opt. Express (9)

G. Bouwmans, F. Luan, J.C. Knight, P.St.J. Russell, L. Farr, B.J. Mangan, and H. Sabert "Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength," Opt. Express 11, 1613-1620 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-14-1613
[CrossRef]

J.M. Stone, G.J. Pearce, F. Luan, T.A. Birks, J.C. Knight, A.K. George and D.M. Bird, "An improved photonic bandgap fiber based on an array of rings," Opt. Express 14, 6291-6296 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-13-6291
[CrossRef] [PubMed]

S.G. Johnson and J.D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in planewave basis," Opt. Express 8, 173-190 (2001). http://www.opticsexpress.org/abstract.cfm?id=63584.
[CrossRef] [PubMed]

K. Saitoh and M. Koshiba, "Empirical Relations for simple design of photonic crystal fibers," Opt. Express 13, 267-274 (2005). http://www.opticsexpress.org/abstract.cfm?id=82269
[CrossRef] [PubMed]

S. Février, R. Jamier, J-M. Blondy, S.L. Semjonov, M.E. Likhachev, M.M. Bubnov, E.M. Dianov, V.F. Khopin, M.Y. Salganskii and A.N. Guryanov, "Low-loss singlemode large mode area all-silica photonic bandgap fiber," Opt. Express 14, 562-569 (2006) http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-2-562.
[CrossRef] [PubMed]

A. Argyros, T.A. Birks, S.G. Leon-Saval, C.B. Cordeiro, F. Luan and P.St.J. Russell, "Photonic bandgap with an index step of one percent," Opt. Express 13, 309-314 (2005). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-309
[CrossRef] [PubMed]

G. Renversez, P. Boyer and A. Sagrini, "Antiresonant reflecting optical waveguide microstructured fibers revisited: a new analysis based on leaky mode coupling," Opt. Express 14, 5682-5687 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-12-5682
[CrossRef] [PubMed]

T.A. Birks, F. Luan, G.J. Pearce, A. Wang, J.C. Knight and D.M. Bird, "Bend loss in all-solid bandgap fibres," Opt. Express 14,5688 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-12-5688
[CrossRef] [PubMed]

G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino and M. Douay, "Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm," Opt. Express 13, 8452-8459 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-21-8452
[CrossRef] [PubMed]

Opt. Lett. (2)

Other (2)

A. Bjarklev J. Broeng and A.S. Bjarklev, "Photonic Crystal Fibres" (Kluwer Academic Publishers, Boston, 2003).

J. Jin, "The Finite Element Method in Electromagnetics" (John Wiley & Sons, Inc., New York, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Loss spectra obtained by cut-back measurements of the all-solid PBGF [1] wrapped on spools of different radius R: R=7.9 cm (green), R=10.5 cm (red) and R=15.8 cm (blue). a) zoom on the 3rd bandgap; b) overview from the 6th to the 3rd bandgap.

Fig. 2.
Fig. 2.

Schematic representation of the proposed double-clad PBGF. (a) transversal cut (b) index profile along axis x with the definition of the pitch Λ, the doped region diameter d and the hole diameter dH.

Fig. 3.
Fig. 3.

Theoretical plot of the bandgaps (white). For simplicity, the silica refractive index is kept constant and equal to 1.45 (upper blue curve). Also shown the fundamental space filling mode of the air clad (nFSM, lower blue curve) and the effective index of the fundamental core mode in the 3rd and 4th bandgap (dark lines).

Fig. 4.
Fig. 4.

Scanning Electron Micrograph (SEM) of the DC PBGF. The fiber diameter is 187 μm for a core diameter of 20 μm, a pitch, Λ, of 15 μm and an average hole diameter dH of 10.6 μm.

Fig. 5.
Fig. 5.

(a) Transmission spectrum of the DC PBGF through 460 m (blue) and 10 m (red) with the bandgap number. (c) and (d) are the mode profiles observed at 1150 nm for respectively L = 10 m and L = 460 m. e) and g) are the mode profiles observed for L = 460 m at respectively 1190 et 1500 nm. Note that if (d) and (e) show all the solid microstructured cladding, (c) and (g) are zoomed on the core mode, whereas (b) and (f) are zooms on few doped rods respectively at 950 and 1190 nm.

Fig. 6.
Fig. 6.

Loss spectra of the DC PBGF obtained by the cut back technique for bend radius of 15.8 cm (dark blue curve) and 7.9 cm (dark green curve). The red circle points out an artifact due to the existence of extra confined modes. The corresponding spectra for the all-solid PBGF are represented in bright colors.

Fig. 7.
Fig. 7.

Transmission spectra of the all-solid PBGF (a) and of the DC PBGF (b) for different bend radii: 6 cm (pink), 4.5 cm (yellow), 3.75 cm (cyan) and 3 cm (purple). For each of these spectra 10 turns of the fiber were wrapped on a mandrel of the corresponding radius. The dark blue curves, referred as ‘straight fiber’, were obtained for 3 very large loops of diameter higher than 35 cm.

Metrics