Abstract

This work presents a novel GA-SA approach to retrieve the constituents of water bodies from remote sensing of ocean color. This approach is validated and compared to the existing algorithms using the same synthetic and in-situ datasets compiled by the International Ocean Color Coordinate Group. Comparing to the other methods, the GA-SA approach provides better retrievals for both the inherent optical properties and various water constituents. This novel approach is successfully applied in processing the images taken by MODerate resolution Imaging Spectroradiometer (MODIS) and generates regional maps of chlorophyll-a concentration, total suspended matter, and the absorption coefficient of color dissolved organic matter at 443nm.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Platt, "Primary production of the ocean water column as a function of surface light intensity: algorithms for remote sensing," Deep-Sea Res. Part I-Oceanogr.Res. Pap. 33, 149-163 (1986).
    [CrossRef]
  2. H. R. Gordon, O. B. Brown, and M. M. Jacobs, "Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean," Appl. Opt. 14, 417-427 (1975).
    [CrossRef] [PubMed]
  3. S. Maritorena, D. A. Siegel, and A. R. Peterson, "Optimization of a semianalytical ocean color model for global-scale applications," Appl. Opt. 41, 2705-2714 (2002).
    [CrossRef] [PubMed]
  4. Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, "Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimization," Appl. Opt. 38, 3831-3843 (1999).
    [CrossRef]
  5. K. Y. Kondratyev, D. V. Pozdnyakov, and L. H. Pettersson, "Water quality remote sensing in the visible spectrum," Int. J. Remote Sens. 19, 957-979 (1998).
    [CrossRef]
  6. S. A. Garver and D. A. Siegel, "Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation.1. Time series from the Sargasso Sea," J. Geoph. Res. 102, 18607-18625 (1997).
    [CrossRef]
  7. C. C. Liu and R. L. Miller, "A Spectrum Matching Method for Estimating the Inherent Optical Properties from Remote Sensing of Ocean Color," in Ocean Remote Sensing and Imaging II, R. J. Frouin, G. D. Gilbert, and D. Pan, eds. (San Diego, California USA, 2003), pp. 141-152.
  8. R. Doerffer and J. Fischer, "Concentrations of chlorophyll, suspended matter, and gelbstoff in Case-II waters derived from Satellite Coastal Zone Color Scanner data with inverse modeling methods," J. Geoph. Res. 99, 7457-7466 (1994).
    [CrossRef]
  9. F. E. Hoge and P. E. Lyon, "Satellite retrieval of inherent optical properties by linear matrix inversion of oceanic radiance models: An analysis of model and radiance measurement errors," J. Geoph. Res. 101, 16631-16648 (1996).
    [CrossRef]
  10. J. R. V. Zaneveld, "A theoretical derivation of the dependence of the remotely-sensed reflectance of the ocean on the inherent optical-properties," J. Geoph. Res. 100, 13135-13142 (1995).
    [CrossRef]
  11. H. G. Zhan, Z. P. Lee, P. Shi, C. Q. Chen, and K. L. Carder, "Retrieval of water optical properties for optically deep waters using genetic algorithms," IEEE Trans. Geosci. Remote Sensing 41, 1123-1128 (2003).
    [CrossRef]
  12. A. Tanaka, M. Kishino, R. Doerffer, H. Schiller, T. Oishi, and T. Kubota, "Development of a neural network algorithm for retrieving concentrations of chlorophyll, suspended matter and yellow substance from radiance data of the ocean color and temperature scanner," J. Oceanogr. 60, 519-530 (2004).
    [CrossRef]
  13. D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley, New York, 1989).
  14. IOCCG, "Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications," in Reports of the International Ocean-Colour Coordinating Group, No. 5, Z. P. Lee, ed. (IOCCG, Dartmouth, 2006).
  15. Z. P. Lee, "Models, parameters, and approaches that used to generate wide range of absorption and backscattering spectra," (IOCCG, 2003), http://www.ioccg.org/groups/lee_data.pdf.
  16. Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, "Hyperspectral remote sensing for shallow waters. I. A semianalytical model," Appl. Opt. 37, 6329-6338 (1998).
    [CrossRef]
  17. Z. P. Lee, K. L. Carder, and R. A. Arnone, "Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters," Appl. Opt. 41, 5755-5772 (2002).
    [CrossRef] [PubMed]
  18. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, "A semianalytic radiance model of ocean color," J. Geoph. Res. 93, 10909-10924 (1988).
    [CrossRef]
  19. C. C. Liu, "Fast and accurate model of underwater scalar irradiance for stratified Case 2 waters," Opt. Express 14, 1703-1719 (2006).
    [CrossRef] [PubMed]
  20. R. P. Bukata, J. H. Jerome, K. Y. Kondratyev, and D. V. Pozdnyakov, Optical Properties and Remote Sensing of Inland and Coastal Waters (CRC Press, Boca Raton, 1995).
  21. A. Morel, "Optical modeling of the upper ocean in relation to its biogenous matter content (Case I waters)." J. Geoph. Res. 93, 10749-10768 (1988).
    [CrossRef]
  22. R. Pope and E. Fry, "Absorption spectrum (380 - 700 nm) of pure waters: II. Integrating cavity measurements," Appl. Opt. 36, 8710-8723 (1997).
    [CrossRef]
  23. K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, "Semianalytic MODerate-resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures," J. Geoph. Res. 104, 5403-5421 (1999).
    [CrossRef]
  24. A. Morel, ed. Optical Properties of Pure Water and Pure Sea Water (Academic, New York, 1974).
  25. Z. P. Lee, "Ocean-colour algorithms." http://www.ioccg.org/groups/OCAG_data.html.
  26. Z. P. Lee, "Results from the IOCCG ocean color algorithm working group." http://seabass.gsfc.nasa.gov/ioccg.html.
  27. H. Schiller and R. Doerffer, "Improved determination of coastal water constituent concentrations from MERIS data," IEEE Trans. Geosci. Remote Sensing 43, 1585-1591 (2005).
    [CrossRef]
  28. E. Devred, C. Fuentes-Yaco, S. Sathyendranath, C. Caverhill, H. Maass, V. Stuart, T. Platt, and G. White, "A semi-analytic seasonal algorithm to retrieve chlorophyll-a concentration in the Northwest Atlantic Ocean from SeaWiFS data," Indian J. Mar. Sci. 34, 356-367 (2005).
  29. K. L. Carder, S. K. Hawes, K. A. Baker, R. C. Smith, R. G. Steward, and B. G. Mitchell, "Reflectance model for quantifying chlorophyll-a in the presence of productivity degradation products," J. Geoph. Res. 96, 20599-20611 (1991).
    [CrossRef]
  30. A. Bricaud, M. Babin, A. Morel, and H. Claustre, "Variability in the chlorophyll-specific absorption-coefficients of natural phytoplankton - analysis and parameterization," J. Geoph. Res. 100, 13321-13332 (1995).
    [CrossRef]
  31. H. R. Gordon and A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery, a Review; Lecture Notes on Coastal and Estuarine Studies, Volume 4. (Springer Verlag, New York, 1983).
  32. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic Press, New York, 1994).

2006 (1)

2005 (2)

H. Schiller and R. Doerffer, "Improved determination of coastal water constituent concentrations from MERIS data," IEEE Trans. Geosci. Remote Sensing 43, 1585-1591 (2005).
[CrossRef]

E. Devred, C. Fuentes-Yaco, S. Sathyendranath, C. Caverhill, H. Maass, V. Stuart, T. Platt, and G. White, "A semi-analytic seasonal algorithm to retrieve chlorophyll-a concentration in the Northwest Atlantic Ocean from SeaWiFS data," Indian J. Mar. Sci. 34, 356-367 (2005).

2004 (1)

A. Tanaka, M. Kishino, R. Doerffer, H. Schiller, T. Oishi, and T. Kubota, "Development of a neural network algorithm for retrieving concentrations of chlorophyll, suspended matter and yellow substance from radiance data of the ocean color and temperature scanner," J. Oceanogr. 60, 519-530 (2004).
[CrossRef]

2003 (1)

H. G. Zhan, Z. P. Lee, P. Shi, C. Q. Chen, and K. L. Carder, "Retrieval of water optical properties for optically deep waters using genetic algorithms," IEEE Trans. Geosci. Remote Sensing 41, 1123-1128 (2003).
[CrossRef]

2002 (2)

1999 (2)

Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, "Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimization," Appl. Opt. 38, 3831-3843 (1999).
[CrossRef]

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, "Semianalytic MODerate-resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures," J. Geoph. Res. 104, 5403-5421 (1999).
[CrossRef]

1998 (2)

K. Y. Kondratyev, D. V. Pozdnyakov, and L. H. Pettersson, "Water quality remote sensing in the visible spectrum," Int. J. Remote Sens. 19, 957-979 (1998).
[CrossRef]

Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, "Hyperspectral remote sensing for shallow waters. I. A semianalytical model," Appl. Opt. 37, 6329-6338 (1998).
[CrossRef]

1997 (2)

R. Pope and E. Fry, "Absorption spectrum (380 - 700 nm) of pure waters: II. Integrating cavity measurements," Appl. Opt. 36, 8710-8723 (1997).
[CrossRef]

S. A. Garver and D. A. Siegel, "Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation.1. Time series from the Sargasso Sea," J. Geoph. Res. 102, 18607-18625 (1997).
[CrossRef]

1996 (1)

F. E. Hoge and P. E. Lyon, "Satellite retrieval of inherent optical properties by linear matrix inversion of oceanic radiance models: An analysis of model and radiance measurement errors," J. Geoph. Res. 101, 16631-16648 (1996).
[CrossRef]

1995 (2)

J. R. V. Zaneveld, "A theoretical derivation of the dependence of the remotely-sensed reflectance of the ocean on the inherent optical-properties," J. Geoph. Res. 100, 13135-13142 (1995).
[CrossRef]

A. Bricaud, M. Babin, A. Morel, and H. Claustre, "Variability in the chlorophyll-specific absorption-coefficients of natural phytoplankton - analysis and parameterization," J. Geoph. Res. 100, 13321-13332 (1995).
[CrossRef]

1994 (1)

R. Doerffer and J. Fischer, "Concentrations of chlorophyll, suspended matter, and gelbstoff in Case-II waters derived from Satellite Coastal Zone Color Scanner data with inverse modeling methods," J. Geoph. Res. 99, 7457-7466 (1994).
[CrossRef]

1991 (1)

K. L. Carder, S. K. Hawes, K. A. Baker, R. C. Smith, R. G. Steward, and B. G. Mitchell, "Reflectance model for quantifying chlorophyll-a in the presence of productivity degradation products," J. Geoph. Res. 96, 20599-20611 (1991).
[CrossRef]

1988 (2)

A. Morel, "Optical modeling of the upper ocean in relation to its biogenous matter content (Case I waters)." J. Geoph. Res. 93, 10749-10768 (1988).
[CrossRef]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, "A semianalytic radiance model of ocean color," J. Geoph. Res. 93, 10909-10924 (1988).
[CrossRef]

1986 (1)

T. Platt, "Primary production of the ocean water column as a function of surface light intensity: algorithms for remote sensing," Deep-Sea Res. Part I-Oceanogr.Res. Pap. 33, 149-163 (1986).
[CrossRef]

1975 (1)

Arnone, R. A.

Babin, M.

A. Bricaud, M. Babin, A. Morel, and H. Claustre, "Variability in the chlorophyll-specific absorption-coefficients of natural phytoplankton - analysis and parameterization," J. Geoph. Res. 100, 13321-13332 (1995).
[CrossRef]

Baker, K. A.

K. L. Carder, S. K. Hawes, K. A. Baker, R. C. Smith, R. G. Steward, and B. G. Mitchell, "Reflectance model for quantifying chlorophyll-a in the presence of productivity degradation products," J. Geoph. Res. 96, 20599-20611 (1991).
[CrossRef]

Baker, K. S.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, "A semianalytic radiance model of ocean color," J. Geoph. Res. 93, 10909-10924 (1988).
[CrossRef]

Bricaud, A.

A. Bricaud, M. Babin, A. Morel, and H. Claustre, "Variability in the chlorophyll-specific absorption-coefficients of natural phytoplankton - analysis and parameterization," J. Geoph. Res. 100, 13321-13332 (1995).
[CrossRef]

Brown, J. W.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, "A semianalytic radiance model of ocean color," J. Geoph. Res. 93, 10909-10924 (1988).
[CrossRef]

Brown, O. B.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, "A semianalytic radiance model of ocean color," J. Geoph. Res. 93, 10909-10924 (1988).
[CrossRef]

H. R. Gordon, O. B. Brown, and M. M. Jacobs, "Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean," Appl. Opt. 14, 417-427 (1975).
[CrossRef] [PubMed]

Carder, K. L.

H. G. Zhan, Z. P. Lee, P. Shi, C. Q. Chen, and K. L. Carder, "Retrieval of water optical properties for optically deep waters using genetic algorithms," IEEE Trans. Geosci. Remote Sensing 41, 1123-1128 (2003).
[CrossRef]

Z. P. Lee, K. L. Carder, and R. A. Arnone, "Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters," Appl. Opt. 41, 5755-5772 (2002).
[CrossRef] [PubMed]

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, "Semianalytic MODerate-resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures," J. Geoph. Res. 104, 5403-5421 (1999).
[CrossRef]

Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, "Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimization," Appl. Opt. 38, 3831-3843 (1999).
[CrossRef]

Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, "Hyperspectral remote sensing for shallow waters. I. A semianalytical model," Appl. Opt. 37, 6329-6338 (1998).
[CrossRef]

K. L. Carder, S. K. Hawes, K. A. Baker, R. C. Smith, R. G. Steward, and B. G. Mitchell, "Reflectance model for quantifying chlorophyll-a in the presence of productivity degradation products," J. Geoph. Res. 96, 20599-20611 (1991).
[CrossRef]

Caverhill, C.

E. Devred, C. Fuentes-Yaco, S. Sathyendranath, C. Caverhill, H. Maass, V. Stuart, T. Platt, and G. White, "A semi-analytic seasonal algorithm to retrieve chlorophyll-a concentration in the Northwest Atlantic Ocean from SeaWiFS data," Indian J. Mar. Sci. 34, 356-367 (2005).

Chen, C. Q.

H. G. Zhan, Z. P. Lee, P. Shi, C. Q. Chen, and K. L. Carder, "Retrieval of water optical properties for optically deep waters using genetic algorithms," IEEE Trans. Geosci. Remote Sensing 41, 1123-1128 (2003).
[CrossRef]

Chen, F. R.

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, "Semianalytic MODerate-resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures," J. Geoph. Res. 104, 5403-5421 (1999).
[CrossRef]

Clark, D. K.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, "A semianalytic radiance model of ocean color," J. Geoph. Res. 93, 10909-10924 (1988).
[CrossRef]

Claustre, H.

A. Bricaud, M. Babin, A. Morel, and H. Claustre, "Variability in the chlorophyll-specific absorption-coefficients of natural phytoplankton - analysis and parameterization," J. Geoph. Res. 100, 13321-13332 (1995).
[CrossRef]

Devred, E.

E. Devred, C. Fuentes-Yaco, S. Sathyendranath, C. Caverhill, H. Maass, V. Stuart, T. Platt, and G. White, "A semi-analytic seasonal algorithm to retrieve chlorophyll-a concentration in the Northwest Atlantic Ocean from SeaWiFS data," Indian J. Mar. Sci. 34, 356-367 (2005).

Doerffer, R.

H. Schiller and R. Doerffer, "Improved determination of coastal water constituent concentrations from MERIS data," IEEE Trans. Geosci. Remote Sensing 43, 1585-1591 (2005).
[CrossRef]

A. Tanaka, M. Kishino, R. Doerffer, H. Schiller, T. Oishi, and T. Kubota, "Development of a neural network algorithm for retrieving concentrations of chlorophyll, suspended matter and yellow substance from radiance data of the ocean color and temperature scanner," J. Oceanogr. 60, 519-530 (2004).
[CrossRef]

R. Doerffer and J. Fischer, "Concentrations of chlorophyll, suspended matter, and gelbstoff in Case-II waters derived from Satellite Coastal Zone Color Scanner data with inverse modeling methods," J. Geoph. Res. 99, 7457-7466 (1994).
[CrossRef]

Evans, R. H.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, "A semianalytic radiance model of ocean color," J. Geoph. Res. 93, 10909-10924 (1988).
[CrossRef]

Fischer, J.

R. Doerffer and J. Fischer, "Concentrations of chlorophyll, suspended matter, and gelbstoff in Case-II waters derived from Satellite Coastal Zone Color Scanner data with inverse modeling methods," J. Geoph. Res. 99, 7457-7466 (1994).
[CrossRef]

Fry, E.

Fuentes-Yaco, C.

E. Devred, C. Fuentes-Yaco, S. Sathyendranath, C. Caverhill, H. Maass, V. Stuart, T. Platt, and G. White, "A semi-analytic seasonal algorithm to retrieve chlorophyll-a concentration in the Northwest Atlantic Ocean from SeaWiFS data," Indian J. Mar. Sci. 34, 356-367 (2005).

Garver, S. A.

S. A. Garver and D. A. Siegel, "Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation.1. Time series from the Sargasso Sea," J. Geoph. Res. 102, 18607-18625 (1997).
[CrossRef]

Gordon, H. R.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, "A semianalytic radiance model of ocean color," J. Geoph. Res. 93, 10909-10924 (1988).
[CrossRef]

H. R. Gordon, O. B. Brown, and M. M. Jacobs, "Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean," Appl. Opt. 14, 417-427 (1975).
[CrossRef] [PubMed]

Hawes, S. K.

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, "Semianalytic MODerate-resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures," J. Geoph. Res. 104, 5403-5421 (1999).
[CrossRef]

K. L. Carder, S. K. Hawes, K. A. Baker, R. C. Smith, R. G. Steward, and B. G. Mitchell, "Reflectance model for quantifying chlorophyll-a in the presence of productivity degradation products," J. Geoph. Res. 96, 20599-20611 (1991).
[CrossRef]

Hoge, F. E.

F. E. Hoge and P. E. Lyon, "Satellite retrieval of inherent optical properties by linear matrix inversion of oceanic radiance models: An analysis of model and radiance measurement errors," J. Geoph. Res. 101, 16631-16648 (1996).
[CrossRef]

Jacobs, M. M.

Kamykowski, D.

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, "Semianalytic MODerate-resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures," J. Geoph. Res. 104, 5403-5421 (1999).
[CrossRef]

Kishino, M.

A. Tanaka, M. Kishino, R. Doerffer, H. Schiller, T. Oishi, and T. Kubota, "Development of a neural network algorithm for retrieving concentrations of chlorophyll, suspended matter and yellow substance from radiance data of the ocean color and temperature scanner," J. Oceanogr. 60, 519-530 (2004).
[CrossRef]

Kondratyev, K. Y.

K. Y. Kondratyev, D. V. Pozdnyakov, and L. H. Pettersson, "Water quality remote sensing in the visible spectrum," Int. J. Remote Sens. 19, 957-979 (1998).
[CrossRef]

Kubota, T.

A. Tanaka, M. Kishino, R. Doerffer, H. Schiller, T. Oishi, and T. Kubota, "Development of a neural network algorithm for retrieving concentrations of chlorophyll, suspended matter and yellow substance from radiance data of the ocean color and temperature scanner," J. Oceanogr. 60, 519-530 (2004).
[CrossRef]

Lee, Z. P.

H. G. Zhan, Z. P. Lee, P. Shi, C. Q. Chen, and K. L. Carder, "Retrieval of water optical properties for optically deep waters using genetic algorithms," IEEE Trans. Geosci. Remote Sensing 41, 1123-1128 (2003).
[CrossRef]

Z. P. Lee, K. L. Carder, and R. A. Arnone, "Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters," Appl. Opt. 41, 5755-5772 (2002).
[CrossRef] [PubMed]

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, "Semianalytic MODerate-resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures," J. Geoph. Res. 104, 5403-5421 (1999).
[CrossRef]

Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, "Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimization," Appl. Opt. 38, 3831-3843 (1999).
[CrossRef]

Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, "Hyperspectral remote sensing for shallow waters. I. A semianalytical model," Appl. Opt. 37, 6329-6338 (1998).
[CrossRef]

Liu, C. C.

Lyon, P. E.

F. E. Hoge and P. E. Lyon, "Satellite retrieval of inherent optical properties by linear matrix inversion of oceanic radiance models: An analysis of model and radiance measurement errors," J. Geoph. Res. 101, 16631-16648 (1996).
[CrossRef]

Maass, H.

E. Devred, C. Fuentes-Yaco, S. Sathyendranath, C. Caverhill, H. Maass, V. Stuart, T. Platt, and G. White, "A semi-analytic seasonal algorithm to retrieve chlorophyll-a concentration in the Northwest Atlantic Ocean from SeaWiFS data," Indian J. Mar. Sci. 34, 356-367 (2005).

Maritorena, S.

Mitchell, B. G.

K. L. Carder, S. K. Hawes, K. A. Baker, R. C. Smith, R. G. Steward, and B. G. Mitchell, "Reflectance model for quantifying chlorophyll-a in the presence of productivity degradation products," J. Geoph. Res. 96, 20599-20611 (1991).
[CrossRef]

Mobley, C. D.

Morel, A.

A. Bricaud, M. Babin, A. Morel, and H. Claustre, "Variability in the chlorophyll-specific absorption-coefficients of natural phytoplankton - analysis and parameterization," J. Geoph. Res. 100, 13321-13332 (1995).
[CrossRef]

A. Morel, "Optical modeling of the upper ocean in relation to its biogenous matter content (Case I waters)." J. Geoph. Res. 93, 10749-10768 (1988).
[CrossRef]

Oishi, T.

A. Tanaka, M. Kishino, R. Doerffer, H. Schiller, T. Oishi, and T. Kubota, "Development of a neural network algorithm for retrieving concentrations of chlorophyll, suspended matter and yellow substance from radiance data of the ocean color and temperature scanner," J. Oceanogr. 60, 519-530 (2004).
[CrossRef]

Patch, J. S.

Peterson, A. R.

Pettersson, L. H.

K. Y. Kondratyev, D. V. Pozdnyakov, and L. H. Pettersson, "Water quality remote sensing in the visible spectrum," Int. J. Remote Sens. 19, 957-979 (1998).
[CrossRef]

Platt, T.

E. Devred, C. Fuentes-Yaco, S. Sathyendranath, C. Caverhill, H. Maass, V. Stuart, T. Platt, and G. White, "A semi-analytic seasonal algorithm to retrieve chlorophyll-a concentration in the Northwest Atlantic Ocean from SeaWiFS data," Indian J. Mar. Sci. 34, 356-367 (2005).

T. Platt, "Primary production of the ocean water column as a function of surface light intensity: algorithms for remote sensing," Deep-Sea Res. Part I-Oceanogr.Res. Pap. 33, 149-163 (1986).
[CrossRef]

Pope, R.

Pozdnyakov, D. V.

K. Y. Kondratyev, D. V. Pozdnyakov, and L. H. Pettersson, "Water quality remote sensing in the visible spectrum," Int. J. Remote Sens. 19, 957-979 (1998).
[CrossRef]

Sathyendranath, S.

E. Devred, C. Fuentes-Yaco, S. Sathyendranath, C. Caverhill, H. Maass, V. Stuart, T. Platt, and G. White, "A semi-analytic seasonal algorithm to retrieve chlorophyll-a concentration in the Northwest Atlantic Ocean from SeaWiFS data," Indian J. Mar. Sci. 34, 356-367 (2005).

Schiller, H.

H. Schiller and R. Doerffer, "Improved determination of coastal water constituent concentrations from MERIS data," IEEE Trans. Geosci. Remote Sensing 43, 1585-1591 (2005).
[CrossRef]

A. Tanaka, M. Kishino, R. Doerffer, H. Schiller, T. Oishi, and T. Kubota, "Development of a neural network algorithm for retrieving concentrations of chlorophyll, suspended matter and yellow substance from radiance data of the ocean color and temperature scanner," J. Oceanogr. 60, 519-530 (2004).
[CrossRef]

Shi, P.

H. G. Zhan, Z. P. Lee, P. Shi, C. Q. Chen, and K. L. Carder, "Retrieval of water optical properties for optically deep waters using genetic algorithms," IEEE Trans. Geosci. Remote Sensing 41, 1123-1128 (2003).
[CrossRef]

Siegel, D. A.

S. Maritorena, D. A. Siegel, and A. R. Peterson, "Optimization of a semianalytical ocean color model for global-scale applications," Appl. Opt. 41, 2705-2714 (2002).
[CrossRef] [PubMed]

S. A. Garver and D. A. Siegel, "Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation.1. Time series from the Sargasso Sea," J. Geoph. Res. 102, 18607-18625 (1997).
[CrossRef]

Smith, R. C.

K. L. Carder, S. K. Hawes, K. A. Baker, R. C. Smith, R. G. Steward, and B. G. Mitchell, "Reflectance model for quantifying chlorophyll-a in the presence of productivity degradation products," J. Geoph. Res. 96, 20599-20611 (1991).
[CrossRef]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, "A semianalytic radiance model of ocean color," J. Geoph. Res. 93, 10909-10924 (1988).
[CrossRef]

Steward, R. G.

Stuart, V.

E. Devred, C. Fuentes-Yaco, S. Sathyendranath, C. Caverhill, H. Maass, V. Stuart, T. Platt, and G. White, "A semi-analytic seasonal algorithm to retrieve chlorophyll-a concentration in the Northwest Atlantic Ocean from SeaWiFS data," Indian J. Mar. Sci. 34, 356-367 (2005).

Tanaka, A.

A. Tanaka, M. Kishino, R. Doerffer, H. Schiller, T. Oishi, and T. Kubota, "Development of a neural network algorithm for retrieving concentrations of chlorophyll, suspended matter and yellow substance from radiance data of the ocean color and temperature scanner," J. Oceanogr. 60, 519-530 (2004).
[CrossRef]

White, G.

E. Devred, C. Fuentes-Yaco, S. Sathyendranath, C. Caverhill, H. Maass, V. Stuart, T. Platt, and G. White, "A semi-analytic seasonal algorithm to retrieve chlorophyll-a concentration in the Northwest Atlantic Ocean from SeaWiFS data," Indian J. Mar. Sci. 34, 356-367 (2005).

Zaneveld, J. R. V.

J. R. V. Zaneveld, "A theoretical derivation of the dependence of the remotely-sensed reflectance of the ocean on the inherent optical-properties," J. Geoph. Res. 100, 13135-13142 (1995).
[CrossRef]

Zhan, H. G.

H. G. Zhan, Z. P. Lee, P. Shi, C. Q. Chen, and K. L. Carder, "Retrieval of water optical properties for optically deep waters using genetic algorithms," IEEE Trans. Geosci. Remote Sensing 41, 1123-1128 (2003).
[CrossRef]

Appl. Opt. (6)

IEEE Trans. Geosci. Remote Sensing (2)

H. Schiller and R. Doerffer, "Improved determination of coastal water constituent concentrations from MERIS data," IEEE Trans. Geosci. Remote Sensing 43, 1585-1591 (2005).
[CrossRef]

H. G. Zhan, Z. P. Lee, P. Shi, C. Q. Chen, and K. L. Carder, "Retrieval of water optical properties for optically deep waters using genetic algorithms," IEEE Trans. Geosci. Remote Sensing 41, 1123-1128 (2003).
[CrossRef]

Indian J. Mar. Sci. (1)

E. Devred, C. Fuentes-Yaco, S. Sathyendranath, C. Caverhill, H. Maass, V. Stuart, T. Platt, and G. White, "A semi-analytic seasonal algorithm to retrieve chlorophyll-a concentration in the Northwest Atlantic Ocean from SeaWiFS data," Indian J. Mar. Sci. 34, 356-367 (2005).

Int. J. Remote Sens. (1)

K. Y. Kondratyev, D. V. Pozdnyakov, and L. H. Pettersson, "Water quality remote sensing in the visible spectrum," Int. J. Remote Sens. 19, 957-979 (1998).
[CrossRef]

J. Geoph. Res. (9)

S. A. Garver and D. A. Siegel, "Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation.1. Time series from the Sargasso Sea," J. Geoph. Res. 102, 18607-18625 (1997).
[CrossRef]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, "A semianalytic radiance model of ocean color," J. Geoph. Res. 93, 10909-10924 (1988).
[CrossRef]

R. Doerffer and J. Fischer, "Concentrations of chlorophyll, suspended matter, and gelbstoff in Case-II waters derived from Satellite Coastal Zone Color Scanner data with inverse modeling methods," J. Geoph. Res. 99, 7457-7466 (1994).
[CrossRef]

F. E. Hoge and P. E. Lyon, "Satellite retrieval of inherent optical properties by linear matrix inversion of oceanic radiance models: An analysis of model and radiance measurement errors," J. Geoph. Res. 101, 16631-16648 (1996).
[CrossRef]

J. R. V. Zaneveld, "A theoretical derivation of the dependence of the remotely-sensed reflectance of the ocean on the inherent optical-properties," J. Geoph. Res. 100, 13135-13142 (1995).
[CrossRef]

A. Morel, "Optical modeling of the upper ocean in relation to its biogenous matter content (Case I waters)." J. Geoph. Res. 93, 10749-10768 (1988).
[CrossRef]

K. L. Carder, S. K. Hawes, K. A. Baker, R. C. Smith, R. G. Steward, and B. G. Mitchell, "Reflectance model for quantifying chlorophyll-a in the presence of productivity degradation products," J. Geoph. Res. 96, 20599-20611 (1991).
[CrossRef]

A. Bricaud, M. Babin, A. Morel, and H. Claustre, "Variability in the chlorophyll-specific absorption-coefficients of natural phytoplankton - analysis and parameterization," J. Geoph. Res. 100, 13321-13332 (1995).
[CrossRef]

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, "Semianalytic MODerate-resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures," J. Geoph. Res. 104, 5403-5421 (1999).
[CrossRef]

J. Oceanogr. (1)

A. Tanaka, M. Kishino, R. Doerffer, H. Schiller, T. Oishi, and T. Kubota, "Development of a neural network algorithm for retrieving concentrations of chlorophyll, suspended matter and yellow substance from radiance data of the ocean color and temperature scanner," J. Oceanogr. 60, 519-530 (2004).
[CrossRef]

Opt. Express (1)

Res. Pap. (1)

T. Platt, "Primary production of the ocean water column as a function of surface light intensity: algorithms for remote sensing," Deep-Sea Res. Part I-Oceanogr.Res. Pap. 33, 149-163 (1986).
[CrossRef]

Other (10)

R. P. Bukata, J. H. Jerome, K. Y. Kondratyev, and D. V. Pozdnyakov, Optical Properties and Remote Sensing of Inland and Coastal Waters (CRC Press, Boca Raton, 1995).

D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley, New York, 1989).

IOCCG, "Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications," in Reports of the International Ocean-Colour Coordinating Group, No. 5, Z. P. Lee, ed. (IOCCG, Dartmouth, 2006).

Z. P. Lee, "Models, parameters, and approaches that used to generate wide range of absorption and backscattering spectra," (IOCCG, 2003), http://www.ioccg.org/groups/lee_data.pdf.

C. C. Liu and R. L. Miller, "A Spectrum Matching Method for Estimating the Inherent Optical Properties from Remote Sensing of Ocean Color," in Ocean Remote Sensing and Imaging II, R. J. Frouin, G. D. Gilbert, and D. Pan, eds. (San Diego, California USA, 2003), pp. 141-152.

A. Morel, ed. Optical Properties of Pure Water and Pure Sea Water (Academic, New York, 1974).

Z. P. Lee, "Ocean-colour algorithms." http://www.ioccg.org/groups/OCAG_data.html.

Z. P. Lee, "Results from the IOCCG ocean color algorithm working group." http://seabass.gsfc.nasa.gov/ioccg.html.

H. R. Gordon and A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery, a Review; Lecture Notes on Coastal and Estuarine Studies, Volume 4. (Springer Verlag, New York, 1983).

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic Press, New York, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Illustrations and examples of the GA-SA procedure.

Fig. 2.
Fig. 2.

Comparisons between GA-SA derived and known IOPs, for synthetic data compiled by IOCCG [14]. (a) a(440), (b) bb(550), (c) adg (440), (d) bbp (550), (e) aph (440), (f) ag (440), (g) ad (440), (h) bbph (550), and (i) bbd (550).

Fig. 3.
Fig. 3.

Comparisons between GA-SA derived and measured IOPs, for in-situ data compiled by IOCCG [14]. (a) a(443), (b) adg (443), and (c) aph (443).

Fig. 4.
Fig. 4.

Applications of the GA-SA approach in processing MODIS-Aqua imagery of the coastal region of Taiwan (2006/05/09). (a) Chl (standard MODIS product), (b) Chl (GA-SA approach), (c) NAP (GA-SA approach), and (d) CDOM (ag (443), GA-SA approach). Note that no data is given by MODIS in those white areas.

Tables (4)

Tables Icon

Table 1. The dynamic ranges of nine decision variables in biooptical model

Tables Icon

Table 2. Values of control parameters used in GA

Tables Icon

Table 3. Linear percentage errors ε (%) between derived and known values of the synthetic dataset

Tables Icon

Table 4. Linear percentage errors ε (%) between derived and measured values of the in-situ dataset.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

r rs ( λ ) = R rs ( λ ) 0.52 + 1.7 · R rs ( λ ) ,
u rs ( λ ) = g 0 + g 0 2 + 4 g 1 r rs ( λ ) 2 g 1 ,
u iwc ( λ ) = bb ( λ ) a ( λ ) + bb ( λ ) .
a ph ( λ ) = [ a 0 ( λ ) + a 1 ( λ ) · ln ( a ph ( 440 ) ) ] a ph ( 440 ) ,
X i = R i a ph ( 440 ) .
a ( λ ) = a w ( λ ) + [ a 0 ( λ ) + a 1 ( λ ) · ln ( a ph ( 440 ) ) ] a ph ( 440 )
+ a g ( 440 ) exp [ S g ( λ 440 ) ] + a d ( 440 ) exp [ S d ( λ 440 ) ] ,
bb ( λ ) = 0.5 b w ( λ ) + b b ph ( 550 ) ( 550 λ ) Y ph + b b d ( 550 ) ( 550 λ ) Y d ,
fitness = obj = λ 1 λ N [ u rs ( λ i ) u iwc ( λ i ) ] 2 N ,
x i = x i min + x i max x i min 2 l i 1 × j = 1 l ( 2 j 1 · bit ij ) ,
ε = 10 RMSE 1 .
Chl = [ a ph ( 440 ) 0.05 ] 1.597 ,
NAP = [ b b d ( 550 ) 0.3 B d ] 1.613 ,

Metrics