S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct Laser Writing of Three- Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses,” Adv. Mater. 18, 265–269 (2006).

[CrossRef]

R. C. Rumpf, P. Srinivasan, and E. G. Johnson, “Modeling the fabrication of nano-optical structures,” Proc. SPIE 6110, 611004 (2006).

[CrossRef]

R. C. Rumpf and E. G. Johnson, “Comprehensive modeling of near-field nano-patterning,” Opt. Express 13, 7198 (2005).

[CrossRef]
[PubMed]

A. Feigel, M. Veinger, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, “Two dimensional photonic band gap pattering in thin chalcogenide glassy films,” Thin Solid Films 488, 185–188 (2005).

[CrossRef]

A. Arsh, M. Klebanov, V. Lyubin, L. Shapiro, A. Feigel, M. Veinger, and B. Sfez, “Glassy mAs2S3·nAs2Se3 photoresist films for interference laser lithography,” Opt. Mater. 26, 301–304 (2004).

[CrossRef]

R. C. Rumpf and E. G. Johnson, “Fully three-dimensional modeling of the fabrication and behavior of photonic crystals formed by holographic lithography,” J. Opt. Soc. Am. A 21, 1703–1713 (2004).

[CrossRef]

A. Feigel, M. Veinger, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, “Three-dimensional simple cubic woodpile photonic crystals made from chalcogenide glasses,” Appl. Phys. Lett. 83, 4480 (2003).

[CrossRef]

A. Feigel, Z. Kotler, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, “Chalcogenide glass-based three-dimensional photonic crystals,” Appl. Phys. Lett. 77, 3221 (2000).

[CrossRef]

A. V. Stronski, M. Vlcek, A. Sklenar, P. E. Shepeljavi, S. A. Kostyukevich, and T. Wagner, “Application of As40S60-xSex layers for high-efficiency grating production,” J. Non-Cryst. Solids 266– 269, 973 (2000).

[CrossRef]

G. Rosenblum, B. G. Sfez, Z. Kotler, V. Lyubin, and M. Klebanov, “Nonlinear optical effects in chalcogenide photoresists,” Appl. Phys. Lett. 75, 3249 (1999).

[CrossRef]

M. Vlcek, P. J. S. Ewen, and T. Wagner, “High efficiency diffraction gratings in As-S layers,” J. Non-Cryst. Solids 227– 230, 743 (1998).

[CrossRef]

J. A. Sethian and D. Adalsteinsson, “Overview of level set methods for etching, deposition, and lithography development,” IEEE Transactions on Semiconductor Devices 10, 167–184 (1997).

[CrossRef]

J. A. Sethian, “A fast marching level set method for monotonically advancing fronts,” Proc. Nat. Acad. Sci. 93, 1591–1595 (1996).

[CrossRef]
[PubMed]

D. Adalsteinsson and J. A. Sethian, “A level set approach to a unified model for etching, deposition, and lithography. I. Algorithms and two-dimensional simulations,” J. Comp. Phys. 120, 128–144 (1995).

[CrossRef]

D. Adalsteinsson and J. A. Sethian, “A level set approach to a unified model for etching, deposition, and lithography II: three-dimensional simulations [integrated circuits],” J. Comp. Phys. 122, 348–366 (1995).

[CrossRef]

K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys. 44, 475 (1995).

[CrossRef]

A. Ozols and K. Shvarts, “Photosensitivity of amorphous semiconductor As-S and As-Se films under CW, nanosecond and picosecond laser irradiation,” Cryst. Latt. Def. and Amorph. Mat. 17, 235–239 (1987).

J. A. Sethian and D. Adalsteinsson, “Overview of level set methods for etching, deposition, and lithography development,” IEEE Transactions on Semiconductor Devices 10, 167–184 (1997).

[CrossRef]

D. Adalsteinsson and J. A. Sethian, “A level set approach to a unified model for etching, deposition, and lithography. I. Algorithms and two-dimensional simulations,” J. Comp. Phys. 120, 128–144 (1995).

[CrossRef]

D. Adalsteinsson and J. A. Sethian, “A level set approach to a unified model for etching, deposition, and lithography II: three-dimensional simulations [integrated circuits],” J. Comp. Phys. 122, 348–366 (1995).

[CrossRef]

A. Feigel, M. Veinger, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, “Two dimensional photonic band gap pattering in thin chalcogenide glassy films,” Thin Solid Films 488, 185–188 (2005).

[CrossRef]

A. Arsh, M. Klebanov, V. Lyubin, L. Shapiro, A. Feigel, M. Veinger, and B. Sfez, “Glassy mAs2S3·nAs2Se3 photoresist films for interference laser lithography,” Opt. Mater. 26, 301–304 (2004).

[CrossRef]

A. Feigel, M. Veinger, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, “Three-dimensional simple cubic woodpile photonic crystals made from chalcogenide glasses,” Appl. Phys. Lett. 83, 4480 (2003).

[CrossRef]

A. Feigel, Z. Kotler, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, “Chalcogenide glass-based three-dimensional photonic crystals,” Appl. Phys. Lett. 77, 3221 (2000).

[CrossRef]

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct Laser Writing of Three- Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses,” Adv. Mater. 18, 265–269 (2006).

[CrossRef]

K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys. 44, 475 (1995).

[CrossRef]

M. Vlcek, P. J. S. Ewen, and T. Wagner, “High efficiency diffraction gratings in As-S layers,” J. Non-Cryst. Solids 227– 230, 743 (1998).

[CrossRef]

S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces (Springer, 2003).

A. Feigel, M. Veinger, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, “Two dimensional photonic band gap pattering in thin chalcogenide glassy films,” Thin Solid Films 488, 185–188 (2005).

[CrossRef]

A. Arsh, M. Klebanov, V. Lyubin, L. Shapiro, A. Feigel, M. Veinger, and B. Sfez, “Glassy mAs2S3·nAs2Se3 photoresist films for interference laser lithography,” Opt. Mater. 26, 301–304 (2004).

[CrossRef]

A. Feigel, M. Veinger, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, “Three-dimensional simple cubic woodpile photonic crystals made from chalcogenide glasses,” Appl. Phys. Lett. 83, 4480 (2003).

[CrossRef]

A. Feigel, Z. Kotler, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, “Chalcogenide glass-based three-dimensional photonic crystals,” Appl. Phys. Lett. 77, 3221 (2000).

[CrossRef]

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct Laser Writing of Three- Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses,” Adv. Mater. 18, 265–269 (2006).

[CrossRef]

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct Laser Writing of Three- Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses,” Adv. Mater. 18, 265–269 (2006).

[CrossRef]

R. C. Rumpf, P. Srinivasan, and E. G. Johnson, “Modeling the fabrication of nano-optical structures,” Proc. SPIE 6110, 611004 (2006).

[CrossRef]

R. C. Rumpf and E. G. Johnson, “Comprehensive modeling of near-field nano-patterning,” Opt. Express 13, 7198 (2005).

[CrossRef]
[PubMed]

R. C. Rumpf and E. G. Johnson, “Fully three-dimensional modeling of the fabrication and behavior of photonic crystals formed by holographic lithography,” J. Opt. Soc. Am. A 21, 1703–1713 (2004).

[CrossRef]

A. Feigel, M. Veinger, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, “Two dimensional photonic band gap pattering in thin chalcogenide glassy films,” Thin Solid Films 488, 185–188 (2005).

[CrossRef]

A. Arsh, M. Klebanov, V. Lyubin, L. Shapiro, A. Feigel, M. Veinger, and B. Sfez, “Glassy mAs2S3·nAs2Se3 photoresist films for interference laser lithography,” Opt. Mater. 26, 301–304 (2004).

[CrossRef]

A. Feigel, M. Veinger, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, “Three-dimensional simple cubic woodpile photonic crystals made from chalcogenide glasses,” Appl. Phys. Lett. 83, 4480 (2003).

[CrossRef]

A. Feigel, Z. Kotler, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, “Chalcogenide glass-based three-dimensional photonic crystals,” Appl. Phys. Lett. 77, 3221 (2000).

[CrossRef]

G. Rosenblum, B. G. Sfez, Z. Kotler, V. Lyubin, and M. Klebanov, “Nonlinear optical effects in chalcogenide photoresists,” Appl. Phys. Lett. 75, 3249 (1999).

[CrossRef]

K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys. 44, 475 (1995).

[CrossRef]

A. V. Stronski, M. Vlcek, A. Sklenar, P. E. Shepeljavi, S. A. Kostyukevich, and T. Wagner, “Application of As40S60-xSex layers for high-efficiency grating production,” J. Non-Cryst. Solids 266– 269, 973 (2000).

[CrossRef]

A. Feigel, Z. Kotler, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, “Chalcogenide glass-based three-dimensional photonic crystals,” Appl. Phys. Lett. 77, 3221 (2000).

[CrossRef]

G. Rosenblum, B. G. Sfez, Z. Kotler, V. Lyubin, and M. Klebanov, “Nonlinear optical effects in chalcogenide photoresists,” Appl. Phys. Lett. 75, 3249 (1999).

[CrossRef]

A. Feigel, M. Veinger, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, “Two dimensional photonic band gap pattering in thin chalcogenide glassy films,” Thin Solid Films 488, 185–188 (2005).

[CrossRef]

A. Arsh, M. Klebanov, V. Lyubin, L. Shapiro, A. Feigel, M. Veinger, and B. Sfez, “Glassy mAs2S3·nAs2Se3 photoresist films for interference laser lithography,” Opt. Mater. 26, 301–304 (2004).

[CrossRef]

A. Feigel, M. Veinger, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, “Three-dimensional simple cubic woodpile photonic crystals made from chalcogenide glasses,” Appl. Phys. Lett. 83, 4480 (2003).

[CrossRef]

A. Feigel, Z. Kotler, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, “Chalcogenide glass-based three-dimensional photonic crystals,” Appl. Phys. Lett. 77, 3221 (2000).

[CrossRef]

G. Rosenblum, B. G. Sfez, Z. Kotler, V. Lyubin, and M. Klebanov, “Nonlinear optical effects in chalcogenide photoresists,” Appl. Phys. Lett. 75, 3249 (1999).

[CrossRef]

V. M. Lyubin, A. M. Sedikh, N. N. Smirnova, and V. P. Shilo, Microelectronica18, 523 (1989).

S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces (Springer, 2003).

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct Laser Writing of Three- Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses,” Adv. Mater. 18, 265–269 (2006).

[CrossRef]

A. Ozols and K. Shvarts, “Photosensitivity of amorphous semiconductor As-S and As-Se films under CW, nanosecond and picosecond laser irradiation,” Cryst. Latt. Def. and Amorph. Mat. 17, 235–239 (1987).

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct Laser Writing of Three- Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses,” Adv. Mater. 18, 265–269 (2006).

[CrossRef]

G. Rosenblum, B. G. Sfez, Z. Kotler, V. Lyubin, and M. Klebanov, “Nonlinear optical effects in chalcogenide photoresists,” Appl. Phys. Lett. 75, 3249 (1999).

[CrossRef]

R. C. Rumpf, P. Srinivasan, and E. G. Johnson, “Modeling the fabrication of nano-optical structures,” Proc. SPIE 6110, 611004 (2006).

[CrossRef]

R. C. Rumpf and E. G. Johnson, “Comprehensive modeling of near-field nano-patterning,” Opt. Express 13, 7198 (2005).

[CrossRef]
[PubMed]

R. C. Rumpf and E. G. Johnson, “Fully three-dimensional modeling of the fabrication and behavior of photonic crystals formed by holographic lithography,” J. Opt. Soc. Am. A 21, 1703–1713 (2004).

[CrossRef]

V. M. Lyubin, A. M. Sedikh, N. N. Smirnova, and V. P. Shilo, Microelectronica18, 523 (1989).

J. A. Sethian and D. Adalsteinsson, “Overview of level set methods for etching, deposition, and lithography development,” IEEE Transactions on Semiconductor Devices 10, 167–184 (1997).

[CrossRef]

J. A. Sethian, “A fast marching level set method for monotonically advancing fronts,” Proc. Nat. Acad. Sci. 93, 1591–1595 (1996).

[CrossRef]
[PubMed]

D. Adalsteinsson and J. A. Sethian, “A level set approach to a unified model for etching, deposition, and lithography II: three-dimensional simulations [integrated circuits],” J. Comp. Phys. 122, 348–366 (1995).

[CrossRef]

D. Adalsteinsson and J. A. Sethian, “A level set approach to a unified model for etching, deposition, and lithography. I. Algorithms and two-dimensional simulations,” J. Comp. Phys. 120, 128–144 (1995).

[CrossRef]

J. A. Sethian, Level Set Methods and Fast Marching Methods, (Cambridge Univ. Press, 2nd ed., 1999).

A. Feigel, M. Veinger, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, “Two dimensional photonic band gap pattering in thin chalcogenide glassy films,” Thin Solid Films 488, 185–188 (2005).

[CrossRef]

A. Arsh, M. Klebanov, V. Lyubin, L. Shapiro, A. Feigel, M. Veinger, and B. Sfez, “Glassy mAs2S3·nAs2Se3 photoresist films for interference laser lithography,” Opt. Mater. 26, 301–304 (2004).

[CrossRef]

A. Feigel, M. Veinger, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, “Three-dimensional simple cubic woodpile photonic crystals made from chalcogenide glasses,” Appl. Phys. Lett. 83, 4480 (2003).

[CrossRef]

A. Feigel, Z. Kotler, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, “Chalcogenide glass-based three-dimensional photonic crystals,” Appl. Phys. Lett. 77, 3221 (2000).

[CrossRef]

G. Rosenblum, B. G. Sfez, Z. Kotler, V. Lyubin, and M. Klebanov, “Nonlinear optical effects in chalcogenide photoresists,” Appl. Phys. Lett. 75, 3249 (1999).

[CrossRef]

A. Arsh, M. Klebanov, V. Lyubin, L. Shapiro, A. Feigel, M. Veinger, and B. Sfez, “Glassy mAs2S3·nAs2Se3 photoresist films for interference laser lithography,” Opt. Mater. 26, 301–304 (2004).

[CrossRef]

A. V. Stronski, M. Vlcek, A. Sklenar, P. E. Shepeljavi, S. A. Kostyukevich, and T. Wagner, “Application of As40S60-xSex layers for high-efficiency grating production,” J. Non-Cryst. Solids 266– 269, 973 (2000).

[CrossRef]

V. M. Lyubin, A. M. Sedikh, N. N. Smirnova, and V. P. Shilo, Microelectronica18, 523 (1989).

K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys. 44, 475 (1995).

[CrossRef]

A. Ozols and K. Shvarts, “Photosensitivity of amorphous semiconductor As-S and As-Se films under CW, nanosecond and picosecond laser irradiation,” Cryst. Latt. Def. and Amorph. Mat. 17, 235–239 (1987).

A. V. Stronski, M. Vlcek, A. Sklenar, P. E. Shepeljavi, S. A. Kostyukevich, and T. Wagner, “Application of As40S60-xSex layers for high-efficiency grating production,” J. Non-Cryst. Solids 266– 269, 973 (2000).

[CrossRef]

V. M. Lyubin, A. M. Sedikh, N. N. Smirnova, and V. P. Shilo, Microelectronica18, 523 (1989).

R. C. Rumpf, P. Srinivasan, and E. G. Johnson, “Modeling the fabrication of nano-optical structures,” Proc. SPIE 6110, 611004 (2006).

[CrossRef]

A. V. Stronski, M. Vlcek, A. Sklenar, P. E. Shepeljavi, S. A. Kostyukevich, and T. Wagner, “Application of As40S60-xSex layers for high-efficiency grating production,” J. Non-Cryst. Solids 266– 269, 973 (2000).

[CrossRef]

K. TanakaA.V. Kolobov, ed.,Photo-Induced Metastability in Amorphous Semiconductors (Wiley, Weinheim, 2003) pp 69.

[CrossRef]

A. Feigel, M. Veinger, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, “Two dimensional photonic band gap pattering in thin chalcogenide glassy films,” Thin Solid Films 488, 185–188 (2005).

[CrossRef]

A. Arsh, M. Klebanov, V. Lyubin, L. Shapiro, A. Feigel, M. Veinger, and B. Sfez, “Glassy mAs2S3·nAs2Se3 photoresist films for interference laser lithography,” Opt. Mater. 26, 301–304 (2004).

[CrossRef]

A. Feigel, M. Veinger, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, “Three-dimensional simple cubic woodpile photonic crystals made from chalcogenide glasses,” Appl. Phys. Lett. 83, 4480 (2003).

[CrossRef]

A. V. Stronski, M. Vlcek, A. Sklenar, P. E. Shepeljavi, S. A. Kostyukevich, and T. Wagner, “Application of As40S60-xSex layers for high-efficiency grating production,” J. Non-Cryst. Solids 266– 269, 973 (2000).

[CrossRef]

M. Vlcek, P. J. S. Ewen, and T. Wagner, “High efficiency diffraction gratings in As-S layers,” J. Non-Cryst. Solids 227– 230, 743 (1998).

[CrossRef]

A. V. Stronski, M. Vlcek, A. Sklenar, P. E. Shepeljavi, S. A. Kostyukevich, and T. Wagner, “Application of As40S60-xSex layers for high-efficiency grating production,” J. Non-Cryst. Solids 266– 269, 973 (2000).

[CrossRef]

M. Vlcek, P. J. S. Ewen, and T. Wagner, “High efficiency diffraction gratings in As-S layers,” J. Non-Cryst. Solids 227– 230, 743 (1998).

[CrossRef]

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct Laser Writing of Three- Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses,” Adv. Mater. 18, 265–269 (2006).

[CrossRef]

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct Laser Writing of Three- Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses,” Adv. Mater. 18, 265–269 (2006).

[CrossRef]

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct Laser Writing of Three- Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses,” Adv. Mater. 18, 265–269 (2006).

[CrossRef]

K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys. 44, 475 (1995).

[CrossRef]

G. Rosenblum, B. G. Sfez, Z. Kotler, V. Lyubin, and M. Klebanov, “Nonlinear optical effects in chalcogenide photoresists,” Appl. Phys. Lett. 75, 3249 (1999).

[CrossRef]

A. Feigel, Z. Kotler, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, “Chalcogenide glass-based three-dimensional photonic crystals,” Appl. Phys. Lett. 77, 3221 (2000).

[CrossRef]

A. Feigel, M. Veinger, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, “Three-dimensional simple cubic woodpile photonic crystals made from chalcogenide glasses,” Appl. Phys. Lett. 83, 4480 (2003).

[CrossRef]

A. Ozols and K. Shvarts, “Photosensitivity of amorphous semiconductor As-S and As-Se films under CW, nanosecond and picosecond laser irradiation,” Cryst. Latt. Def. and Amorph. Mat. 17, 235–239 (1987).

J. A. Sethian and D. Adalsteinsson, “Overview of level set methods for etching, deposition, and lithography development,” IEEE Transactions on Semiconductor Devices 10, 167–184 (1997).

[CrossRef]

D. Adalsteinsson and J. A. Sethian, “A level set approach to a unified model for etching, deposition, and lithography. I. Algorithms and two-dimensional simulations,” J. Comp. Phys. 120, 128–144 (1995).

[CrossRef]

D. Adalsteinsson and J. A. Sethian, “A level set approach to a unified model for etching, deposition, and lithography II: three-dimensional simulations [integrated circuits],” J. Comp. Phys. 122, 348–366 (1995).

[CrossRef]

M. Vlcek, P. J. S. Ewen, and T. Wagner, “High efficiency diffraction gratings in As-S layers,” J. Non-Cryst. Solids 227– 230, 743 (1998).

[CrossRef]

A. V. Stronski, M. Vlcek, A. Sklenar, P. E. Shepeljavi, S. A. Kostyukevich, and T. Wagner, “Application of As40S60-xSex layers for high-efficiency grating production,” J. Non-Cryst. Solids 266– 269, 973 (2000).

[CrossRef]

A. Arsh, M. Klebanov, V. Lyubin, L. Shapiro, A. Feigel, M. Veinger, and B. Sfez, “Glassy mAs2S3·nAs2Se3 photoresist films for interference laser lithography,” Opt. Mater. 26, 301–304 (2004).

[CrossRef]

J. A. Sethian, “A fast marching level set method for monotonically advancing fronts,” Proc. Nat. Acad. Sci. 93, 1591–1595 (1996).

[CrossRef]
[PubMed]

R. C. Rumpf, P. Srinivasan, and E. G. Johnson, “Modeling the fabrication of nano-optical structures,” Proc. SPIE 6110, 611004 (2006).

[CrossRef]

A. Feigel, M. Veinger, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, “Two dimensional photonic band gap pattering in thin chalcogenide glassy films,” Thin Solid Films 488, 185–188 (2005).

[CrossRef]

J. A. Sethian, Level Set Methods and Fast Marching Methods, (Cambridge Univ. Press, 2nd ed., 1999).

S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces (Springer, 2003).

V. M. Lyubin, A. M. Sedikh, N. N. Smirnova, and V. P. Shilo, Microelectronica18, 523 (1989).

K. TanakaA.V. Kolobov, ed.,Photo-Induced Metastability in Amorphous Semiconductors (Wiley, Weinheim, 2003) pp 69.

[CrossRef]