Abstract

We have developed a three-dimensional simulation algorithm based on fast marching method that mimics the etching behavior of chalcogenide photoresists, especially for maskless interference lithography. This lithography exposure is characterized by continuous variation of the exposure intensity inside the photoresist, without step like variation. Furthermore, the chalcogenide photoresist has a “gray-scale” behavior, without definite threshold. The resulting etching process is very sensitive to exposure dose and etching time. The optimal relations between these parameters are determined both theoretically and experimentally. A very good agreement between calculation and experimental results is shown, opening the door to complex nanostructures engineering.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. K. Shimakawa, A. Kolobov, S. R. Elliott, "Photoinduced effects and metastability in amorphous semiconductors and insulators," Adv. Phys. 44, 475 (1995).
    [CrossRef]
  2. K. Tanaka, "Sub-Gap Photo-Induced Phenomena in Chalcogenide Glasses," in Photo-Induced Metastability in Amorphous Semiconductors, A.V. Kolobov, ed., (Wiley, Weinheim, 2003) pp 69.
    [CrossRef]
  3. A. Ozols and K. Shvarts, "Photosensitivity of amorphous semiconductor As-S and As-Se films under CW, nanosecond and picosecond laser irradiation," Cryst. Latt. Def. and Amorph. Mat. 17, 235-239 (1987).Q1
  4. G. Rosenblum, B. G. Sfez, Z. Kotler, V. Lyubin, and M. Klebanov, "Nonlinear optical effects in chalcogenide photoresists," Appl. Phys. Lett. 75, 3249 (1999).
    [CrossRef]
  5. V. M. Lyubin, A. M. Sedikh, N. N. Smirnova and V. P. Shilo, Microelectronica 18, 523 (1989).Q2
  6. A. Arsh, M. Klebanov, V. Lyubin, L. Shapiro, A. Feigel, M. Veinger, B. Sfez, "Glassy mAs2S3·nAs2Se3 photoresist films for interference laser lithography," Opt. Mater. 26,301-304 (2004).
    [CrossRef]
  7. M. Vlcek, P. J. S. Ewen and T. Wagner, "High efficiency diffraction gratings in As-S layers," J. Non-Cryst. Solids 227-230, 743 (1998).
    [CrossRef]
  8. A. V. Stronski, M. Vlcek, A. Sklenar, P. E. Shepeljavi, S. A. Kostyukevich, and T. Wagner, "Application of As40S60-xSex layers for high-efficiency grating production," J. Non-Cryst. Solids 266-269, 973 (2000).
    [CrossRef]
  9. S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, "Direct Laser Writing of Three- Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses," Adv. Mater. 18, 265-269 (2006).
    [CrossRef]
  10. A. Feigel, M. Veinger, B. Sfez, A. Arsh, M. Klebanov, V. Lyubin, "Two dimensional photonic band gap pattering in thin chalcogenide glassy films," Thin Solid Films 488,185-188 (2005).
    [CrossRef]
  11. A. Feigel, Z. Kotler, B. Sfez, A. Arsh, M. Klebanov and V. Lyubin, "Chalcogenide glass-based three-dimensional photonic crystals," Appl. Phys. Lett. 77, 3221 (2000).
    [CrossRef]
  12. A. Feigel, M. Veinger, B. Sfez, A. Arsh, M. Klebanov and V. Lyubin, "Three-dimensional simple cubic woodpile photonic crystals made from chalcogenide glasses," Appl. Phys. Lett. 83, 4480 (2003).
    [CrossRef]
  13. R. C. Rumpf and E. G. Johnson, "Fully three-dimensional modeling of the fabrication and behavior of photonic crystals formed by holographic lithography," J. Opt. Soc. Am. A 21, 1703-1713 (2004).
    [CrossRef]
  14. J. A. Sethian, "A fast marching level set method for monotonically advancing fronts," Proc. Nat. Acad. Sci. 93, 1591-1595 (1996).
    [CrossRef] [PubMed]
  15. J. A. Sethian, Level Set Methods and Fast Marching Methods, (Cambridge Univ. Press, 2nd ed., 1999).
  16. S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces (Springer, 2003).
  17. J. A. Sethian and D. Adalsteinsson, "Overview of level set methods for etching, deposition, and lithography development," IEEE Transactions on Semiconductor Devices 10, 167-184 (1997).Q3
    [CrossRef]
  18. D. Adalsteinsson and J. A. Sethian, "A level set approach to a unified model for etching, deposition, and lithography. I. Algorithms and two-dimensional simulations," J. Comp. Phys. 120, 128-144 (1995).Q4
    [CrossRef]
  19. D. Adalsteinsson and J. A. Sethian, "A level set approach to a unified model for etching, deposition, and lithography II: three-dimensional simulations [integrated circuits]," J. Comp. Phys. 122, 348-366 (1995).Q5
    [CrossRef]
  20. R. C. Rumpf, P. Srinivasan, and E. G. Johnson, "Modeling the fabrication of nano-optical structures," Proc. SPIE 6110, 611004 (2006).
    [CrossRef]
  21. R. C. Rumpf and E. G. Johnson, "Comprehensive modeling of near-field nano-patterning," Opt. Express 13, 7198 (2005).
    [CrossRef] [PubMed]

2006

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, "Direct Laser Writing of Three- Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses," Adv. Mater. 18, 265-269 (2006).
[CrossRef]

R. C. Rumpf, P. Srinivasan, and E. G. Johnson, "Modeling the fabrication of nano-optical structures," Proc. SPIE 6110, 611004 (2006).
[CrossRef]

2005

R. C. Rumpf and E. G. Johnson, "Comprehensive modeling of near-field nano-patterning," Opt. Express 13, 7198 (2005).
[CrossRef] [PubMed]

A. Feigel, M. Veinger, B. Sfez, A. Arsh, M. Klebanov, V. Lyubin, "Two dimensional photonic band gap pattering in thin chalcogenide glassy films," Thin Solid Films 488,185-188 (2005).
[CrossRef]

2004

A. Arsh, M. Klebanov, V. Lyubin, L. Shapiro, A. Feigel, M. Veinger, B. Sfez, "Glassy mAs2S3·nAs2Se3 photoresist films for interference laser lithography," Opt. Mater. 26,301-304 (2004).
[CrossRef]

R. C. Rumpf and E. G. Johnson, "Fully three-dimensional modeling of the fabrication and behavior of photonic crystals formed by holographic lithography," J. Opt. Soc. Am. A 21, 1703-1713 (2004).
[CrossRef]

2003

A. Feigel, M. Veinger, B. Sfez, A. Arsh, M. Klebanov and V. Lyubin, "Three-dimensional simple cubic woodpile photonic crystals made from chalcogenide glasses," Appl. Phys. Lett. 83, 4480 (2003).
[CrossRef]

2000

A. V. Stronski, M. Vlcek, A. Sklenar, P. E. Shepeljavi, S. A. Kostyukevich, and T. Wagner, "Application of As40S60-xSex layers for high-efficiency grating production," J. Non-Cryst. Solids 266-269, 973 (2000).
[CrossRef]

A. Feigel, Z. Kotler, B. Sfez, A. Arsh, M. Klebanov and V. Lyubin, "Chalcogenide glass-based three-dimensional photonic crystals," Appl. Phys. Lett. 77, 3221 (2000).
[CrossRef]

1999

G. Rosenblum, B. G. Sfez, Z. Kotler, V. Lyubin, and M. Klebanov, "Nonlinear optical effects in chalcogenide photoresists," Appl. Phys. Lett. 75, 3249 (1999).
[CrossRef]

1998

M. Vlcek, P. J. S. Ewen and T. Wagner, "High efficiency diffraction gratings in As-S layers," J. Non-Cryst. Solids 227-230, 743 (1998).
[CrossRef]

1997

J. A. Sethian and D. Adalsteinsson, "Overview of level set methods for etching, deposition, and lithography development," IEEE Transactions on Semiconductor Devices 10, 167-184 (1997).Q3
[CrossRef]

1996

J. A. Sethian, "A fast marching level set method for monotonically advancing fronts," Proc. Nat. Acad. Sci. 93, 1591-1595 (1996).
[CrossRef] [PubMed]

1995

D. Adalsteinsson and J. A. Sethian, "A level set approach to a unified model for etching, deposition, and lithography. I. Algorithms and two-dimensional simulations," J. Comp. Phys. 120, 128-144 (1995).Q4
[CrossRef]

D. Adalsteinsson and J. A. Sethian, "A level set approach to a unified model for etching, deposition, and lithography II: three-dimensional simulations [integrated circuits]," J. Comp. Phys. 122, 348-366 (1995).Q5
[CrossRef]

K. Shimakawa, A. Kolobov, S. R. Elliott, "Photoinduced effects and metastability in amorphous semiconductors and insulators," Adv. Phys. 44, 475 (1995).
[CrossRef]

1989

V. M. Lyubin, A. M. Sedikh, N. N. Smirnova and V. P. Shilo, Microelectronica 18, 523 (1989).Q2

1987

A. Ozols and K. Shvarts, "Photosensitivity of amorphous semiconductor As-S and As-Se films under CW, nanosecond and picosecond laser irradiation," Cryst. Latt. Def. and Amorph. Mat. 17, 235-239 (1987).Q1

Adv. Mater.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, "Direct Laser Writing of Three- Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses," Adv. Mater. 18, 265-269 (2006).
[CrossRef]

Adv. Phys.

K. Shimakawa, A. Kolobov, S. R. Elliott, "Photoinduced effects and metastability in amorphous semiconductors and insulators," Adv. Phys. 44, 475 (1995).
[CrossRef]

Appl. Phys. Lett.

G. Rosenblum, B. G. Sfez, Z. Kotler, V. Lyubin, and M. Klebanov, "Nonlinear optical effects in chalcogenide photoresists," Appl. Phys. Lett. 75, 3249 (1999).
[CrossRef]

A. Feigel, Z. Kotler, B. Sfez, A. Arsh, M. Klebanov and V. Lyubin, "Chalcogenide glass-based three-dimensional photonic crystals," Appl. Phys. Lett. 77, 3221 (2000).
[CrossRef]

A. Feigel, M. Veinger, B. Sfez, A. Arsh, M. Klebanov and V. Lyubin, "Three-dimensional simple cubic woodpile photonic crystals made from chalcogenide glasses," Appl. Phys. Lett. 83, 4480 (2003).
[CrossRef]

Cryst. Latt. Def. and Amorph. Mat.

A. Ozols and K. Shvarts, "Photosensitivity of amorphous semiconductor As-S and As-Se films under CW, nanosecond and picosecond laser irradiation," Cryst. Latt. Def. and Amorph. Mat. 17, 235-239 (1987).Q1

IEEE Transactions on Semiconductor Devices

J. A. Sethian and D. Adalsteinsson, "Overview of level set methods for etching, deposition, and lithography development," IEEE Transactions on Semiconductor Devices 10, 167-184 (1997).Q3
[CrossRef]

J. Comp. Phys.

D. Adalsteinsson and J. A. Sethian, "A level set approach to a unified model for etching, deposition, and lithography. I. Algorithms and two-dimensional simulations," J. Comp. Phys. 120, 128-144 (1995).Q4
[CrossRef]

D. Adalsteinsson and J. A. Sethian, "A level set approach to a unified model for etching, deposition, and lithography II: three-dimensional simulations [integrated circuits]," J. Comp. Phys. 122, 348-366 (1995).Q5
[CrossRef]

J. Non-Cryst. Solids

M. Vlcek, P. J. S. Ewen and T. Wagner, "High efficiency diffraction gratings in As-S layers," J. Non-Cryst. Solids 227-230, 743 (1998).
[CrossRef]

A. V. Stronski, M. Vlcek, A. Sklenar, P. E. Shepeljavi, S. A. Kostyukevich, and T. Wagner, "Application of As40S60-xSex layers for high-efficiency grating production," J. Non-Cryst. Solids 266-269, 973 (2000).
[CrossRef]

J. Opt. Soc. Am. A

Microelectronica

V. M. Lyubin, A. M. Sedikh, N. N. Smirnova and V. P. Shilo, Microelectronica 18, 523 (1989).Q2

Opt. Express

Opt. Mater.

A. Arsh, M. Klebanov, V. Lyubin, L. Shapiro, A. Feigel, M. Veinger, B. Sfez, "Glassy mAs2S3·nAs2Se3 photoresist films for interference laser lithography," Opt. Mater. 26,301-304 (2004).
[CrossRef]

Proc. Nat. Acad. Sci.

J. A. Sethian, "A fast marching level set method for monotonically advancing fronts," Proc. Nat. Acad. Sci. 93, 1591-1595 (1996).
[CrossRef] [PubMed]

Proc. SPIE

R. C. Rumpf, P. Srinivasan, and E. G. Johnson, "Modeling the fabrication of nano-optical structures," Proc. SPIE 6110, 611004 (2006).
[CrossRef]

Thin Solid Films

A. Feigel, M. Veinger, B. Sfez, A. Arsh, M. Klebanov, V. Lyubin, "Two dimensional photonic band gap pattering in thin chalcogenide glassy films," Thin Solid Films 488,185-188 (2005).
[CrossRef]

Other

K. Tanaka, "Sub-Gap Photo-Induced Phenomena in Chalcogenide Glasses," in Photo-Induced Metastability in Amorphous Semiconductors, A.V. Kolobov, ed., (Wiley, Weinheim, 2003) pp 69.
[CrossRef]

J. A. Sethian, Level Set Methods and Fast Marching Methods, (Cambridge Univ. Press, 2nd ed., 1999).

S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces (Springer, 2003).

Supplementary Material (1)

» Media 1: MOV (1426 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(1,390KB) The movie simulates the etching of a dielectric grating written using interference of two laser beams.. [Media 1]

Fig. 2.
Fig. 2.

Experimental results and fitted curve of relative etching time versus dose illumination for 5As2S3:1As2Se3 chalcogenide photoresist. The illumination intensity was varying up to 175mW/cm2 and the illumination time was kept constant to 200 sec.

Fig. 3.
Fig. 3.

SEM image and simulated picture of a 5As2S3:1As2Se3 chalcogenide dielectrics grating cross section. The exposure dose is 17.5 J/cm2 and the etching time is 105 sec.

Fig. 4.
Fig. 4.

SEM image and simulation of non-complete etching of 5As2S3:1As2Se3 chalcogenide dielectric grating crosses section. The exposure dose is 90 J/cm2 and the etching time is 70 sec.

Fig. 6.
Fig. 6.

Illumination doses and etching times used for preparing gratings in the 5As2S3:1As2Se3 chalcogenide composition. The area between the two lines is a region of stable etching (nonzero dwell time).

Tables (1)

Tables Icon

Group I: Under exposure; non-stable etching process. The samples were used in the calibration of the simulation software. Group II: Stable etching process. The samples were used in the calibration of the simulation software. Group III: Stable etching process. These samples were added after calibration in order to validate the prediction of the stability zone.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T ( x , y , z ) = t 0 · γ ( x , y , z ) = t 0 · γ ( I ( x , y , z ) )
[ [ max ( D ijk x T , D ijk + x T , 0 ) ] 2 + [ max ( D ijk y T , D ijk + y T , 0 ) ] 2 + [ max ( D ijk z T , D ijk + z T , 0 ) ] 2 ] 1 2 = t 0 γ ijk
γ = 1 + a · I n 1 + b · I n ;

Metrics