Abstract

A concept of phase-sensitive Si-based Total Internal Reflection bio- and chemical sensor is presented. The sensor uses the reflection of light from an internal edge of a Si prism, which is in contact with analyte material changing its index of refraction (thickness). Changes of the refractive index are monitored by measuring the differential phase shift between p- and s- polarized components of light reflected from the system. We show that due to a high refractive index of Si, such methodology leads to a high sensitivity and dynamic range of measurements. Furthermore, the Si-based platform offers an easy bioimmobilization step and excellent opportunities for the development of multi-channel microsensors taking advantage of the advanced state of development of Si-based microfabrication technologies.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1975).
  2. P. N. Prasad, Introduction to Biophotonics, (Wiley-Interscience, 2003).
    [CrossRef]
  3. B. Liedberg, C. Nylander, and I. Lundstrum, "Surface plasmon resonance for gas detection and biosensing, " Sens. Actuators B 4, 299-304 (1983).Q1
    [CrossRef]
  4. B. Liedberg, C. Nylander, and I. Lundstrom, "Biosensing with surface plasmon resonance - how it all started," Biosens. Bioelectron. 10, 1-9 (1995).
    [CrossRef]
  5. P. Schuck, "Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules," Annu. Rev. Biophys. Biomol. Struct. 26, 541-566 (1997).
    [CrossRef] [PubMed]
  6. P. B. Garland, "Optical evanescent wave methods for the study of biomolecular interactions," Q. Rev. Biophys. 29, 91-117 (1996).
    [CrossRef] [PubMed]
  7. A. V. Kabashin and P. I. Nikitin, "Interferometer based on a surface-plasmon resonance for sensor applications," Quantum Electron. 27, 653-654 (1997).
    [CrossRef]
  8. A. V. Kabashin and P. I. Nikitin, "Surface plasmon resonance interferometer for bio- and chemical-sensors," Opt. Commun. 150, 5-8 (1998).
    [CrossRef]
  9. A. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, "Phase Jumps and Interferometric Surface Plasmon Resonance Imaging," Appl. Phys. Lett. 75, 3917-3919 (1999).
    [CrossRef]
  10. R. M. A. Azzam, "Differential reflection phase shift under conditions of attenuated internal reflection," JOSA A 16, 1700-1702 (1999).Q2
    [CrossRef]
  11. R. M. A. Azzam, "Phase shifts that accompany total internal reflection at a dielectric-dielectric interface," J. Opt. Soc. Am. A 21, 1559-1563 (2004).
    [CrossRef]
  12. M.-H. Chiu, J.-Y. Lee, and D.-C. Su, "Refractive-index measurement based on the effects of total internal reflection and the uses of heterodyne interferometry," Appl. Opt. 36, 2936-2939 (1997).
    [CrossRef] [PubMed]
  13. H. Arwin, M. Poksinski and K. Johansen, "Total internal reflection ellipsometry: principles and applications," Appl. Optics 43, 3028-3036 (2004).
    [CrossRef]
  14. T. E. Tiwald, D. W. Thompson, J. A. Woollam, and S. Pepper, "Determination of the mid-IR optical constants of water and lubricants using IR ellipsometry combined with an ATR cell," Thin Solid Films 313, 718-721 (1998).
    [CrossRef]
  15. S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, "Properties and sensing characteristics of Surface Plasmon Resonance in infrared light," J. Opt. Soc. Am A 20, 1644-1650 (2003).
    [CrossRef]
  16. S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, "Surface Plasmon Resonance Sensor on a silicon platform," Sens. Actuators B 97, 409-414 (2004).Q3
    [CrossRef]
  17. S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, "Silicon-Based Surface Plasmon Resonance Sensing with Two Surface Plasmon Polariton Modes," Appl. Opt. 42, 6905-6909 (2003).
    [CrossRef] [PubMed]
  18. C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, "Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation," J. Appl. Phys. 83, 3323-3336 (1998).
    [CrossRef]

2004 (3)

H. Arwin, M. Poksinski and K. Johansen, "Total internal reflection ellipsometry: principles and applications," Appl. Optics 43, 3028-3036 (2004).
[CrossRef]

S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, "Surface Plasmon Resonance Sensor on a silicon platform," Sens. Actuators B 97, 409-414 (2004).Q3
[CrossRef]

R. M. A. Azzam, "Phase shifts that accompany total internal reflection at a dielectric-dielectric interface," J. Opt. Soc. Am. A 21, 1559-1563 (2004).
[CrossRef]

2003 (2)

S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, "Properties and sensing characteristics of Surface Plasmon Resonance in infrared light," J. Opt. Soc. Am A 20, 1644-1650 (2003).
[CrossRef]

S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, "Silicon-Based Surface Plasmon Resonance Sensing with Two Surface Plasmon Polariton Modes," Appl. Opt. 42, 6905-6909 (2003).
[CrossRef] [PubMed]

1999 (2)

A. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, "Phase Jumps and Interferometric Surface Plasmon Resonance Imaging," Appl. Phys. Lett. 75, 3917-3919 (1999).
[CrossRef]

R. M. A. Azzam, "Differential reflection phase shift under conditions of attenuated internal reflection," JOSA A 16, 1700-1702 (1999).Q2
[CrossRef]

1998 (3)

A. V. Kabashin and P. I. Nikitin, "Surface plasmon resonance interferometer for bio- and chemical-sensors," Opt. Commun. 150, 5-8 (1998).
[CrossRef]

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, "Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation," J. Appl. Phys. 83, 3323-3336 (1998).
[CrossRef]

T. E. Tiwald, D. W. Thompson, J. A. Woollam, and S. Pepper, "Determination of the mid-IR optical constants of water and lubricants using IR ellipsometry combined with an ATR cell," Thin Solid Films 313, 718-721 (1998).
[CrossRef]

1997 (3)

M.-H. Chiu, J.-Y. Lee, and D.-C. Su, "Refractive-index measurement based on the effects of total internal reflection and the uses of heterodyne interferometry," Appl. Opt. 36, 2936-2939 (1997).
[CrossRef] [PubMed]

A. V. Kabashin and P. I. Nikitin, "Interferometer based on a surface-plasmon resonance for sensor applications," Quantum Electron. 27, 653-654 (1997).
[CrossRef]

P. Schuck, "Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules," Annu. Rev. Biophys. Biomol. Struct. 26, 541-566 (1997).
[CrossRef] [PubMed]

1996 (1)

P. B. Garland, "Optical evanescent wave methods for the study of biomolecular interactions," Q. Rev. Biophys. 29, 91-117 (1996).
[CrossRef] [PubMed]

1995 (1)

B. Liedberg, C. Nylander, and I. Lundstrom, "Biosensing with surface plasmon resonance - how it all started," Biosens. Bioelectron. 10, 1-9 (1995).
[CrossRef]

1983 (1)

B. Liedberg, C. Nylander, and I. Lundstrum, "Surface plasmon resonance for gas detection and biosensing, " Sens. Actuators B 4, 299-304 (1983).Q1
[CrossRef]

Annu. Rev. Biophys. Biomol. Struct. (1)

P. Schuck, "Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules," Annu. Rev. Biophys. Biomol. Struct. 26, 541-566 (1997).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Optics (1)

H. Arwin, M. Poksinski and K. Johansen, "Total internal reflection ellipsometry: principles and applications," Appl. Optics 43, 3028-3036 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

A. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, "Phase Jumps and Interferometric Surface Plasmon Resonance Imaging," Appl. Phys. Lett. 75, 3917-3919 (1999).
[CrossRef]

Biosens. Bioelectron. (1)

B. Liedberg, C. Nylander, and I. Lundstrom, "Biosensing with surface plasmon resonance - how it all started," Biosens. Bioelectron. 10, 1-9 (1995).
[CrossRef]

J. Appl. Phys. (1)

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, "Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation," J. Appl. Phys. 83, 3323-3336 (1998).
[CrossRef]

J. Opt. Soc. Am A (1)

S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, "Properties and sensing characteristics of Surface Plasmon Resonance in infrared light," J. Opt. Soc. Am A 20, 1644-1650 (2003).
[CrossRef]

J. Opt. Soc. Am. A (1)

JOSA A (1)

R. M. A. Azzam, "Differential reflection phase shift under conditions of attenuated internal reflection," JOSA A 16, 1700-1702 (1999).Q2
[CrossRef]

Opt. Commun. (1)

A. V. Kabashin and P. I. Nikitin, "Surface plasmon resonance interferometer for bio- and chemical-sensors," Opt. Commun. 150, 5-8 (1998).
[CrossRef]

Q. Rev. Biophys. (1)

P. B. Garland, "Optical evanescent wave methods for the study of biomolecular interactions," Q. Rev. Biophys. 29, 91-117 (1996).
[CrossRef] [PubMed]

Quantum Electron. (1)

A. V. Kabashin and P. I. Nikitin, "Interferometer based on a surface-plasmon resonance for sensor applications," Quantum Electron. 27, 653-654 (1997).
[CrossRef]

Sens. Actuators B (2)

B. Liedberg, C. Nylander, and I. Lundstrum, "Surface plasmon resonance for gas detection and biosensing, " Sens. Actuators B 4, 299-304 (1983).Q1
[CrossRef]

S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, "Surface Plasmon Resonance Sensor on a silicon platform," Sens. Actuators B 97, 409-414 (2004).Q3
[CrossRef]

Thin Solid Films (1)

T. E. Tiwald, D. W. Thompson, J. A. Woollam, and S. Pepper, "Determination of the mid-IR optical constants of water and lubricants using IR ellipsometry combined with an ATR cell," Thin Solid Films 313, 718-721 (1998).
[CrossRef]

Other (2)

M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1975).

P. N. Prasad, Introduction to Biophotonics, (Wiley-Interscience, 2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a). Schematic of Si-based TIR sensor; (b) Phase shifts for the s- and p – polarized light and differential phase shift for Si prism under TIR (wavelength 1200nm). The results are presented for air and water as ambient media

Fig. 2.
Fig. 2.

(a). Differential phase shifts for three prism materials: Si, SF11 and BK7 glasses. Solid and dashed lines show results for water and medium with nm =1.4, respectively; (b) Differential phase in Si-based TIR configuration for different refractive indices of the external medium (nm )

Fig. 3.
Fig. 3.

Calculated sensitivities in cases of maximum differential phase control (a) and a fixed angle of incidence (b).

Fig. 4.
Fig. 4.

(a). Methodology for dynamic range estimation; (b) Separation φm - φc and dynamic range as a function of ambient RI

Fig. 5.
Fig. 5.

(a). Phase difference curves for water and two glycerin-water solutions having refractive index difference of Δn=3.1*10-3 and Δn=9.3*10-3 with respect to water; (b) Real time differential phase measurements of glycerin-water mixtures with various weight ratios; (c) Calibration curve of Si-based TIR sensor.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ = 2 arctan n ( n 2 sin 2 φ 1 ) 1 2 cos φ 2 arctan ( n 2 sin 2 φ 1 ) 1 2 n cos φ = 2 arctan ( n 2 sin 2 φ 1 ) 1 2 n sin φ tan φ
F = Δ φ = cos 2 ( Δ 2 ) ( 2 ( 1 n 2 ) tan 2 φ + 4 ) n sin φ tan 2 φ ( n 2 sin 2 φ 1 ) 1 2

Metrics