Abstract

This paper studies gratings engraved in multilayer dielectric stacks for ultra high intensity laser compressors application. We design various grating profiles with high reflected efficiencies for 1780 l/mm multilayer dielectric gratings (MLD). Each grating is defined to exhibit a different electric field maximum value in the pillars of the grating. A damage testing facility operating at 1.053 µm, 500 fs pulse duration is used to damage test the parts manufactured from these designs. It is evidenced that for fixed incident angle and materials the damage of the grating is directly related to the electric field intensity maximum in the material, which depends on the groove profile. Laser induced damage thresholds of 5 J/cm2 are experimentally reached with very high and uniform efficiencies.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. "Technical issues in the multi PETAWATT laser facility project on the Ligne d’Integration Laser," N. Blanchot et al., FIHFP (2004)
  2. D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219-221 (1985)
    [CrossRef]
  3. N. Blanchot, G. Marre, J. Neauport, C. Rouyer, S. Montant, A. Cotel, C. Leblanc, C. Sauteret, "Synthetic aperture compression scheme for multi-petawatt high energy laser," Appl. Opt., 45, 6013-6021, 2006
    [CrossRef] [PubMed]
  4. M. D. Perry, R. D. Boyd, J. A. Britten, B. W. Shore, C. Shannon and L. Li, "High efficiency multilayer dielectric diffraction gratings," Opt. Lett. 20, 940-942 (1995)
    [CrossRef] [PubMed]
  5. B. W. Shore, M. D. Perry, J. A. Britten, R. D. Boyd, M. D. Feit, H. T. Nguyen, R. Chow, G. E. Loomis, and L. Li, "Design of high-efficiency dielectric reflection gratings," J. Opt. Soc. Am. A 14, 1124-1136 (1997)
    [CrossRef]
  6. H. Wei and L. Li, "All-dielectric reflection gratings:a study of the physical mechanism for achieving high efficiency," Appl. Opt. 42, 6255-6260 (2003)
    [CrossRef] [PubMed]
  7. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore and M. Perry, "Laser induced damage in dielectrics with nanosecond to subpicosecond pulses," Phys. Rev. Let. 7412, 2248-2252 (1995)
    [CrossRef]
  8. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore and M. D. Perry, "Optical ablation by high power short-pulse lasers," J. Opt. Soc. Am. B 132, 459-468 (1996)
    [CrossRef]
  9. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore and M. D. Perry, "Ultrashort-pulse optical damage", in Proceedings of Laser-induced Damage Threshold in Optical Materials, Harold E. Bennett, Arthur H. Guenther, Mark R. Kozlowski, Brian E. Newnam, M. J. Soileau, Eds, Proc. SPIE 2714, 616-628 (1996)
  10. J. A. Britten, W. Molander, A. M. Komashko, C. PJ. Barty, "Multilayer dielectric gratings for petawatt-class laser systems", ", in Proceedings of Laser-induced Damage Threshold in Optical Materials, G. J. Exarhos, A. H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau, C. J. Stolz, Eds, Proc. SPIE 5273, 1-7 (2003)
    [CrossRef]
  11. N. Bonod, J. Neauport, "Optical performances and laser induced damage threshold improvement of diffraction gratings used as compressors in ultra high intensity lasers," Opt. Commun. 260, 649-655 (2006)
    [CrossRef]
  12. S. Liu, Z. Shen, W. Kong, J. Shen, Z. Deng, Y. Zhao, J. Shao and Z. Fan, "Optimization of near-field optical field of multi-layer dielectric gratings for pulse compressor," Opt. Commun. 267,50-57 (2006)
    [CrossRef]
  13. M. Nevière, E. Popov, Light propagation in periodic medias; differential theory and design, Marcel Dekker, New York, Basel, Honk Kong, 2003
  14. E. T. J. Nibbering, G. Grillon, M. A. Franco, B. S. Prade and A. Mysyrowicz, "Determination of the intertial contribution to the nonlinear refractive index of air, N2 and O2 by use of unfocused high-intensity femtosecond laser pulses", J. Opt. Soc. Am. B 14, 650-660 (1997)
    [CrossRef]
  15. I. Jovanovic, C. Brown, B. Wattelier, N. Nielsen, W. Molander, B. Stuart, D. Pennington and C. P. J. Barty, "Precision short-pulse damage test station utilizing optical parametric chirped-pulse amplification", Rev. Sci. Instrum. 75, 5193-5202 (2004).
    [CrossRef]
  16. M. Mero, J. Liu, W. Rudolph, D. Ristau and K. Starke, "Scaling laws of femtosecond laser pulse induced breakdown in oxide films", Phys. Rev. B 71, 115109 (2005)
    [CrossRef]
  17. http://www.sagem-ds.com/fra/site.php?spage=02020100
  18. J.B. Oliver, T.J. Kessler, H. Huang, J. Keck, A.L. Rigatti, A.W. Schmid, A. Kozlov, and T.Z. Kosc, „Thin-film design for multilayer diffraction gratings", in Proceedings of Laser-induced Damage Threshold in Optical Materials, Gregory J. Exarhos, Arthur H. Guenther, Keith L. Lewis, Detlev Ristau, M.J. Soileau, Christopher J. Stolz, Eds, Proc. SPIE 5991 (2006)
  19. S. Liu, J. Ma, Z. Shen, Y. Jin, J. Shao and Z. Fan, "Optimization of thin-film design for multi-layer dielectric gratings," Appl. Surf. Sci. 253,3642-3648 (2007)
    [CrossRef]
  20. C. P. J. Barty, M. Key, R. Beach, G. Beer, C. Brown, S. Bryan, J. Caird, T. Carlson, J. Crane, J. Dawson, A. C. Erlandson, D. Fittinghoff, M. Herman, C. Hoaglan, A. Iyer, L. JonesII, I. Jovanovic, A. Komashko, O. Landen, Z. Liao, W. Molander, S. Mitchell, E. Moses, N. Nielson, H. H. Nguyen, J. Nissen, S. Payne, D. Pennington, L. Risingen, M. Rushford, K. Skulina, P. Spaeth, B. Stuart, G. Tiebohl and B. Wattelier, "An overview of LLNL high-energy short-pulse technology for advanced radiography of laser fusion experiments," Nucl. Fusion, 44, S266-S275 (2004)
    [CrossRef]
  21. J. Keck, J. B. Oliver, T. J. Kessler, H. Huang, J. Barone, J. Hettrick, A. L. Rigatti, T. Hoover, K. L. Marshall, A. W. Schmid, A. Kozlov and T. Z. Kosc, "Manufacture and development of multilayer diffraction gratings", in Proceedings of Laser-induced Damage Threshold in Optical Materials, Gregory J. Exarhos, Arthur H. Guenther, Keith L. Lewis, Detlev Ristau, M.J. Soileau, Christopher J. Stolz, Eds, Proc. SPIE 5991 (2006)
  22. T. Z. Kosc, A. A. Kozlov and A. W. Schmid, "Formation of periodic microscructures on multilayer dielectric gratings prior to total alblation," Opt. Express 14,10921-10929 (2006)
    [CrossRef] [PubMed]

2007 (1)

S. Liu, J. Ma, Z. Shen, Y. Jin, J. Shao and Z. Fan, "Optimization of thin-film design for multi-layer dielectric gratings," Appl. Surf. Sci. 253,3642-3648 (2007)
[CrossRef]

2006 (4)

N. Blanchot, G. Marre, J. Neauport, C. Rouyer, S. Montant, A. Cotel, C. Leblanc, C. Sauteret, "Synthetic aperture compression scheme for multi-petawatt high energy laser," Appl. Opt., 45, 6013-6021, 2006
[CrossRef] [PubMed]

N. Bonod, J. Neauport, "Optical performances and laser induced damage threshold improvement of diffraction gratings used as compressors in ultra high intensity lasers," Opt. Commun. 260, 649-655 (2006)
[CrossRef]

S. Liu, Z. Shen, W. Kong, J. Shen, Z. Deng, Y. Zhao, J. Shao and Z. Fan, "Optimization of near-field optical field of multi-layer dielectric gratings for pulse compressor," Opt. Commun. 267,50-57 (2006)
[CrossRef]

T. Z. Kosc, A. A. Kozlov and A. W. Schmid, "Formation of periodic microscructures on multilayer dielectric gratings prior to total alblation," Opt. Express 14,10921-10929 (2006)
[CrossRef] [PubMed]

2005 (1)

M. Mero, J. Liu, W. Rudolph, D. Ristau and K. Starke, "Scaling laws of femtosecond laser pulse induced breakdown in oxide films", Phys. Rev. B 71, 115109 (2005)
[CrossRef]

2004 (2)

C. P. J. Barty, M. Key, R. Beach, G. Beer, C. Brown, S. Bryan, J. Caird, T. Carlson, J. Crane, J. Dawson, A. C. Erlandson, D. Fittinghoff, M. Herman, C. Hoaglan, A. Iyer, L. JonesII, I. Jovanovic, A. Komashko, O. Landen, Z. Liao, W. Molander, S. Mitchell, E. Moses, N. Nielson, H. H. Nguyen, J. Nissen, S. Payne, D. Pennington, L. Risingen, M. Rushford, K. Skulina, P. Spaeth, B. Stuart, G. Tiebohl and B. Wattelier, "An overview of LLNL high-energy short-pulse technology for advanced radiography of laser fusion experiments," Nucl. Fusion, 44, S266-S275 (2004)
[CrossRef]

I. Jovanovic, C. Brown, B. Wattelier, N. Nielsen, W. Molander, B. Stuart, D. Pennington and C. P. J. Barty, "Precision short-pulse damage test station utilizing optical parametric chirped-pulse amplification", Rev. Sci. Instrum. 75, 5193-5202 (2004).
[CrossRef]

2003 (1)

1997 (2)

1996 (1)

1995 (2)

M. D. Perry, R. D. Boyd, J. A. Britten, B. W. Shore, C. Shannon and L. Li, "High efficiency multilayer dielectric diffraction gratings," Opt. Lett. 20, 940-942 (1995)
[CrossRef] [PubMed]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore and M. Perry, "Laser induced damage in dielectrics with nanosecond to subpicosecond pulses," Phys. Rev. Let. 7412, 2248-2252 (1995)
[CrossRef]

1985 (1)

D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219-221 (1985)
[CrossRef]

Appl. Opt. (2)

Appl. Surf. Sci. (1)

S. Liu, J. Ma, Z. Shen, Y. Jin, J. Shao and Z. Fan, "Optimization of thin-film design for multi-layer dielectric gratings," Appl. Surf. Sci. 253,3642-3648 (2007)
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

Nucl. Fusion (1)

C. P. J. Barty, M. Key, R. Beach, G. Beer, C. Brown, S. Bryan, J. Caird, T. Carlson, J. Crane, J. Dawson, A. C. Erlandson, D. Fittinghoff, M. Herman, C. Hoaglan, A. Iyer, L. JonesII, I. Jovanovic, A. Komashko, O. Landen, Z. Liao, W. Molander, S. Mitchell, E. Moses, N. Nielson, H. H. Nguyen, J. Nissen, S. Payne, D. Pennington, L. Risingen, M. Rushford, K. Skulina, P. Spaeth, B. Stuart, G. Tiebohl and B. Wattelier, "An overview of LLNL high-energy short-pulse technology for advanced radiography of laser fusion experiments," Nucl. Fusion, 44, S266-S275 (2004)
[CrossRef]

Opt. Commun. (3)

D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219-221 (1985)
[CrossRef]

N. Bonod, J. Neauport, "Optical performances and laser induced damage threshold improvement of diffraction gratings used as compressors in ultra high intensity lasers," Opt. Commun. 260, 649-655 (2006)
[CrossRef]

S. Liu, Z. Shen, W. Kong, J. Shen, Z. Deng, Y. Zhao, J. Shao and Z. Fan, "Optimization of near-field optical field of multi-layer dielectric gratings for pulse compressor," Opt. Commun. 267,50-57 (2006)
[CrossRef]

Opt. Express (1)

T. Z. Kosc, A. A. Kozlov and A. W. Schmid, "Formation of periodic microscructures on multilayer dielectric gratings prior to total alblation," Opt. Express 14,10921-10929 (2006)
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. B (1)

M. Mero, J. Liu, W. Rudolph, D. Ristau and K. Starke, "Scaling laws of femtosecond laser pulse induced breakdown in oxide films", Phys. Rev. B 71, 115109 (2005)
[CrossRef]

Phys. Rev. Let. (1)

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore and M. Perry, "Laser induced damage in dielectrics with nanosecond to subpicosecond pulses," Phys. Rev. Let. 7412, 2248-2252 (1995)
[CrossRef]

Rev. Sci. Instrum. (1)

I. Jovanovic, C. Brown, B. Wattelier, N. Nielsen, W. Molander, B. Stuart, D. Pennington and C. P. J. Barty, "Precision short-pulse damage test station utilizing optical parametric chirped-pulse amplification", Rev. Sci. Instrum. 75, 5193-5202 (2004).
[CrossRef]

Other (7)

"Technical issues in the multi PETAWATT laser facility project on the Ligne d’Integration Laser," N. Blanchot et al., FIHFP (2004)

http://www.sagem-ds.com/fra/site.php?spage=02020100

J.B. Oliver, T.J. Kessler, H. Huang, J. Keck, A.L. Rigatti, A.W. Schmid, A. Kozlov, and T.Z. Kosc, „Thin-film design for multilayer diffraction gratings", in Proceedings of Laser-induced Damage Threshold in Optical Materials, Gregory J. Exarhos, Arthur H. Guenther, Keith L. Lewis, Detlev Ristau, M.J. Soileau, Christopher J. Stolz, Eds, Proc. SPIE 5991 (2006)

M. Nevière, E. Popov, Light propagation in periodic medias; differential theory and design, Marcel Dekker, New York, Basel, Honk Kong, 2003

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore and M. D. Perry, "Ultrashort-pulse optical damage", in Proceedings of Laser-induced Damage Threshold in Optical Materials, Harold E. Bennett, Arthur H. Guenther, Mark R. Kozlowski, Brian E. Newnam, M. J. Soileau, Eds, Proc. SPIE 2714, 616-628 (1996)

J. A. Britten, W. Molander, A. M. Komashko, C. PJ. Barty, "Multilayer dielectric gratings for petawatt-class laser systems", ", in Proceedings of Laser-induced Damage Threshold in Optical Materials, G. J. Exarhos, A. H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau, C. J. Stolz, Eds, Proc. SPIE 5273, 1-7 (2003)
[CrossRef]

J. Keck, J. B. Oliver, T. J. Kessler, H. Huang, J. Barone, J. Hettrick, A. L. Rigatti, T. Hoover, K. L. Marshall, A. W. Schmid, A. Kozlov and T. Z. Kosc, "Manufacture and development of multilayer diffraction gratings", in Proceedings of Laser-induced Damage Threshold in Optical Materials, Gregory J. Exarhos, Arthur H. Guenther, Keith L. Lewis, Detlev Ristau, M.J. Soileau, Christopher J. Stolz, Eds, Proc. SPIE 5991 (2006)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

A silica layer of thickness H is coated on a dielectric mirror made of HfO2 and SiO2 layers reflecting more than 99.5 % of the incident light (λ=1053 nm and θ=72°). A grating is ion etched in the silica layer with a period d, a groove height h, and a groove width at the half depth c1/2. The residual thickness of the silica layer is denoted e. Pillars present a trapezoidal geometry with angle of slope α.

Fig. 2.
Fig. 2.

Experimental setup for laser damage testing

Fig. 3.
Fig. 3.

Spatial profile of the focused laser used for testing. Diameter of 200µm at 1/e2

Fig. 4.
Fig. 4.

Example of damage probability on a 1740 l/mm gold grating. Testing is done at an incidence of 72.5° in TM polarization. The damage threshold i.e. maximal value at which damage probability is null is 0.67 J/cm2

Fig. 5.
Fig. 5.

AFM measurement on PW08 sample – section analysis

Fig. 6.
Fig. 6.

-1R diffraction efficiency in % measured on PW08 sample, coordinates in millimeters

Fig. 7.
Fig. 7.

Reconstruction of E2 in the top area of gratings PW01 (a) and PW08 (b)

Fig. 8.
Fig. 8.

Damage performance at 1.053 µm, 77.2°, TE polarization, 500 fs of 4 MLD samples

Fig. 9.
Fig. 9.

Damage performance at 1.053 µm, 77.2°, TE polarization, 500 fs on different zone of PW01 sample with corresponding measured diffraction efficiency

Fig. 10.
Fig. 10.

Damage performance at 1.053 µm, 77.2° or 64.05° of incidence, TE polarization, 500 fs versus 1/E2 maximum on four different MLD samples and a mirror (PW02).

Fig. 11.
Fig. 11.

Damage on sample PW01. (a) A periodic pattern perpendicular to the gratings lines is lightly visible on the periphery of the damage. (b) an AFM observation of the periodic ripple.

Fig. 12.
Fig. 12.

Damage on sample PW04. No ripples are observed.

Fig. 13.
Fig. 13.

AFM scan on a damage on PW04 sample. Top: section analysis. Bottom left: 2D view. Bottom right: spectrum

Tables (2)

Tables Icon

Table 1. MLD gratings manufactured. Sample PW02 is a mirror without a grating

Tables Icon

Table 2: Electric field intensity enhancement

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

F = ξ S eq ,
S eq = i = min i = max ( n i × F i ) F i max × S pixel ,
Z R = π · w 1 2 λ
I = 2 ξ τ . π . w 1 2
B = 2 π λ n 2 0 Z R I ( z ) d z
B = 4 π λ 2 n 2 ξ τ
DT ( gl ) DT ( g 2 ) = F . E . ( g 2 ) F . E . ( gl )

Metrics