Abstract

A novel kind of highly birefringent large-mode-area optical fiber is proposed in this paper. Birefringence in the fiber is realized by the introduction of an anisotropic microstructured core. The microstuctured core is composed of down-doped silica rods embedded in the background of up-doped silica. Numerical investigations demonstrate that high birefringence on the order of 2×10-4 and hexagonal profile mode fields with mode areas larger than 300 µm2 can be achieved in the proposed fiber. The influence of doping levels on the properties of birefringence, confinement losses, and mode-areas of the fiber is also investigated. Based on the design, we also propose a novel kind of single-polarization single-mode optical fiber with a mode area of 725 µm2 and an operating wavelength range as large as 340 nm.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. Oritigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. S. J. Russell, "Highly birefringent photonic crystal fibers," Opt. Lett. 25, 1325-1327 (2000).
    [CrossRef]
  2. T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, "Highly birefringent index-guiding photonic crystal fibers," IEEE Photon. Technol. Lett. 13, 588-560 (2001).Q1
    [CrossRef]
  3. M. J. Steel and R. M. Osgood, "Polarization and dispersive properties of elliptical-hole photonic crystal fibers," J. Lightwave Technol. 19, 495-503 (2001).
    [CrossRef]
  4. M. Y. Chen, R. J. Yu, and A. P. Zhao, "Highly birefringence rectangular lattice photonic crystal fibers," J. Opt. A: Pure Appl. Opt. 6, 997-1000 (2004).
    [CrossRef]
  5. M. Y. Chen, R. J. Yu and A. P Zhao, "Confinement losses and optimization in rectangular-lattice photonic crystal fibers," J. Lightwave Technol. 23, 2707-2712 (2005).
    [CrossRef]
  6. L. Zhang and C. Yang, "Photonic crystal fibers with squeezed hexagonal lattice," Opt. Express 12, 2371-2376 (2004).
    [CrossRef] [PubMed]
  7. J. Folkenberg, M. Nielsen, N. Mortensen, C. Jakobsen, and H. Simonsen, "Polarization maintaining large mode area photonic crystal fiber," Opt. Express 12, 956-960 (2004).
    [CrossRef] [PubMed]
  8. T. Schreiber, H. Schultz, O. Schmidt, F. Röser, J. Limpert, and A. Tünnermann, "Stress-induced birefringence in large-mode-area microstructured optical fibers," Opt. Express 13, 3637-3646 (2005).
    [CrossRef] [PubMed]
  9. W. Belardi, G. Bouwmans, L. Provino, and M. Douay, "Form-induced birefringence in elliptical hollow photonic crystal fiber with large mode area," IEEE J. Quantum Electron. 41, 1558-1564 (2005).
    [CrossRef]
  10. C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. Brito Cruz, and M. C. J. Large, "Microstructured-core optical fiber for evanescent sensing applications," Opt. Express 14, 13056-13066 (2006).
    [CrossRef] [PubMed]
  11. D. R. Chen and L. F. Shen, "Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss," IEEE Photon. Technol. Lett. 19, 185-187 (2007).
    [CrossRef]
  12. S. Kim, Y. Jung, K. Oh, J. Kobelke, K. Schuster, and J. Kirchhof, "Defect and lattice structure for air-silica index-guiding holey fibers," Opt. Lett. 31, 164-166 (2006).
    [CrossRef] [PubMed]
  13. M. Yan, P. Shum, X. Yu, "Heterostructured photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 1438-1440 (2005).
    [CrossRef]
  14. A. Wang, A. George, J. Liu, and J. Knight, "Highly birefringent lamellar core fiber," Opt. Express 13, 5988-5993 (2005).
    [CrossRef] [PubMed]
  15. M. Y. Chen, "Polarization maintaining large mode area photonic crystal fibers with solid microstructured cores," J. Opt. A: Pure Appl. Opt.,  9, 868-871 (2007).
    [CrossRef]
  16. S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, "Complex FEM modal solver of optical waveguides with PML boundary conditions," Opt. Quantum Electron. 33, 359-371 (2001).
    [CrossRef]
  17. S. Johnson and J. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opt. Express 8, 173-190 (2001).
    [CrossRef] [PubMed]
  18. H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, "Absolutely single polarization photonic crystal fiber," IEEE Photon. Technol. Lett. 16, 182-184 (2004).
    [CrossRef]
  19. J. R. Folkenberg, M. D. Nielsen, and C. Jakobsen, "Broadband single-polarization photonic crystal fiber," Opt. Lett. 30, 1446-1448 (2005).
    [CrossRef] [PubMed]

2007 (2)

D. R. Chen and L. F. Shen, "Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss," IEEE Photon. Technol. Lett. 19, 185-187 (2007).
[CrossRef]

M. Y. Chen, "Polarization maintaining large mode area photonic crystal fibers with solid microstructured cores," J. Opt. A: Pure Appl. Opt.,  9, 868-871 (2007).
[CrossRef]

2006 (2)

C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. Brito Cruz, and M. C. J. Large, "Microstructured-core optical fiber for evanescent sensing applications," Opt. Express 14, 13056-13066 (2006).
[CrossRef] [PubMed]

S. Kim, Y. Jung, K. Oh, J. Kobelke, K. Schuster, and J. Kirchhof, "Defect and lattice structure for air-silica index-guiding holey fibers," Opt. Lett. 31, 164-166 (2006).
[CrossRef] [PubMed]

2005 (6)

2004 (4)

L. Zhang and C. Yang, "Photonic crystal fibers with squeezed hexagonal lattice," Opt. Express 12, 2371-2376 (2004).
[CrossRef] [PubMed]

J. Folkenberg, M. Nielsen, N. Mortensen, C. Jakobsen, and H. Simonsen, "Polarization maintaining large mode area photonic crystal fiber," Opt. Express 12, 956-960 (2004).
[CrossRef] [PubMed]

M. Y. Chen, R. J. Yu, and A. P. Zhao, "Highly birefringence rectangular lattice photonic crystal fibers," J. Opt. A: Pure Appl. Opt. 6, 997-1000 (2004).
[CrossRef]

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, "Absolutely single polarization photonic crystal fiber," IEEE Photon. Technol. Lett. 16, 182-184 (2004).
[CrossRef]

2001 (4)

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, "Complex FEM modal solver of optical waveguides with PML boundary conditions," Opt. Quantum Electron. 33, 359-371 (2001).
[CrossRef]

S. Johnson and J. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opt. Express 8, 173-190 (2001).
[CrossRef] [PubMed]

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, "Highly birefringent index-guiding photonic crystal fibers," IEEE Photon. Technol. Lett. 13, 588-560 (2001).Q1
[CrossRef]

M. J. Steel and R. M. Osgood, "Polarization and dispersive properties of elliptical-hole photonic crystal fibers," J. Lightwave Technol. 19, 495-503 (2001).
[CrossRef]

2000 (1)

IEEE J. Quantum Electron. (1)

W. Belardi, G. Bouwmans, L. Provino, and M. Douay, "Form-induced birefringence in elliptical hollow photonic crystal fiber with large mode area," IEEE J. Quantum Electron. 41, 1558-1564 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, "Highly birefringent index-guiding photonic crystal fibers," IEEE Photon. Technol. Lett. 13, 588-560 (2001).Q1
[CrossRef]

D. R. Chen and L. F. Shen, "Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss," IEEE Photon. Technol. Lett. 19, 185-187 (2007).
[CrossRef]

M. Yan, P. Shum, X. Yu, "Heterostructured photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 1438-1440 (2005).
[CrossRef]

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, "Absolutely single polarization photonic crystal fiber," IEEE Photon. Technol. Lett. 16, 182-184 (2004).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. A: Pure Appl. Opt. (2)

M. Y. Chen, R. J. Yu, and A. P. Zhao, "Highly birefringence rectangular lattice photonic crystal fibers," J. Opt. A: Pure Appl. Opt. 6, 997-1000 (2004).
[CrossRef]

M. Y. Chen, "Polarization maintaining large mode area photonic crystal fibers with solid microstructured cores," J. Opt. A: Pure Appl. Opt.,  9, 868-871 (2007).
[CrossRef]

Opt. Express (6)

Opt. Lett. (3)

Opt. Quantum Electron. (1)

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, "Complex FEM modal solver of optical waveguides with PML boundary conditions," Opt. Quantum Electron. 33, 359-371 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Cross-section of a microstructured-core optical fiber. The dark area denotes pure silica and the white areas represent air holes. (b) The enlarged core area. The darker area denotes pure silica, the lighter area represents up-doped silica, and the yellow area denotes down-doped silica.

Fig. 2.
Fig. 2.

Magnetic field profiles of the fundamental modes of a microstructured-core PCF: (a) x-polarized state, (b) y-polarized state.

Fig. 3.
Fig. 3.

(a) Effective indexes of the microstructured-core n eff,core for x-polarized state (dotted curves), and y-polarized state (solid curves). The thinner curves indicate the effective indexes of the microstructured-cladding n eff,clad with, from top to bottom, d/Λ=0.20, 0.30, 0.40, 0.50, and 0.60, respectively. (b) Birefringence of the microstructured core.

Fig. 4.
Fig. 4.

Birefringence of the MCOFs with (a) Δ u =0.010 and (b) 0.011. The dotted curve indicates the birefringence of the microstructured core.

Fig. 5.
Fig. 5.

The fractional power in the core as a function of the normalized frequency in the MCOFs with (a) Δ u =0.010 and (b) 0.011.

Fig. 6.
Fig. 6.

Mode areas of MCOFs with (a) Δ u =0.010 and (b) 0.011 as a function of normalized pitch Λ/λo , where λo is set as 1.55 µm.

Fig. 7.
Fig. 7.

Confinement loss of the proposed fiber with (a) Δ u =0.010 and (b) 0.011 as a function of normalized pitch.

Metrics