Abstract

A ridge waveguide technology exhibiting high polarization dependency is developed for new efficient multi-section passive polarization rotator applications. In the presented configuration, the calculated mode coupling between the waveguide sections is very efficient and allows a polarization rotation with a high extinction ratio at λ=1,55 µm. Experimental results show efficient polarization rotation with low cross-talk levels (-16dB) and no significant excess losses between sections. However, the overall transmission efficiency is limited by propagation losses and coupling losses to standard optical fibers.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. M. R. Watts and M. Qi, "Towards integrated polarization diversity: design, fabrication, and characterization of integrated polarization splitters and rotators," Optical Fiber Communication Conference (OFC) Anaheim, California, 6-11 March (2005).
  2. Y. Shani, R. Alferness, T. Koch, U. Koren, M. Oron, B. I. Miller, and M. G. Young, "Polarization rotation in asymmetric periodic loaded rib waveguides," Appl. Phys. Lett. 59, 1278-1280 (1991).
    [CrossRef]
  3. J. J. G. M. van der tol, J. W. Pedersen, E. G. Metaale, F. Hakimzadeh, Y. S. Oei, F. H. Groen, and I. Moerman, "Realization of short integrated optic passive polarization converter," IEEE Photon. Technol. Lett. 7, 893-895 (1995).
    [CrossRef]
  4. C. Van Dam, L. H. Spiekman, F. P. G. M. Van Ham, F. H. Groen, J. J. G. M. Van Der Tol, I. Morman, W. W. Pascher, M. Hamacher, H. Heidrich, C. M. Weinert and M. K. Smit, "Noval compact polarization converter based on ultra short bends," IEEE Photon. Technol. Lett. 8, 1346-1348 (1996).
    [CrossRef]
  5. H. El-Refaei and D. Yevick, "An optimized InGaAsP/InP polarization converter employing asymmetric rib waveguides," J. Lightwave Technol. 21, 1544-1548 (2003).
    [CrossRef]
  6. M. R. Watts and H. A. Hauss, "Integrated mode-evolution-based polarization rotators," Opt. Lett. 13, 138-140 (2005).
    [CrossRef]
  7. T. Mangeat, L. Escoubas, F. Flory, M. De Micheli, P. Coudray, and C. Aubert "A buried ridge waveguide technology for polarization rotation and polarization splitting," European Conference on Integrated Optics (ECIO), Grenoble (France), 6-8 April 2005.
  8. T. Mangeat, L. Escoubas, F. Flory, M. De Micheli, P. Coudray, and L. Roussel, "Integrated Polarization Converter of Sputtered Inorganic Ta205 and Silica Sol-Gel Thin Films," OSA conference on Integrated Photonics Research and Application (IPRA), Uncasville, Connecticut, 24-26 April 2006.
  9. V. P. Tzolov and M. Fontaine, "A passive polarization converter free of longitudinally-periodic structure," Opt. Commun. 127, 7-13 (1996).
    [CrossRef]
  10. A. Subdø, "Film Mode Matching, a versatile numerical method for vector mode field calculations in dielectric waveguides," Pure. Appl. Opt. 2, 211-233 (1993).
    [CrossRef]
  11. D. M. Whittaker and I. S. Culshaw, "Scattering matrix treatment of patterned multilayer photonic structures," Phys. Rev. B 60, 2610-2618 (1999).
  12. P. Coudray, P. Etienne, and Y. Moreau, "Integrated optics based on organo-mineral materials," Mater. Sci. Semisecond Process 3, 331-337 (2000).
    [CrossRef]

2005 (1)

M. R. Watts and H. A. Hauss, "Integrated mode-evolution-based polarization rotators," Opt. Lett. 13, 138-140 (2005).
[CrossRef]

2003 (1)

2000 (1)

P. Coudray, P. Etienne, and Y. Moreau, "Integrated optics based on organo-mineral materials," Mater. Sci. Semisecond Process 3, 331-337 (2000).
[CrossRef]

1999 (1)

D. M. Whittaker and I. S. Culshaw, "Scattering matrix treatment of patterned multilayer photonic structures," Phys. Rev. B 60, 2610-2618 (1999).

1996 (2)

C. Van Dam, L. H. Spiekman, F. P. G. M. Van Ham, F. H. Groen, J. J. G. M. Van Der Tol, I. Morman, W. W. Pascher, M. Hamacher, H. Heidrich, C. M. Weinert and M. K. Smit, "Noval compact polarization converter based on ultra short bends," IEEE Photon. Technol. Lett. 8, 1346-1348 (1996).
[CrossRef]

V. P. Tzolov and M. Fontaine, "A passive polarization converter free of longitudinally-periodic structure," Opt. Commun. 127, 7-13 (1996).
[CrossRef]

1995 (1)

J. J. G. M. van der tol, J. W. Pedersen, E. G. Metaale, F. Hakimzadeh, Y. S. Oei, F. H. Groen, and I. Moerman, "Realization of short integrated optic passive polarization converter," IEEE Photon. Technol. Lett. 7, 893-895 (1995).
[CrossRef]

1993 (1)

A. Subdø, "Film Mode Matching, a versatile numerical method for vector mode field calculations in dielectric waveguides," Pure. Appl. Opt. 2, 211-233 (1993).
[CrossRef]

1991 (1)

Y. Shani, R. Alferness, T. Koch, U. Koren, M. Oron, B. I. Miller, and M. G. Young, "Polarization rotation in asymmetric periodic loaded rib waveguides," Appl. Phys. Lett. 59, 1278-1280 (1991).
[CrossRef]

Appl. Phys. Lett. (1)

Y. Shani, R. Alferness, T. Koch, U. Koren, M. Oron, B. I. Miller, and M. G. Young, "Polarization rotation in asymmetric periodic loaded rib waveguides," Appl. Phys. Lett. 59, 1278-1280 (1991).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

J. J. G. M. van der tol, J. W. Pedersen, E. G. Metaale, F. Hakimzadeh, Y. S. Oei, F. H. Groen, and I. Moerman, "Realization of short integrated optic passive polarization converter," IEEE Photon. Technol. Lett. 7, 893-895 (1995).
[CrossRef]

C. Van Dam, L. H. Spiekman, F. P. G. M. Van Ham, F. H. Groen, J. J. G. M. Van Der Tol, I. Morman, W. W. Pascher, M. Hamacher, H. Heidrich, C. M. Weinert and M. K. Smit, "Noval compact polarization converter based on ultra short bends," IEEE Photon. Technol. Lett. 8, 1346-1348 (1996).
[CrossRef]

J. Lightwave Technol. (1)

Mater. Sci. Semisecond Process (1)

P. Coudray, P. Etienne, and Y. Moreau, "Integrated optics based on organo-mineral materials," Mater. Sci. Semisecond Process 3, 331-337 (2000).
[CrossRef]

Opt. Commun. (1)

V. P. Tzolov and M. Fontaine, "A passive polarization converter free of longitudinally-periodic structure," Opt. Commun. 127, 7-13 (1996).
[CrossRef]

Opt. Lett. (1)

M. R. Watts and H. A. Hauss, "Integrated mode-evolution-based polarization rotators," Opt. Lett. 13, 138-140 (2005).
[CrossRef]

Phys. Rev. B (1)

D. M. Whittaker and I. S. Culshaw, "Scattering matrix treatment of patterned multilayer photonic structures," Phys. Rev. B 60, 2610-2618 (1999).

Pure. Appl. Opt. (1)

A. Subdø, "Film Mode Matching, a versatile numerical method for vector mode field calculations in dielectric waveguides," Pure. Appl. Opt. 2, 211-233 (1993).
[CrossRef]

Other (3)

M. R. Watts and M. Qi, "Towards integrated polarization diversity: design, fabrication, and characterization of integrated polarization splitters and rotators," Optical Fiber Communication Conference (OFC) Anaheim, California, 6-11 March (2005).

T. Mangeat, L. Escoubas, F. Flory, M. De Micheli, P. Coudray, and C. Aubert "A buried ridge waveguide technology for polarization rotation and polarization splitting," European Conference on Integrated Optics (ECIO), Grenoble (France), 6-8 April 2005.

T. Mangeat, L. Escoubas, F. Flory, M. De Micheli, P. Coudray, and L. Roussel, "Integrated Polarization Converter of Sputtered Inorganic Ta205 and Silica Sol-Gel Thin Films," OSA conference on Integrated Photonics Research and Application (IPRA), Uncasville, Connecticut, 24-26 April 2006.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

“Left shifted” and “right shifted” asymmetric waveguide cross section.

Fig. 2.
Fig. 2.

Polarisation rotation at the output of the asymmetric sections

Fig. 3.
Fig. 3.

Structure of the polarization converter.

Fig. 4.
Fig. 4.

Near field intensity profiles and effective indices of TE00 and TM00 modes in “right” and “left” shifted sections (computation performed using the Field Mode Matching method).

Fig. 5.
Fig. 5.

The TE to TM (a) and the TM to TE (b) power exchanges versus the number of periods in the polarization rotator.

Fig. 6.
Fig. 6.

Optical Nomarsky microscopy images of the waveguide patterns fabricated after a first step of photolithographic process (a) and after a second one (b).

Fig. 7.
Fig. 7.

Experimental TE to TM power conversion (a) and theoretical TE to TM power conversion (b) versus wavelength.

Fig. 8.
Fig. 8.

Insertion losses of the rotator compared to those of a reference waveguide in TE and TM polarizations.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

L b = λ 2 ( neff TE 00 neff TM 00 ) = λ 2 Δ neff
θ = ( 1 ) n 4 n φ

Metrics