Abstract

Photopolymers that absorb in the visible spectrum are useful for different applications such as in the development of holographic memories, holographic optical elements or as holographic recording media. Photopolymers have an undesirable feature, the toxicity of their components and their low environmental compatibility, particularly if we analyse the life cycle of the devices made with these materials and their interaction with the environment. In this work we developed a new photopolymer with photochemical and holographic features similar to those of the standard material but with an improved design from the environmental point of view.

© 2007 Optical Society of America

Full Article  |  PDF Article
Related Articles
Optimization of an acrylamide-based dry film used for holographic recording

Salvador Blaya, Luis Carretero, Ricardo Mallavia, Antonio Fimia, Roque F. Madrigal, Manuel Ulibarrena, and David Levy
Appl. Opt. 37(32) 7604-7610 (1998)

Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length

Michael R. Gleeson, Dusan Sabol, Shui Liu, Ciara E. Close, John V. Kelly, and John T. Sheridan
J. Opt. Soc. Am. B 25(3) 396-406 (2008)

Linear response deviations during recording of diffraction gratings in photopolymers

M. Ortuño, C. Neipp, S. Gallego, and A. Beléndez
Opt. Express 17(15) 13193-13201 (2009)

References

  • View by:
  • |
  • |
  • |

  1. F. del Monte, O. Martinez, J. A. Rodrigo, M. L. Calvo, and P. Cheven, “A Volume Holographic Sol-Gel Material with Large Enhancement of Dynamic Range by Incorporation of High Refractive Index Species” Adv. Mater. 18, 2014–2017 (2006).
    [Crossref]
  2. J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material” Optik 112, 449–463 (2001).
    [Crossref]
  3. Y. -C. Jeong, S. Lee, and J. -K. Park, “Holographic diffraction gratings with enhanced sensitivity based on epoxy-resin photopolymers” Opt. Express 15, 1497–1504 (2007).
    [Crossref] [PubMed]
  4. M. D. Lechner, “Photopolymers for optical memories and waveguides” Electron. Prop. Polym. Relat. Compd. 63, 301–308 (1985)).
    [Crossref]
  5. S. Bartkiewicz and A. Miniewicz, “Methylene blue sensitized poly(methyl methacrylate) matrix: a novel holographic material” Appl. Opt. 34, 5175–5178 (1995).
    [Crossref] [PubMed]
  6. P. Cheben and M. L. Calvo “A Photopolymerizable Glass with Diffraction Efficiency Near 100% for Holographic Storage” Appl. Phys. Lett. 78, 1490–1492 (2001).
    [Crossref]
  7. V. Weiss, E. Millul, and A. A. Friesem, “Photopolymeric holographic recording media: In-situ and real time characterization” Proc. SPIE 2688, 11–21 (1996).
    [Crossref]
  8. L. Feng, Y. Jin, C. Xia, H. Lan, and K. Wang, “Study on a high performance red-sensitive photopolymer-gelatin holographic recording material” J. Sichuan University 38, 773–775 (2001).
  9. F. Pellaschiar, “Reduction of the utilization of VOC and their atmospheric emissions. Development of legislation and research in the use of less toxic solvents and reduced environmental impact” Eur. Coat. J. 81, 22–28 (2005).
  10. S. Sugawara, K. Murase, and T. Kitayama, “Holographic recording by dye-sensitized photopolymerization of acrylamide” Appl. Opt.,  14, 378–382 (1975).
    [Crossref] [PubMed]
  11. E. Fernández, C. García, I. Pascual, M. Ortuño, S. Gallego, and A. Beléndez , “Optimization of a thick polyvinyl alcohol-acrylamide photopolymer for data storage using a combination of angular and peristrophic holographic multiplexing” Appl. Opt. 45, 7661–7666 (2006).
    [Crossref] [PubMed]
  12. A. Márquez, C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, and I. Pascual, “Edge-enhanced imaging with polyvinyl alcohol/acrylamide photopolymer gratings” Opt. Lett.,  28, 1510–1512 (2003).
    [Crossref] [PubMed]
  13. M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties” Appl. Phys. B,  76, 851–857 (2003).
    [Crossref]
  14. M. Ortuño, S. Gallego, C. García, C. Neipp, and I. Pascual, “Holographic characteristics of a 1 mm thick photopolymer to be used in holographic memories” Appl. Opt. 42, 7008–7012 (2003).
    [Crossref] [PubMed]
  15. M. Ortuño, S. Gallego, C. García, I. Pascual, C. Neipp, and A. Beléndez, “Holographic characteristics of an acrylamide/bisacrylamide photopolymer in 40–1000 µm thick layers” Phys. Scr. T 118, 66–68 (2005).
    [Crossref]
  16. K. Hashimoto and W. N. Aldridge, “Biochemical studies on acrylamide, a neurotoxic agent” Biochem. Pharmacol. 19, 2591–2604 (1970).
    [Crossref] [PubMed]
  17. F. Mendel, “Chemistry, biochemistry, and safety of acrylamide. A review” J. Agric. Food. Chem. 51, 4504–4526 (2003).
    [Crossref]
  18. M. Ortuño, S. Gallego, C. Neipp, A. Márquez, A. Beléndez, and I. Pascual, “Material de registro holográfico medioambientalmente compatible basado en acrilatos metálicos” Patent pending ES 200503113 (2005).
  19. A. L. Lipman, Safety of xanthene dyes according to the U.S. Food and Drug Administration, ACS Symposium Series, American Chemical Society, USA, [Light-Activated Pest Control 616, 34–53 (1995)].
  20. J. R. Heitz, Insectic Mode Action, Academic (New York, USA, 1982).
  21. A. M. Edwards and E. Silva, “Effect of visible light on selected enzymes, vitamins and amino acids” J. Photochem. Photobiol. B 63, 126–131 (2001).
    [Crossref] [PubMed]
  22. J. Khadem, T. Truong, and J. T. Ernest, “Photodynamic biologic tissue glue” Cornea 13, 406–410 (1994).
    [Crossref] [PubMed]
  23. S. G. Bertolotti and C. M. Previtali, “Riboflavin/Triethanolamine as Photoinitiator System of Vinyl Polymerization- A Mechanistic Study by Laser Flash Photolysis” Macromolecules 32, 2920–2924 (1999).
    [Crossref]
  24. J. M. Barnes, “Effects on rats of compounds related to acrylamide” British Journal of Industrial Medicine 1970.
  25. C. Solano, G. Martinez-Ponce, and C. Castañeda, “Dyed-polyvinyl alcohol films: molecular weight and hydrolysis degree influence on optical recording” Appl Opt. 45, 5207–5211 (2006).
    [Crossref] [PubMed]
  26. H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings” Bell Syst. Tech. J. 48, 2909–2912 (1969).
  27. S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers” Opt. Express 13, 1939–1947 (2005).
    [Crossref] [PubMed]

2007 (1)

2006 (3)

F. del Monte, O. Martinez, J. A. Rodrigo, M. L. Calvo, and P. Cheven, “A Volume Holographic Sol-Gel Material with Large Enhancement of Dynamic Range by Incorporation of High Refractive Index Species” Adv. Mater. 18, 2014–2017 (2006).
[Crossref]

E. Fernández, C. García, I. Pascual, M. Ortuño, S. Gallego, and A. Beléndez , “Optimization of a thick polyvinyl alcohol-acrylamide photopolymer for data storage using a combination of angular and peristrophic holographic multiplexing” Appl. Opt. 45, 7661–7666 (2006).
[Crossref] [PubMed]

C. Solano, G. Martinez-Ponce, and C. Castañeda, “Dyed-polyvinyl alcohol films: molecular weight and hydrolysis degree influence on optical recording” Appl Opt. 45, 5207–5211 (2006).
[Crossref] [PubMed]

2005 (4)

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers” Opt. Express 13, 1939–1947 (2005).
[Crossref] [PubMed]

M. Ortuño, S. Gallego, C. Neipp, A. Márquez, A. Beléndez, and I. Pascual, “Material de registro holográfico medioambientalmente compatible basado en acrilatos metálicos” Patent pending ES 200503113 (2005).

F. Pellaschiar, “Reduction of the utilization of VOC and their atmospheric emissions. Development of legislation and research in the use of less toxic solvents and reduced environmental impact” Eur. Coat. J. 81, 22–28 (2005).

M. Ortuño, S. Gallego, C. García, I. Pascual, C. Neipp, and A. Beléndez, “Holographic characteristics of an acrylamide/bisacrylamide photopolymer in 40–1000 µm thick layers” Phys. Scr. T 118, 66–68 (2005).
[Crossref]

2003 (4)

A. Márquez, C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, and I. Pascual, “Edge-enhanced imaging with polyvinyl alcohol/acrylamide photopolymer gratings” Opt. Lett.,  28, 1510–1512 (2003).
[Crossref] [PubMed]

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties” Appl. Phys. B,  76, 851–857 (2003).
[Crossref]

M. Ortuño, S. Gallego, C. García, C. Neipp, and I. Pascual, “Holographic characteristics of a 1 mm thick photopolymer to be used in holographic memories” Appl. Opt. 42, 7008–7012 (2003).
[Crossref] [PubMed]

F. Mendel, “Chemistry, biochemistry, and safety of acrylamide. A review” J. Agric. Food. Chem. 51, 4504–4526 (2003).
[Crossref]

2001 (4)

A. M. Edwards and E. Silva, “Effect of visible light on selected enzymes, vitamins and amino acids” J. Photochem. Photobiol. B 63, 126–131 (2001).
[Crossref] [PubMed]

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material” Optik 112, 449–463 (2001).
[Crossref]

P. Cheben and M. L. Calvo “A Photopolymerizable Glass with Diffraction Efficiency Near 100% for Holographic Storage” Appl. Phys. Lett. 78, 1490–1492 (2001).
[Crossref]

L. Feng, Y. Jin, C. Xia, H. Lan, and K. Wang, “Study on a high performance red-sensitive photopolymer-gelatin holographic recording material” J. Sichuan University 38, 773–775 (2001).

1999 (1)

S. G. Bertolotti and C. M. Previtali, “Riboflavin/Triethanolamine as Photoinitiator System of Vinyl Polymerization- A Mechanistic Study by Laser Flash Photolysis” Macromolecules 32, 2920–2924 (1999).
[Crossref]

1996 (1)

V. Weiss, E. Millul, and A. A. Friesem, “Photopolymeric holographic recording media: In-situ and real time characterization” Proc. SPIE 2688, 11–21 (1996).
[Crossref]

1995 (1)

1994 (1)

J. Khadem, T. Truong, and J. T. Ernest, “Photodynamic biologic tissue glue” Cornea 13, 406–410 (1994).
[Crossref] [PubMed]

1985 (1)

M. D. Lechner, “Photopolymers for optical memories and waveguides” Electron. Prop. Polym. Relat. Compd. 63, 301–308 (1985)).
[Crossref]

1975 (1)

1970 (1)

K. Hashimoto and W. N. Aldridge, “Biochemical studies on acrylamide, a neurotoxic agent” Biochem. Pharmacol. 19, 2591–2604 (1970).
[Crossref] [PubMed]

1969 (1)

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings” Bell Syst. Tech. J. 48, 2909–2912 (1969).

Aldridge, W. N.

K. Hashimoto and W. N. Aldridge, “Biochemical studies on acrylamide, a neurotoxic agent” Biochem. Pharmacol. 19, 2591–2604 (1970).
[Crossref] [PubMed]

Barnes, J. M.

J. M. Barnes, “Effects on rats of compounds related to acrylamide” British Journal of Industrial Medicine 1970.

Bartkiewicz, S.

Beléndez, A.

E. Fernández, C. García, I. Pascual, M. Ortuño, S. Gallego, and A. Beléndez , “Optimization of a thick polyvinyl alcohol-acrylamide photopolymer for data storage using a combination of angular and peristrophic holographic multiplexing” Appl. Opt. 45, 7661–7666 (2006).
[Crossref] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers” Opt. Express 13, 1939–1947 (2005).
[Crossref] [PubMed]

M. Ortuño, S. Gallego, C. Neipp, A. Márquez, A. Beléndez, and I. Pascual, “Material de registro holográfico medioambientalmente compatible basado en acrilatos metálicos” Patent pending ES 200503113 (2005).

M. Ortuño, S. Gallego, C. García, I. Pascual, C. Neipp, and A. Beléndez, “Holographic characteristics of an acrylamide/bisacrylamide photopolymer in 40–1000 µm thick layers” Phys. Scr. T 118, 66–68 (2005).
[Crossref]

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties” Appl. Phys. B,  76, 851–857 (2003).
[Crossref]

A. Márquez, C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, and I. Pascual, “Edge-enhanced imaging with polyvinyl alcohol/acrylamide photopolymer gratings” Opt. Lett.,  28, 1510–1512 (2003).
[Crossref] [PubMed]

Bertolotti, S. G.

S. G. Bertolotti and C. M. Previtali, “Riboflavin/Triethanolamine as Photoinitiator System of Vinyl Polymerization- A Mechanistic Study by Laser Flash Photolysis” Macromolecules 32, 2920–2924 (1999).
[Crossref]

Calvo, M. L.

F. del Monte, O. Martinez, J. A. Rodrigo, M. L. Calvo, and P. Cheven, “A Volume Holographic Sol-Gel Material with Large Enhancement of Dynamic Range by Incorporation of High Refractive Index Species” Adv. Mater. 18, 2014–2017 (2006).
[Crossref]

P. Cheben and M. L. Calvo “A Photopolymerizable Glass with Diffraction Efficiency Near 100% for Holographic Storage” Appl. Phys. Lett. 78, 1490–1492 (2001).
[Crossref]

Castañeda, C.

C. Solano, G. Martinez-Ponce, and C. Castañeda, “Dyed-polyvinyl alcohol films: molecular weight and hydrolysis degree influence on optical recording” Appl Opt. 45, 5207–5211 (2006).
[Crossref] [PubMed]

Cheben, P.

P. Cheben and M. L. Calvo “A Photopolymerizable Glass with Diffraction Efficiency Near 100% for Holographic Storage” Appl. Phys. Lett. 78, 1490–1492 (2001).
[Crossref]

Cheven, P.

F. del Monte, O. Martinez, J. A. Rodrigo, M. L. Calvo, and P. Cheven, “A Volume Holographic Sol-Gel Material with Large Enhancement of Dynamic Range by Incorporation of High Refractive Index Species” Adv. Mater. 18, 2014–2017 (2006).
[Crossref]

Edwards, A. M.

A. M. Edwards and E. Silva, “Effect of visible light on selected enzymes, vitamins and amino acids” J. Photochem. Photobiol. B 63, 126–131 (2001).
[Crossref] [PubMed]

Ernest, J. T.

J. Khadem, T. Truong, and J. T. Ernest, “Photodynamic biologic tissue glue” Cornea 13, 406–410 (1994).
[Crossref] [PubMed]

Feng, L.

L. Feng, Y. Jin, C. Xia, H. Lan, and K. Wang, “Study on a high performance red-sensitive photopolymer-gelatin holographic recording material” J. Sichuan University 38, 773–775 (2001).

Fernández, E.

Friesem, A. A.

V. Weiss, E. Millul, and A. A. Friesem, “Photopolymeric holographic recording media: In-situ and real time characterization” Proc. SPIE 2688, 11–21 (1996).
[Crossref]

Gallego, S.

E. Fernández, C. García, I. Pascual, M. Ortuño, S. Gallego, and A. Beléndez , “Optimization of a thick polyvinyl alcohol-acrylamide photopolymer for data storage using a combination of angular and peristrophic holographic multiplexing” Appl. Opt. 45, 7661–7666 (2006).
[Crossref] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers” Opt. Express 13, 1939–1947 (2005).
[Crossref] [PubMed]

M. Ortuño, S. Gallego, C. García, I. Pascual, C. Neipp, and A. Beléndez, “Holographic characteristics of an acrylamide/bisacrylamide photopolymer in 40–1000 µm thick layers” Phys. Scr. T 118, 66–68 (2005).
[Crossref]

M. Ortuño, S. Gallego, C. Neipp, A. Márquez, A. Beléndez, and I. Pascual, “Material de registro holográfico medioambientalmente compatible basado en acrilatos metálicos” Patent pending ES 200503113 (2005).

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties” Appl. Phys. B,  76, 851–857 (2003).
[Crossref]

A. Márquez, C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, and I. Pascual, “Edge-enhanced imaging with polyvinyl alcohol/acrylamide photopolymer gratings” Opt. Lett.,  28, 1510–1512 (2003).
[Crossref] [PubMed]

M. Ortuño, S. Gallego, C. García, C. Neipp, and I. Pascual, “Holographic characteristics of a 1 mm thick photopolymer to be used in holographic memories” Appl. Opt. 42, 7008–7012 (2003).
[Crossref] [PubMed]

García, C.

E. Fernández, C. García, I. Pascual, M. Ortuño, S. Gallego, and A. Beléndez , “Optimization of a thick polyvinyl alcohol-acrylamide photopolymer for data storage using a combination of angular and peristrophic holographic multiplexing” Appl. Opt. 45, 7661–7666 (2006).
[Crossref] [PubMed]

M. Ortuño, S. Gallego, C. García, I. Pascual, C. Neipp, and A. Beléndez, “Holographic characteristics of an acrylamide/bisacrylamide photopolymer in 40–1000 µm thick layers” Phys. Scr. T 118, 66–68 (2005).
[Crossref]

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties” Appl. Phys. B,  76, 851–857 (2003).
[Crossref]

M. Ortuño, S. Gallego, C. García, C. Neipp, and I. Pascual, “Holographic characteristics of a 1 mm thick photopolymer to be used in holographic memories” Appl. Opt. 42, 7008–7012 (2003).
[Crossref] [PubMed]

Hashimoto, K.

K. Hashimoto and W. N. Aldridge, “Biochemical studies on acrylamide, a neurotoxic agent” Biochem. Pharmacol. 19, 2591–2604 (1970).
[Crossref] [PubMed]

Heitz, J. R.

J. R. Heitz, Insectic Mode Action, Academic (New York, USA, 1982).

Jeong, Y. -C.

Jin, Y.

L. Feng, Y. Jin, C. Xia, H. Lan, and K. Wang, “Study on a high performance red-sensitive photopolymer-gelatin holographic recording material” J. Sichuan University 38, 773–775 (2001).

Kelly, J. V.

Khadem, J.

J. Khadem, T. Truong, and J. T. Ernest, “Photodynamic biologic tissue glue” Cornea 13, 406–410 (1994).
[Crossref] [PubMed]

Kitayama, T.

Kogelnik, H.

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings” Bell Syst. Tech. J. 48, 2909–2912 (1969).

Lan, H.

L. Feng, Y. Jin, C. Xia, H. Lan, and K. Wang, “Study on a high performance red-sensitive photopolymer-gelatin holographic recording material” J. Sichuan University 38, 773–775 (2001).

Lawrence, J. R.

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material” Optik 112, 449–463 (2001).
[Crossref]

Lechner, M. D.

M. D. Lechner, “Photopolymers for optical memories and waveguides” Electron. Prop. Polym. Relat. Compd. 63, 301–308 (1985)).
[Crossref]

Lee, S.

Lipman, A. L.

A. L. Lipman, Safety of xanthene dyes according to the U.S. Food and Drug Administration, ACS Symposium Series, American Chemical Society, USA, [Light-Activated Pest Control 616, 34–53 (1995)].

Márquez, A.

Martinez, O.

F. del Monte, O. Martinez, J. A. Rodrigo, M. L. Calvo, and P. Cheven, “A Volume Holographic Sol-Gel Material with Large Enhancement of Dynamic Range by Incorporation of High Refractive Index Species” Adv. Mater. 18, 2014–2017 (2006).
[Crossref]

Martinez-Ponce, G.

C. Solano, G. Martinez-Ponce, and C. Castañeda, “Dyed-polyvinyl alcohol films: molecular weight and hydrolysis degree influence on optical recording” Appl Opt. 45, 5207–5211 (2006).
[Crossref] [PubMed]

Mendel, F.

F. Mendel, “Chemistry, biochemistry, and safety of acrylamide. A review” J. Agric. Food. Chem. 51, 4504–4526 (2003).
[Crossref]

Millul, E.

V. Weiss, E. Millul, and A. A. Friesem, “Photopolymeric holographic recording media: In-situ and real time characterization” Proc. SPIE 2688, 11–21 (1996).
[Crossref]

Miniewicz, A.

Monte, F. del

F. del Monte, O. Martinez, J. A. Rodrigo, M. L. Calvo, and P. Cheven, “A Volume Holographic Sol-Gel Material with Large Enhancement of Dynamic Range by Incorporation of High Refractive Index Species” Adv. Mater. 18, 2014–2017 (2006).
[Crossref]

Murase, K.

Neipp, C.

M. Ortuño, S. Gallego, C. Neipp, A. Márquez, A. Beléndez, and I. Pascual, “Material de registro holográfico medioambientalmente compatible basado en acrilatos metálicos” Patent pending ES 200503113 (2005).

M. Ortuño, S. Gallego, C. García, I. Pascual, C. Neipp, and A. Beléndez, “Holographic characteristics of an acrylamide/bisacrylamide photopolymer in 40–1000 µm thick layers” Phys. Scr. T 118, 66–68 (2005).
[Crossref]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers” Opt. Express 13, 1939–1947 (2005).
[Crossref] [PubMed]

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties” Appl. Phys. B,  76, 851–857 (2003).
[Crossref]

A. Márquez, C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, and I. Pascual, “Edge-enhanced imaging with polyvinyl alcohol/acrylamide photopolymer gratings” Opt. Lett.,  28, 1510–1512 (2003).
[Crossref] [PubMed]

M. Ortuño, S. Gallego, C. García, C. Neipp, and I. Pascual, “Holographic characteristics of a 1 mm thick photopolymer to be used in holographic memories” Appl. Opt. 42, 7008–7012 (2003).
[Crossref] [PubMed]

O’Neill, F. T.

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material” Optik 112, 449–463 (2001).
[Crossref]

Ortuño, M.

E. Fernández, C. García, I. Pascual, M. Ortuño, S. Gallego, and A. Beléndez , “Optimization of a thick polyvinyl alcohol-acrylamide photopolymer for data storage using a combination of angular and peristrophic holographic multiplexing” Appl. Opt. 45, 7661–7666 (2006).
[Crossref] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers” Opt. Express 13, 1939–1947 (2005).
[Crossref] [PubMed]

M. Ortuño, S. Gallego, C. García, I. Pascual, C. Neipp, and A. Beléndez, “Holographic characteristics of an acrylamide/bisacrylamide photopolymer in 40–1000 µm thick layers” Phys. Scr. T 118, 66–68 (2005).
[Crossref]

M. Ortuño, S. Gallego, C. Neipp, A. Márquez, A. Beléndez, and I. Pascual, “Material de registro holográfico medioambientalmente compatible basado en acrilatos metálicos” Patent pending ES 200503113 (2005).

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties” Appl. Phys. B,  76, 851–857 (2003).
[Crossref]

A. Márquez, C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, and I. Pascual, “Edge-enhanced imaging with polyvinyl alcohol/acrylamide photopolymer gratings” Opt. Lett.,  28, 1510–1512 (2003).
[Crossref] [PubMed]

M. Ortuño, S. Gallego, C. García, C. Neipp, and I. Pascual, “Holographic characteristics of a 1 mm thick photopolymer to be used in holographic memories” Appl. Opt. 42, 7008–7012 (2003).
[Crossref] [PubMed]

Park, J. -K.

Pascual, I.

E. Fernández, C. García, I. Pascual, M. Ortuño, S. Gallego, and A. Beléndez , “Optimization of a thick polyvinyl alcohol-acrylamide photopolymer for data storage using a combination of angular and peristrophic holographic multiplexing” Appl. Opt. 45, 7661–7666 (2006).
[Crossref] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers” Opt. Express 13, 1939–1947 (2005).
[Crossref] [PubMed]

M. Ortuño, S. Gallego, C. Neipp, A. Márquez, A. Beléndez, and I. Pascual, “Material de registro holográfico medioambientalmente compatible basado en acrilatos metálicos” Patent pending ES 200503113 (2005).

M. Ortuño, S. Gallego, C. García, I. Pascual, C. Neipp, and A. Beléndez, “Holographic characteristics of an acrylamide/bisacrylamide photopolymer in 40–1000 µm thick layers” Phys. Scr. T 118, 66–68 (2005).
[Crossref]

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties” Appl. Phys. B,  76, 851–857 (2003).
[Crossref]

A. Márquez, C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, and I. Pascual, “Edge-enhanced imaging with polyvinyl alcohol/acrylamide photopolymer gratings” Opt. Lett.,  28, 1510–1512 (2003).
[Crossref] [PubMed]

M. Ortuño, S. Gallego, C. García, C. Neipp, and I. Pascual, “Holographic characteristics of a 1 mm thick photopolymer to be used in holographic memories” Appl. Opt. 42, 7008–7012 (2003).
[Crossref] [PubMed]

Pellaschiar, F.

F. Pellaschiar, “Reduction of the utilization of VOC and their atmospheric emissions. Development of legislation and research in the use of less toxic solvents and reduced environmental impact” Eur. Coat. J. 81, 22–28 (2005).

Previtali, C. M.

S. G. Bertolotti and C. M. Previtali, “Riboflavin/Triethanolamine as Photoinitiator System of Vinyl Polymerization- A Mechanistic Study by Laser Flash Photolysis” Macromolecules 32, 2920–2924 (1999).
[Crossref]

Rodrigo, J. A.

F. del Monte, O. Martinez, J. A. Rodrigo, M. L. Calvo, and P. Cheven, “A Volume Holographic Sol-Gel Material with Large Enhancement of Dynamic Range by Incorporation of High Refractive Index Species” Adv. Mater. 18, 2014–2017 (2006).
[Crossref]

Sheridan, J. T.

Silva, E.

A. M. Edwards and E. Silva, “Effect of visible light on selected enzymes, vitamins and amino acids” J. Photochem. Photobiol. B 63, 126–131 (2001).
[Crossref] [PubMed]

Solano, C.

C. Solano, G. Martinez-Ponce, and C. Castañeda, “Dyed-polyvinyl alcohol films: molecular weight and hydrolysis degree influence on optical recording” Appl Opt. 45, 5207–5211 (2006).
[Crossref] [PubMed]

Sugawara, S.

Truong, T.

J. Khadem, T. Truong, and J. T. Ernest, “Photodynamic biologic tissue glue” Cornea 13, 406–410 (1994).
[Crossref] [PubMed]

Wang, K.

L. Feng, Y. Jin, C. Xia, H. Lan, and K. Wang, “Study on a high performance red-sensitive photopolymer-gelatin holographic recording material” J. Sichuan University 38, 773–775 (2001).

Weiss, V.

V. Weiss, E. Millul, and A. A. Friesem, “Photopolymeric holographic recording media: In-situ and real time characterization” Proc. SPIE 2688, 11–21 (1996).
[Crossref]

Xia, C.

L. Feng, Y. Jin, C. Xia, H. Lan, and K. Wang, “Study on a high performance red-sensitive photopolymer-gelatin holographic recording material” J. Sichuan University 38, 773–775 (2001).

Adv. Mater. (1)

F. del Monte, O. Martinez, J. A. Rodrigo, M. L. Calvo, and P. Cheven, “A Volume Holographic Sol-Gel Material with Large Enhancement of Dynamic Range by Incorporation of High Refractive Index Species” Adv. Mater. 18, 2014–2017 (2006).
[Crossref]

Appl Opt. (1)

C. Solano, G. Martinez-Ponce, and C. Castañeda, “Dyed-polyvinyl alcohol films: molecular weight and hydrolysis degree influence on optical recording” Appl Opt. 45, 5207–5211 (2006).
[Crossref] [PubMed]

Appl. Opt. (4)

Appl. Phys. B (1)

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties” Appl. Phys. B,  76, 851–857 (2003).
[Crossref]

Appl. Phys. Lett. (1)

P. Cheben and M. L. Calvo “A Photopolymerizable Glass with Diffraction Efficiency Near 100% for Holographic Storage” Appl. Phys. Lett. 78, 1490–1492 (2001).
[Crossref]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings” Bell Syst. Tech. J. 48, 2909–2912 (1969).

Biochem. Pharmacol. (1)

K. Hashimoto and W. N. Aldridge, “Biochemical studies on acrylamide, a neurotoxic agent” Biochem. Pharmacol. 19, 2591–2604 (1970).
[Crossref] [PubMed]

Cornea (1)

J. Khadem, T. Truong, and J. T. Ernest, “Photodynamic biologic tissue glue” Cornea 13, 406–410 (1994).
[Crossref] [PubMed]

Electron. Prop. Polym. Relat. Compd. (1)

M. D. Lechner, “Photopolymers for optical memories and waveguides” Electron. Prop. Polym. Relat. Compd. 63, 301–308 (1985)).
[Crossref]

Eur. Coat. J. (1)

F. Pellaschiar, “Reduction of the utilization of VOC and their atmospheric emissions. Development of legislation and research in the use of less toxic solvents and reduced environmental impact” Eur. Coat. J. 81, 22–28 (2005).

J. Agric. Food. Chem. (1)

F. Mendel, “Chemistry, biochemistry, and safety of acrylamide. A review” J. Agric. Food. Chem. 51, 4504–4526 (2003).
[Crossref]

J. Photochem. Photobiol. B (1)

A. M. Edwards and E. Silva, “Effect of visible light on selected enzymes, vitamins and amino acids” J. Photochem. Photobiol. B 63, 126–131 (2001).
[Crossref] [PubMed]

J. Sichuan University (1)

L. Feng, Y. Jin, C. Xia, H. Lan, and K. Wang, “Study on a high performance red-sensitive photopolymer-gelatin holographic recording material” J. Sichuan University 38, 773–775 (2001).

Macromolecules (1)

S. G. Bertolotti and C. M. Previtali, “Riboflavin/Triethanolamine as Photoinitiator System of Vinyl Polymerization- A Mechanistic Study by Laser Flash Photolysis” Macromolecules 32, 2920–2924 (1999).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Optik (1)

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material” Optik 112, 449–463 (2001).
[Crossref]

Phys. Scr. T (1)

M. Ortuño, S. Gallego, C. García, I. Pascual, C. Neipp, and A. Beléndez, “Holographic characteristics of an acrylamide/bisacrylamide photopolymer in 40–1000 µm thick layers” Phys. Scr. T 118, 66–68 (2005).
[Crossref]

Proc. SPIE (1)

V. Weiss, E. Millul, and A. A. Friesem, “Photopolymeric holographic recording media: In-situ and real time characterization” Proc. SPIE 2688, 11–21 (1996).
[Crossref]

Other (4)

M. Ortuño, S. Gallego, C. Neipp, A. Márquez, A. Beléndez, and I. Pascual, “Material de registro holográfico medioambientalmente compatible basado en acrilatos metálicos” Patent pending ES 200503113 (2005).

A. L. Lipman, Safety of xanthene dyes according to the U.S. Food and Drug Administration, ACS Symposium Series, American Chemical Society, USA, [Light-Activated Pest Control 616, 34–53 (1995)].

J. R. Heitz, Insectic Mode Action, Academic (New York, USA, 1982).

J. M. Barnes, “Effects on rats of compounds related to acrylamide” British Journal of Industrial Medicine 1970.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Absorption spectrums for photopolymers A and B.

Fig. 2.
Fig. 2.

BS: Beamsplitter, Mi: mirror, SFi: spatial filter, Li: lens, Di: diaphragm, PC: data recorder.

Fig. 3.
Fig. 3.

Diffraction efficiency versus exposure for A-E photopolymers during recording.

Fig. 4.
Fig. 4.

Diffraction efficiency plus transmission efficiency during the recording of the holograms in photopolymers A-E.

Fig. 5.
Fig. 5.

Angular scan for the holograms recorded in photopolymers A-E.

Fig. 6.
Fig. 6.

Diffraction efficiency values versus DHEBA concentration for photopolymers without TEA.

Fig. 7.
Fig. 7.

Angular scan for the holograms recorded in photopolymers F-H.

Tables (2)

Tables Icon

Table 1. Composition of the photopolymer starting solution in molarity, PVA in percentage.

Tables Icon

Table 2. Composition of the photopolymer starting solution in molarity, PVA in percentage.

Metrics