Abstract

Photopolymers that absorb in the visible spectrum are useful for different applications such as in the development of holographic memories, holographic optical elements or as holographic recording media. Photopolymers have an undesirable feature, the toxicity of their components and their low environmental compatibility, particularly if we analyse the life cycle of the devices made with these materials and their interaction with the environment. In this work we developed a new photopolymer with photochemical and holographic features similar to those of the standard material but with an improved design from the environmental point of view.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. F. del Monte, O. Martinez, J. A. Rodrigo, M. L. Calvo, and P. Cheven, "A Volume Holographic Sol-Gel Material with Large Enhancement of Dynamic Range by Incorporation of High Refractive Index Species" Adv. Mater. 18, 2014-2017 (2006).
    [CrossRef]
  2. J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, "Photopolymer holographic recording material" Optik 112, 449-463 (2001).
    [CrossRef]
  3. Y. -C. Jeong, S. Lee, and J. -K. Park, "Holographic diffraction gratings with enhanced sensitivity based on epoxy-resin photopolymers" Opt. Express 15, 1497-1504 (2007).
    [CrossRef] [PubMed]
  4. M. D. Lechner, "Photopolymers for optical memories and waveguides" Electron. Prop. Polym. Relat. Compd. 63, 301-308 (1985)).
    [CrossRef]
  5. S. Bartkiewicz, and A. Miniewicz, "Methylene blue sensitized poly(methyl methacrylate) matrix: a novel holographic material" Appl. Opt. 34, 5175-5178 (1995).
    [CrossRef] [PubMed]
  6. P. Cheben, and M. L. Calvo "A Photopolymerizable Glass with Diffraction Efficiency Near 100% for Holographic Storage" Appl. Phys. Lett. 78, 1490-1492 (2001).
    [CrossRef]
  7. V. Weiss, E. Millul, and A. A. Friesem, "Photopolymeric holographic recording media: In-situ and real-time characterization" Proc. SPIE 2688, 11-21 (1996).
    [CrossRef]
  8. L. Feng, Y. Jin, C. Xia, H. Lan, and K. Wang, "Study on a high performance red-sensitive photopolymer-gelatin holographic recording material" J. Sichuan University 38, 773-775 (2001).
  9. F. Pellaschiar, "Reduction of the utilization of VOC and their atmospheric emissions. Development of legislation and research in the use of less toxic solvents and reduced environmental impact" Eur. Coat. J. 81, 22-28 (2005).
  10. S. Sugawara, K. Murase, and T. Kitayama, "Holographic recording by dye-sensitized photopolymerization of acrylamide" Appl. Opt.,  14, 378-382 (1975).
    [CrossRef] [PubMed]
  11. E. Fernández, C. García, I. Pascual, M. Ortuño, S. Gallego, and A. Beléndez "Optimization of a thick polyvinyl alcohol-acrylamide photopolymer for data storage using a combination of angular and peristrophic holographic multiplexing" Appl. Opt. 45, 7661-7666 (2006).
    [CrossRef] [PubMed]
  12. A. Márquez, C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, and I. Pascual, "Edge-enhanced imaging with polyvinyl alcohol/acrylamide photopolymer gratings" Opt. Lett.,  28, 1510-1512 (2003).
    [CrossRef] [PubMed]
  13. M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, "Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties"Appl. Phys. B,  76, 851-857 (2003).
    [CrossRef]
  14. M. Ortuño, S. Gallego, C. García, C. Neipp, and I. Pascual, "Holographic characteristics of a 1 mm thick photopolymer to be used in holographic memories" Appl. Opt. 42, 7008-7012 (2003).
    [CrossRef] [PubMed]
  15. M. Ortuño, S. Gallego, C. García, I. Pascual, C. Neipp, and A. Beléndez, "Holographic characteristics of an acrylamide/bisacrylamide photopolymer in 40-1000 μm thick layers" Phys. Scr. T118, 66-68 (2005).
    [CrossRef]
  16. K. Hashimoto, and W. N. Aldridge, "Biochemical studies on acrylamide, a neurotoxic agent" Biochem. Pharmacol. 19, 2591-2604 (1970).
    [CrossRef] [PubMed]
  17. F. Mendel, "Chemistry, biochemistry, and safety of acrylamide. A review" J. Agric. Food. Chem. 51, 4504-4526 (2003).
    [CrossRef]
  18. M. Ortuño, S. Gallego, C. Neipp, A. Márquez, A. Beléndez, and I. Pascual, "Material de registro holográfico medioambientalmente compatible basado en acrilatos metálicos" Patent pending ES 200503113 (2005).
  19. A. L. Lipman, Safety of xanthene dyes according to the U.S. Food and Drug Administration, ACS Symposium Series, American Chemical Society, USA, [Light-Activated Pest Control 616, 34-53 (1995)].
  20. J. R. Heitz, Insectic Mode Action, Academic (New York, USA, 1982).
  21. A. M. Edwards, and E. Silva, "Effect of visible light on selected enzymes, vitamins and amino acids" J. Photochem. Photobiol. B 63, 126-131 (2001).
    [CrossRef] [PubMed]
  22. J. Khadem, T. Truong, and J. T. Ernest, "Photodynamic biologic tissue glue" Cornea 13, 406-410 (1994).
    [CrossRef] [PubMed]
  23. S. G. Bertolotti, C. M. Previtali, "Riboflavin/Triethanolamine as Photoinitiator System of Vinyl Polymerization- A Mechanistic Study by Laser Flash Photolysis" Macromolecules 32, 2920-2924 (1999).
    [CrossRef]
  24. J. M. Barnes, "Effects on rats of compounds related to acrylamide" British Journal of Industrial Medicine 1970.
  25. C. Solano, G. Martinez-Ponce, C. Castañeda, "Dyed-polyvinyl alcohol films: molecular weight and hydrolysis degree influence on optical recording" Appl Opt. 45, 5207-5211 (2006).
    [CrossRef] [PubMed]
  26. H. Kogelnik, "Coupled Wave Theory for Thick Hologram Gratings" Bell Syst. Tech. J. 48, 2909-2912 (1969).
  27. S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, "Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers" Opt. Express 13, 1939-1947 (2005).
    [CrossRef] [PubMed]

2007 (1)

2006 (3)

F. del Monte, O. Martinez, J. A. Rodrigo, M. L. Calvo, and P. Cheven, "A Volume Holographic Sol-Gel Material with Large Enhancement of Dynamic Range by Incorporation of High Refractive Index Species" Adv. Mater. 18, 2014-2017 (2006).
[CrossRef]

E. Fernández, C. García, I. Pascual, M. Ortuño, S. Gallego, and A. Beléndez "Optimization of a thick polyvinyl alcohol-acrylamide photopolymer for data storage using a combination of angular and peristrophic holographic multiplexing" Appl. Opt. 45, 7661-7666 (2006).
[CrossRef] [PubMed]

C. Solano, G. Martinez-Ponce, C. Castañeda, "Dyed-polyvinyl alcohol films: molecular weight and hydrolysis degree influence on optical recording" Appl Opt. 45, 5207-5211 (2006).
[CrossRef] [PubMed]

2005 (3)

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, "Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers" Opt. Express 13, 1939-1947 (2005).
[CrossRef] [PubMed]

F. Pellaschiar, "Reduction of the utilization of VOC and their atmospheric emissions. Development of legislation and research in the use of less toxic solvents and reduced environmental impact" Eur. Coat. J. 81, 22-28 (2005).

M. Ortuño, S. Gallego, C. García, I. Pascual, C. Neipp, and A. Beléndez, "Holographic characteristics of an acrylamide/bisacrylamide photopolymer in 40-1000 μm thick layers" Phys. Scr. T118, 66-68 (2005).
[CrossRef]

2003 (4)

A. Márquez, C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, and I. Pascual, "Edge-enhanced imaging with polyvinyl alcohol/acrylamide photopolymer gratings" Opt. Lett.,  28, 1510-1512 (2003).
[CrossRef] [PubMed]

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, "Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties"Appl. Phys. B,  76, 851-857 (2003).
[CrossRef]

M. Ortuño, S. Gallego, C. García, C. Neipp, and I. Pascual, "Holographic characteristics of a 1 mm thick photopolymer to be used in holographic memories" Appl. Opt. 42, 7008-7012 (2003).
[CrossRef] [PubMed]

F. Mendel, "Chemistry, biochemistry, and safety of acrylamide. A review" J. Agric. Food. Chem. 51, 4504-4526 (2003).
[CrossRef]

2001 (4)

A. M. Edwards, and E. Silva, "Effect of visible light on selected enzymes, vitamins and amino acids" J. Photochem. Photobiol. B 63, 126-131 (2001).
[CrossRef] [PubMed]

J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, "Photopolymer holographic recording material" Optik 112, 449-463 (2001).
[CrossRef]

P. Cheben, and M. L. Calvo "A Photopolymerizable Glass with Diffraction Efficiency Near 100% for Holographic Storage" Appl. Phys. Lett. 78, 1490-1492 (2001).
[CrossRef]

L. Feng, Y. Jin, C. Xia, H. Lan, and K. Wang, "Study on a high performance red-sensitive photopolymer-gelatin holographic recording material" J. Sichuan University 38, 773-775 (2001).

1999 (1)

S. G. Bertolotti, C. M. Previtali, "Riboflavin/Triethanolamine as Photoinitiator System of Vinyl Polymerization- A Mechanistic Study by Laser Flash Photolysis" Macromolecules 32, 2920-2924 (1999).
[CrossRef]

1996 (1)

V. Weiss, E. Millul, and A. A. Friesem, "Photopolymeric holographic recording media: In-situ and real-time characterization" Proc. SPIE 2688, 11-21 (1996).
[CrossRef]

1995 (1)

1994 (1)

J. Khadem, T. Truong, and J. T. Ernest, "Photodynamic biologic tissue glue" Cornea 13, 406-410 (1994).
[CrossRef] [PubMed]

1985 (1)

M. D. Lechner, "Photopolymers for optical memories and waveguides" Electron. Prop. Polym. Relat. Compd. 63, 301-308 (1985)).
[CrossRef]

1975 (1)

1970 (1)

K. Hashimoto, and W. N. Aldridge, "Biochemical studies on acrylamide, a neurotoxic agent" Biochem. Pharmacol. 19, 2591-2604 (1970).
[CrossRef] [PubMed]

1969 (1)

H. Kogelnik, "Coupled Wave Theory for Thick Hologram Gratings" Bell Syst. Tech. J. 48, 2909-2912 (1969).

Adv. Mater. (1)

F. del Monte, O. Martinez, J. A. Rodrigo, M. L. Calvo, and P. Cheven, "A Volume Holographic Sol-Gel Material with Large Enhancement of Dynamic Range by Incorporation of High Refractive Index Species" Adv. Mater. 18, 2014-2017 (2006).
[CrossRef]

Appl Opt. (1)

C. Solano, G. Martinez-Ponce, C. Castañeda, "Dyed-polyvinyl alcohol films: molecular weight and hydrolysis degree influence on optical recording" Appl Opt. 45, 5207-5211 (2006).
[CrossRef] [PubMed]

Appl. Opt. (4)

Appl. Phys. B (1)

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, "Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties"Appl. Phys. B,  76, 851-857 (2003).
[CrossRef]

Appl. Phys. Lett. (1)

P. Cheben, and M. L. Calvo "A Photopolymerizable Glass with Diffraction Efficiency Near 100% for Holographic Storage" Appl. Phys. Lett. 78, 1490-1492 (2001).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, "Coupled Wave Theory for Thick Hologram Gratings" Bell Syst. Tech. J. 48, 2909-2912 (1969).

Biochem. Pharmacol. (1)

K. Hashimoto, and W. N. Aldridge, "Biochemical studies on acrylamide, a neurotoxic agent" Biochem. Pharmacol. 19, 2591-2604 (1970).
[CrossRef] [PubMed]

Cornea (1)

J. Khadem, T. Truong, and J. T. Ernest, "Photodynamic biologic tissue glue" Cornea 13, 406-410 (1994).
[CrossRef] [PubMed]

Electron. Prop. Polym. Relat. Compd. (1)

M. D. Lechner, "Photopolymers for optical memories and waveguides" Electron. Prop. Polym. Relat. Compd. 63, 301-308 (1985)).
[CrossRef]

Eur. Coat. J. (1)

F. Pellaschiar, "Reduction of the utilization of VOC and their atmospheric emissions. Development of legislation and research in the use of less toxic solvents and reduced environmental impact" Eur. Coat. J. 81, 22-28 (2005).

J. Agric. Food. Chem. (1)

F. Mendel, "Chemistry, biochemistry, and safety of acrylamide. A review" J. Agric. Food. Chem. 51, 4504-4526 (2003).
[CrossRef]

J. Photochem. Photobiol. B (1)

A. M. Edwards, and E. Silva, "Effect of visible light on selected enzymes, vitamins and amino acids" J. Photochem. Photobiol. B 63, 126-131 (2001).
[CrossRef] [PubMed]

J. Sichuan University (1)

L. Feng, Y. Jin, C. Xia, H. Lan, and K. Wang, "Study on a high performance red-sensitive photopolymer-gelatin holographic recording material" J. Sichuan University 38, 773-775 (2001).

Macromolecules (1)

S. G. Bertolotti, C. M. Previtali, "Riboflavin/Triethanolamine as Photoinitiator System of Vinyl Polymerization- A Mechanistic Study by Laser Flash Photolysis" Macromolecules 32, 2920-2924 (1999).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Optik (1)

J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, "Photopolymer holographic recording material" Optik 112, 449-463 (2001).
[CrossRef]

Phys. Scr. (1)

M. Ortuño, S. Gallego, C. García, I. Pascual, C. Neipp, and A. Beléndez, "Holographic characteristics of an acrylamide/bisacrylamide photopolymer in 40-1000 μm thick layers" Phys. Scr. T118, 66-68 (2005).
[CrossRef]

Proc. SPIE (1)

V. Weiss, E. Millul, and A. A. Friesem, "Photopolymeric holographic recording media: In-situ and real-time characterization" Proc. SPIE 2688, 11-21 (1996).
[CrossRef]

Other (4)

M. Ortuño, S. Gallego, C. Neipp, A. Márquez, A. Beléndez, and I. Pascual, "Material de registro holográfico medioambientalmente compatible basado en acrilatos metálicos" Patent pending ES 200503113 (2005).

A. L. Lipman, Safety of xanthene dyes according to the U.S. Food and Drug Administration, ACS Symposium Series, American Chemical Society, USA, [Light-Activated Pest Control 616, 34-53 (1995)].

J. R. Heitz, Insectic Mode Action, Academic (New York, USA, 1982).

J. M. Barnes, "Effects on rats of compounds related to acrylamide" British Journal of Industrial Medicine 1970.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Absorption spectrums for photopolymers A and B.

Fig. 2.
Fig. 2.

BS: Beamsplitter, Mi: mirror, SFi: spatial filter, Li: lens, Di: diaphragm, PC: data recorder.

Fig. 3.
Fig. 3.

Diffraction efficiency versus exposure for A-E photopolymers during recording.

Fig. 4.
Fig. 4.

Diffraction efficiency plus transmission efficiency during the recording of the holograms in photopolymers A-E.

Fig. 5.
Fig. 5.

Angular scan for the holograms recorded in photopolymers A-E.

Fig. 6.
Fig. 6.

Diffraction efficiency values versus DHEBA concentration for photopolymers without TEA.

Fig. 7.
Fig. 7.

Angular scan for the holograms recorded in photopolymers F-H.

Tables (2)

Tables Icon

Table 1. Composition of the photopolymer starting solution in molarity, PVA in percentage.

Tables Icon

Table 2. Composition of the photopolymer starting solution in molarity, PVA in percentage.

Metrics