Abstract

We present the design and the fabrication of photonic crystals with a complete bandgap for TM-modes used as a resonator for terahertz quantum-cascade lasers (QCL), which are lasing around 2.7 THz. The emission of the devices with and without a photonic crystal shows a shift in the emission from the gain maximum to the bandgap of the crystal. The devices are built up by a core, which provides the optical gain, and by a surrounding photonic crystal, which acts as a frequency selective mirror. The whole device is processed into a double-metal waveguide.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, "Quantum Cascade Surface-Emitting Photonic Crystal Laser," Science 302, 1374 (2003).
    [CrossRef] [PubMed]
  2. S. Schartner, S. Golka, C. Pfl¨ugl,W. Schrenk, A. M. Andrews, T. Roch, and G. Strasser, "Band structure mapping of photonic crystal intersubband detectors," Appl. Phys. Lett. 89, 151107 (2006).
    [CrossRef]
  3. J. C. Knight, T. A. Birks, P. S. J. Russel, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547 (1996).
    [CrossRef] [PubMed]
  4. T. A. Birks, Y. D. West, and P. S. J. Russel, "Endlessly single mode photonic crystal fiber," Opt. Lett. 22, 961 (1997).
    [CrossRef] [PubMed]
  5. J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, "Quantum Cascade Lasers," Science 264, 553 (1994).
    [CrossRef] [PubMed]
  6. R. K¨ohler, A. Tredicucci, H. E. Beere, E. H. Lienfield, A. G. Davis, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature (London) 417, 156 (2002).Q1
    [CrossRef]
  7. G. Scalari, C. Walther, H. Beere, D. Ritchie, and J. Faist, "Laser emission at 830 and 960 GHz from quantum cascade lasers," presented at the 9th International Conference on Intersubband Transition in Quantum Wells, Ambleside, Cumbria, U.K., 9-14 September 2007.
  8. G. Scalari, S. Blaser, J. Faist, H. Beere, E. Linfield, and D. Ritchie, "Terahertz Emission from Quantum Cascade Lasers in the Quantum Hall Regime: Evidence of Many Body Resonances and Localization Effects," Phys. Rev. Lett. 93, 237403 (2004).
    [CrossRef] [PubMed]
  9. B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, "Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode," Opt. Express 13, 3331 (2004).
    [CrossRef]
  10. B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, "High-power terahertz quantum-cascade lasers," Electron. Lett. 42, 89 (2006).
    [CrossRef]
  11. Y. Chassagneux, J. Palomo, R. Colombelli, S. Dhillon, C. Sirtori, H. Beere, J. Alton, and D. Ritchie, "Terahertz microcavity lasers with subwavelength mode volumes and thresholds in the milliampere range," Appl. Phys. Lett. 90, 091113 (2007).
    [CrossRef]
  12. L. A. Dunbar, R. Houdr, G. Scalari, L. Sirigu, M. Giovannini, and J. Faist, "Small optical volume terahertz emitting microdisk quantum cascade lasers," Appl. Phys. Lett. 90, 141114 (2007).
    [CrossRef]
  13. G. Fasching, V. Tamosiunas, A. Benz, A. M. Andrews, K. Unterrainer, R. Zobl, T. Roch, W. Schrenk, and G. Strasser, "Sub-wavelength microdisk and microring terahertz quantum-cascade lasers," IEEE J. Quantum Elect. (to be published).Q2
  14. H.-W. H¨ubers, S. G. Pavlov, A. D. Semenov, R. K¨ohler, L. Mahler, A. Tredicucci, H. E. Beere, D. A. Ritchie, and E. H. Linfield, "Terahertz quantum cascade laser as local oscillator in a heterodyne receiver," Opt. Express 13, 5890 (2005).Q3
    [CrossRef] [PubMed]
  15. J. R. Gao, J. N. Hovenier, Z. Q. Yang, J. J. A. Baselmans, A. Baryshev, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, "Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer," Appl. Phys. Lett. 86, 244104 (2005).
    [CrossRef]
  16. A. W. M. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, "Real-time terahertz imaging over a standoff distance (>25 meters)," Appl. Phys. Lett. 89, 141125 (2006).
    [CrossRef]
  17. H.-W. H¨ubers, S. G. Pavlov, H. Richter, A. D. Semenov, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, "High-resolution gas phase spectroscopy with distributed feedback terahertz quantum cascade lasers," Appl. Phys. Lett. 89, 061115 (2006).Q4
    [CrossRef]
  18. M. Bahriz, V. Moreau, R. Colombelli, O. Crisafulli, and O. Painter, "Design of mid-IR and THz quantum cascade laser cavities with complete TM photonic bandgap," Opt. Exp. 15, 5948 (2007).Q5
    [CrossRef]
  19. D. M. Tennant, R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. Gmachl, F. Capasso, A. M. Sergent, D. L. Sivco, and A. Y. Cho, "Fabrication methods for a quantum cascade photonic crystal surface emitting laser," J. Vac. Sci. Technol. B 21, 2907 (2003).
    [CrossRef]
  20. K. Srinivasan, O. Painter, R. Colombelli, C. Gmachl, D. M. Tennant, A. M. Sergent, M. Troccoli, and F. Capasso, "Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser," Appl. Phys. Lett. 84, 4146 (2004).
    [CrossRef]
  21. G. Scalari, L. Sirigu, R. Terazzi, C. Walther, M. I. Amanti, M. L. Sadowski, H. Beere, D. Ritchie, L. A. Dunbar, and R. Houdre, "Multi-wavelength operation and vertical emission in THz quantum-cascade lasers," J. Appl. Phys. 101, 081726 (2007).
    [CrossRef]
  22. L. A. Dunbar, V. Moreau, R. Ferrini, R. Houdr, L. Sirigu, G. Scalari, M. Giovannini, N. Hoyler, and J. Faist, "Design, fabrication and optical characterization of quantum cascade lasers at terahertz frequencies using photonic crystal reflectors," Opt. Express 13, 8960 (2005).
    [CrossRef] [PubMed]
  23. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, "Guided modes in photonic crystal slabs," Phys. Rev. B 60, 5751 (1999).
    [CrossRef]
  24. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8, 173 (2001).
    [CrossRef] [PubMed]
  25. G. Fasching, A. Benz, K. Unterrainer, R. Zobl, A. M. Andrews, T. Roch, W. Schrenk, and G. Strasser, "Terahertz microcavity quantum-cascade lasers," Appl. Phys. Lett. 87, 211112 (2005).
    [CrossRef]
  26. B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, "3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation," Appl. Phys. Lett. 82, 1015 (2002).
    [CrossRef]
  27. A. Benz, G. Fasching, A. M. Andrews, M. Martl, K. Unterrainer, T. Roch, W. Schrenk, S. Golka, and G. Strasser, "The influence of doping on the performance of terahertz quantum-cascade lasers," Appl. Phys. Lett. 90, 101107 (2007).
    [CrossRef]

2007 (5)

Y. Chassagneux, J. Palomo, R. Colombelli, S. Dhillon, C. Sirtori, H. Beere, J. Alton, and D. Ritchie, "Terahertz microcavity lasers with subwavelength mode volumes and thresholds in the milliampere range," Appl. Phys. Lett. 90, 091113 (2007).
[CrossRef]

L. A. Dunbar, R. Houdr, G. Scalari, L. Sirigu, M. Giovannini, and J. Faist, "Small optical volume terahertz emitting microdisk quantum cascade lasers," Appl. Phys. Lett. 90, 141114 (2007).
[CrossRef]

M. Bahriz, V. Moreau, R. Colombelli, O. Crisafulli, and O. Painter, "Design of mid-IR and THz quantum cascade laser cavities with complete TM photonic bandgap," Opt. Exp. 15, 5948 (2007).Q5
[CrossRef]

G. Scalari, L. Sirigu, R. Terazzi, C. Walther, M. I. Amanti, M. L. Sadowski, H. Beere, D. Ritchie, L. A. Dunbar, and R. Houdre, "Multi-wavelength operation and vertical emission in THz quantum-cascade lasers," J. Appl. Phys. 101, 081726 (2007).
[CrossRef]

A. Benz, G. Fasching, A. M. Andrews, M. Martl, K. Unterrainer, T. Roch, W. Schrenk, S. Golka, and G. Strasser, "The influence of doping on the performance of terahertz quantum-cascade lasers," Appl. Phys. Lett. 90, 101107 (2007).
[CrossRef]

2006 (4)

S. Schartner, S. Golka, C. Pfl¨ugl,W. Schrenk, A. M. Andrews, T. Roch, and G. Strasser, "Band structure mapping of photonic crystal intersubband detectors," Appl. Phys. Lett. 89, 151107 (2006).
[CrossRef]

A. W. M. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, "Real-time terahertz imaging over a standoff distance (>25 meters)," Appl. Phys. Lett. 89, 141125 (2006).
[CrossRef]

H.-W. H¨ubers, S. G. Pavlov, H. Richter, A. D. Semenov, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, "High-resolution gas phase spectroscopy with distributed feedback terahertz quantum cascade lasers," Appl. Phys. Lett. 89, 061115 (2006).Q4
[CrossRef]

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, "High-power terahertz quantum-cascade lasers," Electron. Lett. 42, 89 (2006).
[CrossRef]

2005 (4)

J. R. Gao, J. N. Hovenier, Z. Q. Yang, J. J. A. Baselmans, A. Baryshev, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, "Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer," Appl. Phys. Lett. 86, 244104 (2005).
[CrossRef]

G. Fasching, A. Benz, K. Unterrainer, R. Zobl, A. M. Andrews, T. Roch, W. Schrenk, and G. Strasser, "Terahertz microcavity quantum-cascade lasers," Appl. Phys. Lett. 87, 211112 (2005).
[CrossRef]

H.-W. H¨ubers, S. G. Pavlov, A. D. Semenov, R. K¨ohler, L. Mahler, A. Tredicucci, H. E. Beere, D. A. Ritchie, and E. H. Linfield, "Terahertz quantum cascade laser as local oscillator in a heterodyne receiver," Opt. Express 13, 5890 (2005).Q3
[CrossRef] [PubMed]

L. A. Dunbar, V. Moreau, R. Ferrini, R. Houdr, L. Sirigu, G. Scalari, M. Giovannini, N. Hoyler, and J. Faist, "Design, fabrication and optical characterization of quantum cascade lasers at terahertz frequencies using photonic crystal reflectors," Opt. Express 13, 8960 (2005).
[CrossRef] [PubMed]

2004 (3)

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, "Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode," Opt. Express 13, 3331 (2004).
[CrossRef]

K. Srinivasan, O. Painter, R. Colombelli, C. Gmachl, D. M. Tennant, A. M. Sergent, M. Troccoli, and F. Capasso, "Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser," Appl. Phys. Lett. 84, 4146 (2004).
[CrossRef]

G. Scalari, S. Blaser, J. Faist, H. Beere, E. Linfield, and D. Ritchie, "Terahertz Emission from Quantum Cascade Lasers in the Quantum Hall Regime: Evidence of Many Body Resonances and Localization Effects," Phys. Rev. Lett. 93, 237403 (2004).
[CrossRef] [PubMed]

2003 (2)

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, "Quantum Cascade Surface-Emitting Photonic Crystal Laser," Science 302, 1374 (2003).
[CrossRef] [PubMed]

D. M. Tennant, R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. Gmachl, F. Capasso, A. M. Sergent, D. L. Sivco, and A. Y. Cho, "Fabrication methods for a quantum cascade photonic crystal surface emitting laser," J. Vac. Sci. Technol. B 21, 2907 (2003).
[CrossRef]

2002 (2)

B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, "3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation," Appl. Phys. Lett. 82, 1015 (2002).
[CrossRef]

R. K¨ohler, A. Tredicucci, H. E. Beere, E. H. Lienfield, A. G. Davis, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature (London) 417, 156 (2002).Q1
[CrossRef]

2001 (1)

1999 (1)

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, "Guided modes in photonic crystal slabs," Phys. Rev. B 60, 5751 (1999).
[CrossRef]

1997 (1)

1996 (1)

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, "Quantum Cascade Lasers," Science 264, 553 (1994).
[CrossRef] [PubMed]

Appl. Phys. Lett. (10)

J. R. Gao, J. N. Hovenier, Z. Q. Yang, J. J. A. Baselmans, A. Baryshev, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, "Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer," Appl. Phys. Lett. 86, 244104 (2005).
[CrossRef]

A. W. M. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, "Real-time terahertz imaging over a standoff distance (>25 meters)," Appl. Phys. Lett. 89, 141125 (2006).
[CrossRef]

H.-W. H¨ubers, S. G. Pavlov, H. Richter, A. D. Semenov, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, "High-resolution gas phase spectroscopy with distributed feedback terahertz quantum cascade lasers," Appl. Phys. Lett. 89, 061115 (2006).Q4
[CrossRef]

Y. Chassagneux, J. Palomo, R. Colombelli, S. Dhillon, C. Sirtori, H. Beere, J. Alton, and D. Ritchie, "Terahertz microcavity lasers with subwavelength mode volumes and thresholds in the milliampere range," Appl. Phys. Lett. 90, 091113 (2007).
[CrossRef]

L. A. Dunbar, R. Houdr, G. Scalari, L. Sirigu, M. Giovannini, and J. Faist, "Small optical volume terahertz emitting microdisk quantum cascade lasers," Appl. Phys. Lett. 90, 141114 (2007).
[CrossRef]

K. Srinivasan, O. Painter, R. Colombelli, C. Gmachl, D. M. Tennant, A. M. Sergent, M. Troccoli, and F. Capasso, "Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser," Appl. Phys. Lett. 84, 4146 (2004).
[CrossRef]

S. Schartner, S. Golka, C. Pfl¨ugl,W. Schrenk, A. M. Andrews, T. Roch, and G. Strasser, "Band structure mapping of photonic crystal intersubband detectors," Appl. Phys. Lett. 89, 151107 (2006).
[CrossRef]

G. Fasching, A. Benz, K. Unterrainer, R. Zobl, A. M. Andrews, T. Roch, W. Schrenk, and G. Strasser, "Terahertz microcavity quantum-cascade lasers," Appl. Phys. Lett. 87, 211112 (2005).
[CrossRef]

B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, "3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation," Appl. Phys. Lett. 82, 1015 (2002).
[CrossRef]

A. Benz, G. Fasching, A. M. Andrews, M. Martl, K. Unterrainer, T. Roch, W. Schrenk, S. Golka, and G. Strasser, "The influence of doping on the performance of terahertz quantum-cascade lasers," Appl. Phys. Lett. 90, 101107 (2007).
[CrossRef]

Electron. Lett. (1)

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, "High-power terahertz quantum-cascade lasers," Electron. Lett. 42, 89 (2006).
[CrossRef]

IEEE J. Quantum Elect. (1)

G. Fasching, V. Tamosiunas, A. Benz, A. M. Andrews, K. Unterrainer, R. Zobl, T. Roch, W. Schrenk, and G. Strasser, "Sub-wavelength microdisk and microring terahertz quantum-cascade lasers," IEEE J. Quantum Elect. (to be published).Q2

J. Appl. Phys. (1)

G. Scalari, L. Sirigu, R. Terazzi, C. Walther, M. I. Amanti, M. L. Sadowski, H. Beere, D. Ritchie, L. A. Dunbar, and R. Houdre, "Multi-wavelength operation and vertical emission in THz quantum-cascade lasers," J. Appl. Phys. 101, 081726 (2007).
[CrossRef]

J. Vac. Sci. Technol. B (1)

D. M. Tennant, R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. Gmachl, F. Capasso, A. M. Sergent, D. L. Sivco, and A. Y. Cho, "Fabrication methods for a quantum cascade photonic crystal surface emitting laser," J. Vac. Sci. Technol. B 21, 2907 (2003).
[CrossRef]

Nature (London) (1)

R. K¨ohler, A. Tredicucci, H. E. Beere, E. H. Lienfield, A. G. Davis, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature (London) 417, 156 (2002).Q1
[CrossRef]

Opt. Exp. (1)

M. Bahriz, V. Moreau, R. Colombelli, O. Crisafulli, and O. Painter, "Design of mid-IR and THz quantum cascade laser cavities with complete TM photonic bandgap," Opt. Exp. 15, 5948 (2007).Q5
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. B (1)

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, "Guided modes in photonic crystal slabs," Phys. Rev. B 60, 5751 (1999).
[CrossRef]

Phys. Rev. Lett. (1)

G. Scalari, S. Blaser, J. Faist, H. Beere, E. Linfield, and D. Ritchie, "Terahertz Emission from Quantum Cascade Lasers in the Quantum Hall Regime: Evidence of Many Body Resonances and Localization Effects," Phys. Rev. Lett. 93, 237403 (2004).
[CrossRef] [PubMed]

Science (2)

J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, "Quantum Cascade Lasers," Science 264, 553 (1994).
[CrossRef] [PubMed]

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, "Quantum Cascade Surface-Emitting Photonic Crystal Laser," Science 302, 1374 (2003).
[CrossRef] [PubMed]

Other (1)

G. Scalari, C. Walther, H. Beere, D. Ritchie, and J. Faist, "Laser emission at 830 and 960 GHz from quantum cascade lasers," presented at the 9th International Conference on Intersubband Transition in Quantum Wells, Ambleside, Cumbria, U.K., 9-14 September 2007.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

A calculated band structure of the 2D-PC and a schematic of the real device. (a) The plane wave expansion method is used for the simulation. The first two bandgaps for TM-modes are shown, the first one spans from 0.2 to 0.28 [fa/c], the second one from 0.37 to 0.48 [fa/c]. (b) A schematic of the device. The core is surrounded by one period of the PC, corresponding to two rows of pillars. The double-metal waveguide embeds the core and the PC. The inset is showing the principal crystallographic directions in a triangular lattice.

Fig. 2.
Fig. 2.

Schematics of the processing steps (a) after the first RIE etching and (b) after the wafer bonding. The light gray part is the active region, the red one the etch stop layer and the dark gray one the substrate. (a) The core and the PC are etched 10 µm into the active region, 5 µm remain unprocessed. (b) After the substrate removal, gold is deposited on the active region, it is used as a self-aligned etch mask for the second RIE step.

Fig. 3.
Fig. 3.

SEM-images of the RIE etched devices and spectra from the reference devices. (a) A fully processed resonator. The top-gold has been used as self-aligned etch mask for the RIE etching. (b) The spectra of the two reference cavities. Sample (1) shows modes between 2.8 and 2.9 THz, sample (2) between 2.45 and 2.7 THz. By applying higher fields, no additional modes are observable.

Fig. 4.
Fig. 4.

Spectra of both samples with the periods (a) 22.18 µm and (b) 26.62 µm. The gray shaded area shows the bandgap of the PC. (a) The modes of sample (1) compared to the reference cavity are not changed as they already lie within the bandgap. The spectrum of sample (2) is blue shifted to 2.7 THz and lies now in the gap. The side length of the core is 266.2 µm. (b) Both samples show the same modes as the reference cavities as they lie in the gap. The core has a side length of 213.0 µm.

Fig. 5.
Fig. 5.

Spectra of both samples with the periods (a) 31.05 µm and (b) 35.49 µm. The gray shaded area shows the bandgap of the PC. (a) Sample (1) lases at the band edge at the K-point between the first and the second bandgap. Sample (2) shows nearly the same modes as the reference cavity as they are still in the gap. The core has a side length of 372.6 µm. (b) The emission of sample (1) is strongly blue shifted to 3.2 THz, the devices lases in the second bandgap. Sample (2) shows two lasing modes, one at the K-point at 2.64 THz and another one at 2.52 THz, which can be assigned to the flat band region next to the K-point. The side length of the core is 283.9 µm.

Metrics