Abstract

We propose a comprehensive analysis of the effects that spherical aberration may have on the process of ultrafast laser photowriting in bulk transparent materials and discuss the consequences for the generated refractive index changes. Practical aspects for a longitudinal photowriting configuration are emphasized. Laser-induced index variation in BK7 optical glass and fused silica (a-SiO2) affected by spherical aberration are characterized experimentally using phase-contrast optical microscopy. Experimental data are matched by analytical equations describing light propagation through dielectric interfaces. Corrective solutions are proposed with a particular focus on the spatial resolution achievable and on the conditions to obtain homogeneously photo-induced waveguides in a longitudinal writing configuration.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. N. Chichkov, C. Momma, S. Nolte, F. von Albenstein, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109 (1996).
  2. S. Valette, R. Le Harzic, N. Huot, E. Audouard, and R. Fortunier, “2-D calculations of the thermal effects due to femtosecond laser-metal interaction,” Appl. Surf. Sci. 247, 238–242 (2005).
    [CrossRef]
  3. K Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
    [CrossRef]
  4. D. Homoelle, S. Wielandy, A. L. Gaeta, N. F. Borrelli, and C. Smith, “Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses,” Opt. Lett. 24, 1311–1313 (1999).
    [CrossRef]
  5. C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 23, 93–95 (2001).
    [CrossRef]
  6. A. Mermillod-Blondin, I. M. Burakov, R. Stoian, A. Rosenfeld, E. Audouard, N. M. Bulgakova, and I. V. Hertel, “Direct observation of femtosecond laser induced modifications in the bulk of fused silica by phase contrast microscopy,” J. Laser Micro/Nanoeng. 1, 155–160 (2006).
    [CrossRef]
  7. S. Juodkasis, S. Matsuo, H. Misawa, V. Mizeikis, A. Marcinkevicius, H. B. Sun, Y. Tokuda, M. Takahashi, T. Yoko, and J. Nishii, “Application of femtosecond laser pulses for microfabrication of transparent media,” Appl. Surf. Sci. 197, 705–709 (2002).
    [CrossRef]
  8. K. Minoshima, A.M. Kowalevicz, I. Hartl, E.P. Ippen, and J.G. Fujimoto, “Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator,” Opt Lett. 26, 1516–1518 (2001).
    [CrossRef]
  9. M. H. Hong, B. Luk’Yanchuk, S. M. Huang, T. S. Ong, L. H. Van, and T. C. Chong, “Femtosecond laser application for high capacity optical data storage,” Appl. Phys. A 79, 791–794 (2004).
  10. J. P. McDonald, V. R. Mistry, K. E. Ray, and S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett. 88, 183113–183115 (2006).
    [CrossRef]
  11. N. Takeshima, Y. Narita, S. Tanaka, Y. Kuroiwa, and K. Hirao, “Fabrication of high-efficiency diffraction gratings in glass,” Opt. Lett. 30, 352–354 (2005).
    [CrossRef] [PubMed]
  12. H. Zhang, S. M. Eaton, J. Li, A. H. Nejadmalayeri, and P. R. Herman, “Type II high-strength Bragg grating waveguides photowritten with ultrashort laser pulses,” Opt. Express 15, 4182–4191 (2007).
    [CrossRef] [PubMed]
  13. A. Marcinkevicius, V. Mizeikis, S. Juodkasis, S. Matsuo, and H. Misawa, “Effects of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. B 76, 257–260 (2003).
  14. D. Liu, Y. Li, R. An, Y. Dou, H. Yang, and Q. Gong, “Influence of focusing depth on the microfabrication of waveguides inside silica glass by femtosecond laser direct writing,” Appl. Phys. A 84, 257–260 (2006).
  15. C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98, 013517 1–5 (2005).
    [CrossRef]
  16. Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Effect of spherical aberrations on the propagation of a tightly focused femtosecond laser pulse inside fused silica,” Pure Appl. Opt. 7, 655–659 (2005).
    [CrossRef]
  17. P. Török, P. Vagra, and G. Németh, “Analytical solution of the diffraction integrals and interpretation of wavefront distortion when light is focused through a planar interface between materials of mismatched refractive indices,” J. Opt. Soc. Am. A 12, 2660–2671 (1995).
    [CrossRef]
  18. J. S. H. Wiersma, T. D. Visser, and P. Török, “Annular focusing through a dielectric interface: scanning and confining the intensity,” Pure Appl. Opt. 7, 1237–1248 (1998).
    [CrossRef]
  19. M. J. Booth and T. Wilson, “Refractive-index-mismatch induced aberrations in single-photon and two-phton microscopy and the used of aberration correction,” J. Biomed. Opt. 6, 266–272 (2001).
    [CrossRef] [PubMed]
  20. M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched-media,” J. Microsc. 192, 90–98 (1998).
    [CrossRef]
  21. M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88, 031109–031111 (2006).
    [CrossRef]
  22. M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Active aberration correction for the writing of three-dimensional optical memory device,” Appl. Opt. 41, 1374–1379 (2002).
    [CrossRef] [PubMed]
  23. Z. Wu, H. Jiang, H. Yang, and Q. Gong, “The refocusing behaviour of a focused femtosecond laser pulse in fused silica,” Pure Appl. Opt. 5, 102–107 (2003).
    [CrossRef]
  24. A. Maréchal, Imagerie géométrique, aberrations, (Edition de la revue d’optique théorique et instrumentale, Paris1952).
  25. M. Born and E. Wolf, Principle of Optics, 4th ed. (Pergamon, Oxford1970).
  26. I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, R. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 1–7 (2007).
    [CrossRef]
  27. L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191, 333–339 (2001).
    [CrossRef]
  28. N. Sanner, N. Huot, E. Audouard, C. Larat, P. Laporte, and J. P. Huignard, “100 kHz diffraction-limited femtosecond laser machining,” Appl. Phys. B 80, 27–30 (2005).
  29. N. Sanner, N. Huot, E. Audouard, C. Larat, B. Loiseau, and J. P. Huignard, “Programmable spatial beam shaping of a 100 kHz amplified femtosecond laser,” Opt. Lett. 30, 1479–1481 (2005).
    [CrossRef] [PubMed]
  30. N. Sanner, N. Huot, E. Audouard, C. Larat, and J. P. Huignard, “Direct ultrafast microstructuring of materials using programmable beam shaping,” Opt. Laser Eng. 45, 737–741 (2007).
    [CrossRef]

2007 (3)

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, R. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 1–7 (2007).
[CrossRef]

N. Sanner, N. Huot, E. Audouard, C. Larat, and J. P. Huignard, “Direct ultrafast microstructuring of materials using programmable beam shaping,” Opt. Laser Eng. 45, 737–741 (2007).
[CrossRef]

H. Zhang, S. M. Eaton, J. Li, A. H. Nejadmalayeri, and P. R. Herman, “Type II high-strength Bragg grating waveguides photowritten with ultrashort laser pulses,” Opt. Express 15, 4182–4191 (2007).
[CrossRef] [PubMed]

2006 (4)

A. Mermillod-Blondin, I. M. Burakov, R. Stoian, A. Rosenfeld, E. Audouard, N. M. Bulgakova, and I. V. Hertel, “Direct observation of femtosecond laser induced modifications in the bulk of fused silica by phase contrast microscopy,” J. Laser Micro/Nanoeng. 1, 155–160 (2006).
[CrossRef]

D. Liu, Y. Li, R. An, Y. Dou, H. Yang, and Q. Gong, “Influence of focusing depth on the microfabrication of waveguides inside silica glass by femtosecond laser direct writing,” Appl. Phys. A 84, 257–260 (2006).

J. P. McDonald, V. R. Mistry, K. E. Ray, and S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett. 88, 183113–183115 (2006).
[CrossRef]

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88, 031109–031111 (2006).
[CrossRef]

2005 (6)

S. Valette, R. Le Harzic, N. Huot, E. Audouard, and R. Fortunier, “2-D calculations of the thermal effects due to femtosecond laser-metal interaction,” Appl. Surf. Sci. 247, 238–242 (2005).
[CrossRef]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98, 013517 1–5 (2005).
[CrossRef]

Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Effect of spherical aberrations on the propagation of a tightly focused femtosecond laser pulse inside fused silica,” Pure Appl. Opt. 7, 655–659 (2005).
[CrossRef]

N. Takeshima, Y. Narita, S. Tanaka, Y. Kuroiwa, and K. Hirao, “Fabrication of high-efficiency diffraction gratings in glass,” Opt. Lett. 30, 352–354 (2005).
[CrossRef] [PubMed]

N. Sanner, N. Huot, E. Audouard, C. Larat, B. Loiseau, and J. P. Huignard, “Programmable spatial beam shaping of a 100 kHz amplified femtosecond laser,” Opt. Lett. 30, 1479–1481 (2005).
[CrossRef] [PubMed]

N. Sanner, N. Huot, E. Audouard, C. Larat, P. Laporte, and J. P. Huignard, “100 kHz diffraction-limited femtosecond laser machining,” Appl. Phys. B 80, 27–30 (2005).

2004 (1)

M. H. Hong, B. Luk’Yanchuk, S. M. Huang, T. S. Ong, L. H. Van, and T. C. Chong, “Femtosecond laser application for high capacity optical data storage,” Appl. Phys. A 79, 791–794 (2004).

2003 (2)

A. Marcinkevicius, V. Mizeikis, S. Juodkasis, S. Matsuo, and H. Misawa, “Effects of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. B 76, 257–260 (2003).

Z. Wu, H. Jiang, H. Yang, and Q. Gong, “The refocusing behaviour of a focused femtosecond laser pulse in fused silica,” Pure Appl. Opt. 5, 102–107 (2003).
[CrossRef]

2002 (2)

M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Active aberration correction for the writing of three-dimensional optical memory device,” Appl. Opt. 41, 1374–1379 (2002).
[CrossRef] [PubMed]

S. Juodkasis, S. Matsuo, H. Misawa, V. Mizeikis, A. Marcinkevicius, H. B. Sun, Y. Tokuda, M. Takahashi, T. Yoko, and J. Nishii, “Application of femtosecond laser pulses for microfabrication of transparent media,” Appl. Surf. Sci. 197, 705–709 (2002).
[CrossRef]

2001 (4)

K. Minoshima, A.M. Kowalevicz, I. Hartl, E.P. Ippen, and J.G. Fujimoto, “Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator,” Opt Lett. 26, 1516–1518 (2001).
[CrossRef]

C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 23, 93–95 (2001).
[CrossRef]

M. J. Booth and T. Wilson, “Refractive-index-mismatch induced aberrations in single-photon and two-phton microscopy and the used of aberration correction,” J. Biomed. Opt. 6, 266–272 (2001).
[CrossRef] [PubMed]

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191, 333–339 (2001).
[CrossRef]

1999 (1)

1998 (2)

J. S. H. Wiersma, T. D. Visser, and P. Török, “Annular focusing through a dielectric interface: scanning and confining the intensity,” Pure Appl. Opt. 7, 1237–1248 (1998).
[CrossRef]

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched-media,” J. Microsc. 192, 90–98 (1998).
[CrossRef]

1997 (1)

K Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[CrossRef]

1996 (1)

B. N. Chichkov, C. Momma, S. Nolte, F. von Albenstein, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109 (1996).

1995 (1)

P. Török, P. Vagra, and G. Németh, “Analytical solution of the diffraction integrals and interpretation of wavefront distortion when light is focused through a planar interface between materials of mismatched refractive indices,” J. Opt. Soc. Am. A 12, 2660–2671 (1995).
[CrossRef]

Albenstein, F. von

B. N. Chichkov, C. Momma, S. Nolte, F. von Albenstein, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109 (1996).

An, R.

D. Liu, Y. Li, R. An, Y. Dou, H. Yang, and Q. Gong, “Influence of focusing depth on the microfabrication of waveguides inside silica glass by femtosecond laser direct writing,” Appl. Phys. A 84, 257–260 (2006).

Audouard, E.

N. Sanner, N. Huot, E. Audouard, C. Larat, and J. P. Huignard, “Direct ultrafast microstructuring of materials using programmable beam shaping,” Opt. Laser Eng. 45, 737–741 (2007).
[CrossRef]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, R. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 1–7 (2007).
[CrossRef]

A. Mermillod-Blondin, I. M. Burakov, R. Stoian, A. Rosenfeld, E. Audouard, N. M. Bulgakova, and I. V. Hertel, “Direct observation of femtosecond laser induced modifications in the bulk of fused silica by phase contrast microscopy,” J. Laser Micro/Nanoeng. 1, 155–160 (2006).
[CrossRef]

S. Valette, R. Le Harzic, N. Huot, E. Audouard, and R. Fortunier, “2-D calculations of the thermal effects due to femtosecond laser-metal interaction,” Appl. Surf. Sci. 247, 238–242 (2005).
[CrossRef]

N. Sanner, N. Huot, E. Audouard, C. Larat, B. Loiseau, and J. P. Huignard, “Programmable spatial beam shaping of a 100 kHz amplified femtosecond laser,” Opt. Lett. 30, 1479–1481 (2005).
[CrossRef] [PubMed]

N. Sanner, N. Huot, E. Audouard, C. Larat, P. Laporte, and J. P. Huignard, “100 kHz diffraction-limited femtosecond laser machining,” Appl. Phys. B 80, 27–30 (2005).

Bhardwaj, V. R.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98, 013517 1–5 (2005).
[CrossRef]

Booth, M. J.

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88, 031109–031111 (2006).
[CrossRef]

M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Active aberration correction for the writing of three-dimensional optical memory device,” Appl. Opt. 41, 1374–1379 (2002).
[CrossRef] [PubMed]

M. J. Booth and T. Wilson, “Refractive-index-mismatch induced aberrations in single-photon and two-phton microscopy and the used of aberration correction,” J. Biomed. Opt. 6, 266–272 (2001).
[CrossRef] [PubMed]

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched-media,” J. Microsc. 192, 90–98 (1998).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principle of Optics, 4th ed. (Pergamon, Oxford1970).

Borrelli, N. F.

Brodeur, A.

C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 23, 93–95 (2001).
[CrossRef]

Bulgakova, N. M.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, R. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 1–7 (2007).
[CrossRef]

A. Mermillod-Blondin, I. M. Burakov, R. Stoian, A. Rosenfeld, E. Audouard, N. M. Bulgakova, and I. V. Hertel, “Direct observation of femtosecond laser induced modifications in the bulk of fused silica by phase contrast microscopy,” J. Laser Micro/Nanoeng. 1, 155–160 (2006).
[CrossRef]

Burakov, I. M.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, R. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 1–7 (2007).
[CrossRef]

A. Mermillod-Blondin, I. M. Burakov, R. Stoian, A. Rosenfeld, E. Audouard, N. M. Bulgakova, and I. V. Hertel, “Direct observation of femtosecond laser induced modifications in the bulk of fused silica by phase contrast microscopy,” J. Laser Micro/Nanoeng. 1, 155–160 (2006).
[CrossRef]

Chichkov, B. N.

B. N. Chichkov, C. Momma, S. Nolte, F. von Albenstein, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109 (1996).

Chong, T. C.

M. H. Hong, B. Luk’Yanchuk, S. M. Huang, T. S. Ong, L. H. Van, and T. C. Chong, “Femtosecond laser application for high capacity optical data storage,” Appl. Phys. A 79, 791–794 (2004).

Corkum, P. B.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98, 013517 1–5 (2005).
[CrossRef]

Dou, Y.

D. Liu, Y. Li, R. An, Y. Dou, H. Yang, and Q. Gong, “Influence of focusing depth on the microfabrication of waveguides inside silica glass by femtosecond laser direct writing,” Appl. Phys. A 84, 257–260 (2006).

Eaton, S. M.

Fortunier, R.

S. Valette, R. Le Harzic, N. Huot, E. Audouard, and R. Fortunier, “2-D calculations of the thermal effects due to femtosecond laser-metal interaction,” Appl. Surf. Sci. 247, 238–242 (2005).
[CrossRef]

Franco, M.

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191, 333–339 (2001).
[CrossRef]

Fujimoto, J.G.

K. Minoshima, A.M. Kowalevicz, I. Hartl, E.P. Ippen, and J.G. Fujimoto, “Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator,” Opt Lett. 26, 1516–1518 (2001).
[CrossRef]

Gaeta, A. L.

Garcia, J. F.

C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 23, 93–95 (2001).
[CrossRef]

Gong, Q.

D. Liu, Y. Li, R. An, Y. Dou, H. Yang, and Q. Gong, “Influence of focusing depth on the microfabrication of waveguides inside silica glass by femtosecond laser direct writing,” Appl. Phys. A 84, 257–260 (2006).

Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Effect of spherical aberrations on the propagation of a tightly focused femtosecond laser pulse inside fused silica,” Pure Appl. Opt. 7, 655–659 (2005).
[CrossRef]

Z. Wu, H. Jiang, H. Yang, and Q. Gong, “The refocusing behaviour of a focused femtosecond laser pulse in fused silica,” Pure Appl. Opt. 5, 102–107 (2003).
[CrossRef]

Hartl, I.

K. Minoshima, A.M. Kowalevicz, I. Hartl, E.P. Ippen, and J.G. Fujimoto, “Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator,” Opt Lett. 26, 1516–1518 (2001).
[CrossRef]

Harzic, R. Le

S. Valette, R. Le Harzic, N. Huot, E. Audouard, and R. Fortunier, “2-D calculations of the thermal effects due to femtosecond laser-metal interaction,” Appl. Surf. Sci. 247, 238–242 (2005).
[CrossRef]

Herman, P. R.

Hertel, I. V.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, R. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 1–7 (2007).
[CrossRef]

A. Mermillod-Blondin, I. M. Burakov, R. Stoian, A. Rosenfeld, E. Audouard, N. M. Bulgakova, and I. V. Hertel, “Direct observation of femtosecond laser induced modifications in the bulk of fused silica by phase contrast microscopy,” J. Laser Micro/Nanoeng. 1, 155–160 (2006).
[CrossRef]

Hirao, K.

N. Takeshima, Y. Narita, S. Tanaka, Y. Kuroiwa, and K. Hirao, “Fabrication of high-efficiency diffraction gratings in glass,” Opt. Lett. 30, 352–354 (2005).
[CrossRef] [PubMed]

K Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[CrossRef]

Hnatovsky, C.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98, 013517 1–5 (2005).
[CrossRef]

Homoelle, D.

Hong, M. H.

M. H. Hong, B. Luk’Yanchuk, S. M. Huang, T. S. Ong, L. H. Van, and T. C. Chong, “Femtosecond laser application for high capacity optical data storage,” Appl. Phys. A 79, 791–794 (2004).

Huang, S. M.

M. H. Hong, B. Luk’Yanchuk, S. M. Huang, T. S. Ong, L. H. Van, and T. C. Chong, “Femtosecond laser application for high capacity optical data storage,” Appl. Phys. A 79, 791–794 (2004).

Huignard, J. P.

N. Sanner, N. Huot, E. Audouard, C. Larat, and J. P. Huignard, “Direct ultrafast microstructuring of materials using programmable beam shaping,” Opt. Laser Eng. 45, 737–741 (2007).
[CrossRef]

N. Sanner, N. Huot, E. Audouard, C. Larat, P. Laporte, and J. P. Huignard, “100 kHz diffraction-limited femtosecond laser machining,” Appl. Phys. B 80, 27–30 (2005).

N. Sanner, N. Huot, E. Audouard, C. Larat, B. Loiseau, and J. P. Huignard, “Programmable spatial beam shaping of a 100 kHz amplified femtosecond laser,” Opt. Lett. 30, 1479–1481 (2005).
[CrossRef] [PubMed]

Huot, N.

N. Sanner, N. Huot, E. Audouard, C. Larat, and J. P. Huignard, “Direct ultrafast microstructuring of materials using programmable beam shaping,” Opt. Laser Eng. 45, 737–741 (2007).
[CrossRef]

N. Sanner, N. Huot, E. Audouard, C. Larat, P. Laporte, and J. P. Huignard, “100 kHz diffraction-limited femtosecond laser machining,” Appl. Phys. B 80, 27–30 (2005).

N. Sanner, N. Huot, E. Audouard, C. Larat, B. Loiseau, and J. P. Huignard, “Programmable spatial beam shaping of a 100 kHz amplified femtosecond laser,” Opt. Lett. 30, 1479–1481 (2005).
[CrossRef] [PubMed]

S. Valette, R. Le Harzic, N. Huot, E. Audouard, and R. Fortunier, “2-D calculations of the thermal effects due to femtosecond laser-metal interaction,” Appl. Surf. Sci. 247, 238–242 (2005).
[CrossRef]

Husakou, A.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, R. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 1–7 (2007).
[CrossRef]

Inouye, H.

K Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[CrossRef]

Ippen, E.P.

K. Minoshima, A.M. Kowalevicz, I. Hartl, E.P. Ippen, and J.G. Fujimoto, “Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator,” Opt Lett. 26, 1516–1518 (2001).
[CrossRef]

Jiang, H.

Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Effect of spherical aberrations on the propagation of a tightly focused femtosecond laser pulse inside fused silica,” Pure Appl. Opt. 7, 655–659 (2005).
[CrossRef]

Z. Wu, H. Jiang, H. Yang, and Q. Gong, “The refocusing behaviour of a focused femtosecond laser pulse in fused silica,” Pure Appl. Opt. 5, 102–107 (2003).
[CrossRef]

Juodkasis, S.

A. Marcinkevicius, V. Mizeikis, S. Juodkasis, S. Matsuo, and H. Misawa, “Effects of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. B 76, 257–260 (2003).

S. Juodkasis, S. Matsuo, H. Misawa, V. Mizeikis, A. Marcinkevicius, H. B. Sun, Y. Tokuda, M. Takahashi, T. Yoko, and J. Nishii, “Application of femtosecond laser pulses for microfabrication of transparent media,” Appl. Surf. Sci. 197, 705–709 (2002).
[CrossRef]

Juskaitis, R.

Kawata, S.

Kawata, Y.

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88, 031109–031111 (2006).
[CrossRef]

Kowalevicz, A.M.

K. Minoshima, A.M. Kowalevicz, I. Hartl, E.P. Ippen, and J.G. Fujimoto, “Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator,” Opt Lett. 26, 1516–1518 (2001).
[CrossRef]

Kuroiwa, Y.

Laporte, P.

N. Sanner, N. Huot, E. Audouard, C. Larat, P. Laporte, and J. P. Huignard, “100 kHz diffraction-limited femtosecond laser machining,” Appl. Phys. B 80, 27–30 (2005).

Larat, C.

N. Sanner, N. Huot, E. Audouard, C. Larat, and J. P. Huignard, “Direct ultrafast microstructuring of materials using programmable beam shaping,” Opt. Laser Eng. 45, 737–741 (2007).
[CrossRef]

N. Sanner, N. Huot, E. Audouard, C. Larat, P. Laporte, and J. P. Huignard, “100 kHz diffraction-limited femtosecond laser machining,” Appl. Phys. B 80, 27–30 (2005).

N. Sanner, N. Huot, E. Audouard, C. Larat, B. Loiseau, and J. P. Huignard, “Programmable spatial beam shaping of a 100 kHz amplified femtosecond laser,” Opt. Lett. 30, 1479–1481 (2005).
[CrossRef] [PubMed]

Li, J.

Li, Y.

D. Liu, Y. Li, R. An, Y. Dou, H. Yang, and Q. Gong, “Influence of focusing depth on the microfabrication of waveguides inside silica glass by femtosecond laser direct writing,” Appl. Phys. A 84, 257–260 (2006).

Liu, D.

D. Liu, Y. Li, R. An, Y. Dou, H. Yang, and Q. Gong, “Influence of focusing depth on the microfabrication of waveguides inside silica glass by femtosecond laser direct writing,” Appl. Phys. A 84, 257–260 (2006).

Liu, Y.

Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Effect of spherical aberrations on the propagation of a tightly focused femtosecond laser pulse inside fused silica,” Pure Appl. Opt. 7, 655–659 (2005).
[CrossRef]

Loiseau, B.

Luk’Yanchuk, B.

M. H. Hong, B. Luk’Yanchuk, S. M. Huang, T. S. Ong, L. H. Van, and T. C. Chong, “Femtosecond laser application for high capacity optical data storage,” Appl. Phys. A 79, 791–794 (2004).

Marcinkevicius, A.

A. Marcinkevicius, V. Mizeikis, S. Juodkasis, S. Matsuo, and H. Misawa, “Effects of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. B 76, 257–260 (2003).

S. Juodkasis, S. Matsuo, H. Misawa, V. Mizeikis, A. Marcinkevicius, H. B. Sun, Y. Tokuda, M. Takahashi, T. Yoko, and J. Nishii, “Application of femtosecond laser pulses for microfabrication of transparent media,” Appl. Surf. Sci. 197, 705–709 (2002).
[CrossRef]

Maréchal, A.

A. Maréchal, Imagerie géométrique, aberrations, (Edition de la revue d’optique théorique et instrumentale, Paris1952).

Matsuo, S.

A. Marcinkevicius, V. Mizeikis, S. Juodkasis, S. Matsuo, and H. Misawa, “Effects of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. B 76, 257–260 (2003).

S. Juodkasis, S. Matsuo, H. Misawa, V. Mizeikis, A. Marcinkevicius, H. B. Sun, Y. Tokuda, M. Takahashi, T. Yoko, and J. Nishii, “Application of femtosecond laser pulses for microfabrication of transparent media,” Appl. Surf. Sci. 197, 705–709 (2002).
[CrossRef]

Mazur, E.

C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 23, 93–95 (2001).
[CrossRef]

McDonald, J. P.

J. P. McDonald, V. R. Mistry, K. E. Ray, and S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett. 88, 183113–183115 (2006).
[CrossRef]

Mermillod-Blondin, A.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, R. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 1–7 (2007).
[CrossRef]

A. Mermillod-Blondin, I. M. Burakov, R. Stoian, A. Rosenfeld, E. Audouard, N. M. Bulgakova, and I. V. Hertel, “Direct observation of femtosecond laser induced modifications in the bulk of fused silica by phase contrast microscopy,” J. Laser Micro/Nanoeng. 1, 155–160 (2006).
[CrossRef]

Minoshima, K.

K. Minoshima, A.M. Kowalevicz, I. Hartl, E.P. Ippen, and J.G. Fujimoto, “Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator,” Opt Lett. 26, 1516–1518 (2001).
[CrossRef]

Misawa, H.

A. Marcinkevicius, V. Mizeikis, S. Juodkasis, S. Matsuo, and H. Misawa, “Effects of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. B 76, 257–260 (2003).

S. Juodkasis, S. Matsuo, H. Misawa, V. Mizeikis, A. Marcinkevicius, H. B. Sun, Y. Tokuda, M. Takahashi, T. Yoko, and J. Nishii, “Application of femtosecond laser pulses for microfabrication of transparent media,” Appl. Surf. Sci. 197, 705–709 (2002).
[CrossRef]

Mistry, V. R.

J. P. McDonald, V. R. Mistry, K. E. Ray, and S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett. 88, 183113–183115 (2006).
[CrossRef]

Mitsuyu, T.

K Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[CrossRef]

Miura, K

K Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[CrossRef]

Miyata, S.

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88, 031109–031111 (2006).
[CrossRef]

Mizeikis, V.

A. Marcinkevicius, V. Mizeikis, S. Juodkasis, S. Matsuo, and H. Misawa, “Effects of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. B 76, 257–260 (2003).

S. Juodkasis, S. Matsuo, H. Misawa, V. Mizeikis, A. Marcinkevicius, H. B. Sun, Y. Tokuda, M. Takahashi, T. Yoko, and J. Nishii, “Application of femtosecond laser pulses for microfabrication of transparent media,” Appl. Surf. Sci. 197, 705–709 (2002).
[CrossRef]

Momma, C.

B. N. Chichkov, C. Momma, S. Nolte, F. von Albenstein, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109 (1996).

Mysyrowicz, A.

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191, 333–339 (2001).
[CrossRef]

Nakabayashi, M.

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88, 031109–031111 (2006).
[CrossRef]

Nakano, M.

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88, 031109–031111 (2006).
[CrossRef]

Narita, Y.

Neil, M. A. A.

M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Active aberration correction for the writing of three-dimensional optical memory device,” Appl. Opt. 41, 1374–1379 (2002).
[CrossRef] [PubMed]

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched-media,” J. Microsc. 192, 90–98 (1998).
[CrossRef]

Nejadmalayeri, A. H.

Németh, G.

P. Török, P. Vagra, and G. Németh, “Analytical solution of the diffraction integrals and interpretation of wavefront distortion when light is focused through a planar interface between materials of mismatched refractive indices,” J. Opt. Soc. Am. A 12, 2660–2671 (1995).
[CrossRef]

Nishii, J.

S. Juodkasis, S. Matsuo, H. Misawa, V. Mizeikis, A. Marcinkevicius, H. B. Sun, Y. Tokuda, M. Takahashi, T. Yoko, and J. Nishii, “Application of femtosecond laser pulses for microfabrication of transparent media,” Appl. Surf. Sci. 197, 705–709 (2002).
[CrossRef]

Nolte, S.

B. N. Chichkov, C. Momma, S. Nolte, F. von Albenstein, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109 (1996).

Ong, T. S.

M. H. Hong, B. Luk’Yanchuk, S. M. Huang, T. S. Ong, L. H. Van, and T. C. Chong, “Femtosecond laser application for high capacity optical data storage,” Appl. Phys. A 79, 791–794 (2004).

Prade, B.

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191, 333–339 (2001).
[CrossRef]

Qiu, J.

K Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[CrossRef]

Ray, K. E.

J. P. McDonald, V. R. Mistry, K. E. Ray, and S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett. 88, 183113–183115 (2006).
[CrossRef]

Rayner, D. M.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98, 013517 1–5 (2005).
[CrossRef]

Rosenfeld, A.

A. Mermillod-Blondin, I. M. Burakov, R. Stoian, A. Rosenfeld, E. Audouard, N. M. Bulgakova, and I. V. Hertel, “Direct observation of femtosecond laser induced modifications in the bulk of fused silica by phase contrast microscopy,” J. Laser Micro/Nanoeng. 1, 155–160 (2006).
[CrossRef]

Rosenfeld, R.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, R. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 1–7 (2007).
[CrossRef]

Sanner, N.

N. Sanner, N. Huot, E. Audouard, C. Larat, and J. P. Huignard, “Direct ultrafast microstructuring of materials using programmable beam shaping,” Opt. Laser Eng. 45, 737–741 (2007).
[CrossRef]

N. Sanner, N. Huot, E. Audouard, C. Larat, P. Laporte, and J. P. Huignard, “100 kHz diffraction-limited femtosecond laser machining,” Appl. Phys. B 80, 27–30 (2005).

N. Sanner, N. Huot, E. Audouard, C. Larat, B. Loiseau, and J. P. Huignard, “Programmable spatial beam shaping of a 100 kHz amplified femtosecond laser,” Opt. Lett. 30, 1479–1481 (2005).
[CrossRef] [PubMed]

Schaffer, C. B.

C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 23, 93–95 (2001).
[CrossRef]

Schwertner, M.

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88, 031109–031111 (2006).
[CrossRef]

Simova, E.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98, 013517 1–5 (2005).
[CrossRef]

Smith, C.

Stoian, R.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, R. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 1–7 (2007).
[CrossRef]

A. Mermillod-Blondin, I. M. Burakov, R. Stoian, A. Rosenfeld, E. Audouard, N. M. Bulgakova, and I. V. Hertel, “Direct observation of femtosecond laser induced modifications in the bulk of fused silica by phase contrast microscopy,” J. Laser Micro/Nanoeng. 1, 155–160 (2006).
[CrossRef]

Sudrie, L.

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191, 333–339 (2001).
[CrossRef]

Sun, H. B.

S. Juodkasis, S. Matsuo, H. Misawa, V. Mizeikis, A. Marcinkevicius, H. B. Sun, Y. Tokuda, M. Takahashi, T. Yoko, and J. Nishii, “Application of femtosecond laser pulses for microfabrication of transparent media,” Appl. Surf. Sci. 197, 705–709 (2002).
[CrossRef]

Sun, Q.

Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Effect of spherical aberrations on the propagation of a tightly focused femtosecond laser pulse inside fused silica,” Pure Appl. Opt. 7, 655–659 (2005).
[CrossRef]

Takahashi, M.

S. Juodkasis, S. Matsuo, H. Misawa, V. Mizeikis, A. Marcinkevicius, H. B. Sun, Y. Tokuda, M. Takahashi, T. Yoko, and J. Nishii, “Application of femtosecond laser pulses for microfabrication of transparent media,” Appl. Surf. Sci. 197, 705–709 (2002).
[CrossRef]

Takeshima, N.

Tanaka, S.

Tanaka, T.

Taylor, R. S.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98, 013517 1–5 (2005).
[CrossRef]

Tokuda, Y.

S. Juodkasis, S. Matsuo, H. Misawa, V. Mizeikis, A. Marcinkevicius, H. B. Sun, Y. Tokuda, M. Takahashi, T. Yoko, and J. Nishii, “Application of femtosecond laser pulses for microfabrication of transparent media,” Appl. Surf. Sci. 197, 705–709 (2002).
[CrossRef]

Török, P.

J. S. H. Wiersma, T. D. Visser, and P. Török, “Annular focusing through a dielectric interface: scanning and confining the intensity,” Pure Appl. Opt. 7, 1237–1248 (1998).
[CrossRef]

P. Török, P. Vagra, and G. Németh, “Analytical solution of the diffraction integrals and interpretation of wavefront distortion when light is focused through a planar interface between materials of mismatched refractive indices,” J. Opt. Soc. Am. A 12, 2660–2671 (1995).
[CrossRef]

Tünnermann, A.

B. N. Chichkov, C. Momma, S. Nolte, F. von Albenstein, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109 (1996).

Vagra, P.

P. Török, P. Vagra, and G. Németh, “Analytical solution of the diffraction integrals and interpretation of wavefront distortion when light is focused through a planar interface between materials of mismatched refractive indices,” J. Opt. Soc. Am. A 12, 2660–2671 (1995).
[CrossRef]

Valette, S.

S. Valette, R. Le Harzic, N. Huot, E. Audouard, and R. Fortunier, “2-D calculations of the thermal effects due to femtosecond laser-metal interaction,” Appl. Surf. Sci. 247, 238–242 (2005).
[CrossRef]

Van, L. H.

M. H. Hong, B. Luk’Yanchuk, S. M. Huang, T. S. Ong, L. H. Van, and T. C. Chong, “Femtosecond laser application for high capacity optical data storage,” Appl. Phys. A 79, 791–794 (2004).

Visser, T. D.

J. S. H. Wiersma, T. D. Visser, and P. Török, “Annular focusing through a dielectric interface: scanning and confining the intensity,” Pure Appl. Opt. 7, 1237–1248 (1998).
[CrossRef]

Wielandy, S.

Wiersma, J. S. H.

J. S. H. Wiersma, T. D. Visser, and P. Török, “Annular focusing through a dielectric interface: scanning and confining the intensity,” Pure Appl. Opt. 7, 1237–1248 (1998).
[CrossRef]

Wilson, T.

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88, 031109–031111 (2006).
[CrossRef]

M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Active aberration correction for the writing of three-dimensional optical memory device,” Appl. Opt. 41, 1374–1379 (2002).
[CrossRef] [PubMed]

M. J. Booth and T. Wilson, “Refractive-index-mismatch induced aberrations in single-photon and two-phton microscopy and the used of aberration correction,” J. Biomed. Opt. 6, 266–272 (2001).
[CrossRef] [PubMed]

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched-media,” J. Microsc. 192, 90–98 (1998).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principle of Optics, 4th ed. (Pergamon, Oxford1970).

Wu, Z.

Z. Wu, H. Jiang, H. Yang, and Q. Gong, “The refocusing behaviour of a focused femtosecond laser pulse in fused silica,” Pure Appl. Opt. 5, 102–107 (2003).
[CrossRef]

Yalisove, S. M.

J. P. McDonald, V. R. Mistry, K. E. Ray, and S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett. 88, 183113–183115 (2006).
[CrossRef]

Yang, H.

D. Liu, Y. Li, R. An, Y. Dou, H. Yang, and Q. Gong, “Influence of focusing depth on the microfabrication of waveguides inside silica glass by femtosecond laser direct writing,” Appl. Phys. A 84, 257–260 (2006).

Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Effect of spherical aberrations on the propagation of a tightly focused femtosecond laser pulse inside fused silica,” Pure Appl. Opt. 7, 655–659 (2005).
[CrossRef]

Z. Wu, H. Jiang, H. Yang, and Q. Gong, “The refocusing behaviour of a focused femtosecond laser pulse in fused silica,” Pure Appl. Opt. 5, 102–107 (2003).
[CrossRef]

Yoko, T.

S. Juodkasis, S. Matsuo, H. Misawa, V. Mizeikis, A. Marcinkevicius, H. B. Sun, Y. Tokuda, M. Takahashi, T. Yoko, and J. Nishii, “Application of femtosecond laser pulses for microfabrication of transparent media,” Appl. Surf. Sci. 197, 705–709 (2002).
[CrossRef]

Zhang, H.

Zhou, Y.

Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Effect of spherical aberrations on the propagation of a tightly focused femtosecond laser pulse inside fused silica,” Pure Appl. Opt. 7, 655–659 (2005).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. (5)

N. Sanner, N. Huot, E. Audouard, C. Larat, P. Laporte, and J. P. Huignard, “100 kHz diffraction-limited femtosecond laser machining,” Appl. Phys. B 80, 27–30 (2005).

A. Marcinkevicius, V. Mizeikis, S. Juodkasis, S. Matsuo, and H. Misawa, “Effects of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. B 76, 257–260 (2003).

D. Liu, Y. Li, R. An, Y. Dou, H. Yang, and Q. Gong, “Influence of focusing depth on the microfabrication of waveguides inside silica glass by femtosecond laser direct writing,” Appl. Phys. A 84, 257–260 (2006).

M. H. Hong, B. Luk’Yanchuk, S. M. Huang, T. S. Ong, L. H. Van, and T. C. Chong, “Femtosecond laser application for high capacity optical data storage,” Appl. Phys. A 79, 791–794 (2004).

B. N. Chichkov, C. Momma, S. Nolte, F. von Albenstein, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109 (1996).

Appl. Phys. Lett. (3)

J. P. McDonald, V. R. Mistry, K. E. Ray, and S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett. 88, 183113–183115 (2006).
[CrossRef]

K Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[CrossRef]

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88, 031109–031111 (2006).
[CrossRef]

Appl. Surf. Sci. (2)

S. Valette, R. Le Harzic, N. Huot, E. Audouard, and R. Fortunier, “2-D calculations of the thermal effects due to femtosecond laser-metal interaction,” Appl. Surf. Sci. 247, 238–242 (2005).
[CrossRef]

S. Juodkasis, S. Matsuo, H. Misawa, V. Mizeikis, A. Marcinkevicius, H. B. Sun, Y. Tokuda, M. Takahashi, T. Yoko, and J. Nishii, “Application of femtosecond laser pulses for microfabrication of transparent media,” Appl. Surf. Sci. 197, 705–709 (2002).
[CrossRef]

J. Appl. Phys. (2)

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98, 013517 1–5 (2005).
[CrossRef]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, R. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 1–7 (2007).
[CrossRef]

J. Biomed. Opt. (1)

M. J. Booth and T. Wilson, “Refractive-index-mismatch induced aberrations in single-photon and two-phton microscopy and the used of aberration correction,” J. Biomed. Opt. 6, 266–272 (2001).
[CrossRef] [PubMed]

J. Laser Micro/Nanoeng. (1)

A. Mermillod-Blondin, I. M. Burakov, R. Stoian, A. Rosenfeld, E. Audouard, N. M. Bulgakova, and I. V. Hertel, “Direct observation of femtosecond laser induced modifications in the bulk of fused silica by phase contrast microscopy,” J. Laser Micro/Nanoeng. 1, 155–160 (2006).
[CrossRef]

J. Microsc. (1)

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched-media,” J. Microsc. 192, 90–98 (1998).
[CrossRef]

J. Opt. Soc. Am. (1)

P. Török, P. Vagra, and G. Németh, “Analytical solution of the diffraction integrals and interpretation of wavefront distortion when light is focused through a planar interface between materials of mismatched refractive indices,” J. Opt. Soc. Am. A 12, 2660–2671 (1995).
[CrossRef]

Opt Lett. (1)

K. Minoshima, A.M. Kowalevicz, I. Hartl, E.P. Ippen, and J.G. Fujimoto, “Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator,” Opt Lett. 26, 1516–1518 (2001).
[CrossRef]

Opt. Commun. (1)

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191, 333–339 (2001).
[CrossRef]

Opt. Express (1)

Opt. Laser Eng. (1)

N. Sanner, N. Huot, E. Audouard, C. Larat, and J. P. Huignard, “Direct ultrafast microstructuring of materials using programmable beam shaping,” Opt. Laser Eng. 45, 737–741 (2007).
[CrossRef]

Opt. Lett. (4)

Pure Appl. Opt. (3)

Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Effect of spherical aberrations on the propagation of a tightly focused femtosecond laser pulse inside fused silica,” Pure Appl. Opt. 7, 655–659 (2005).
[CrossRef]

J. S. H. Wiersma, T. D. Visser, and P. Török, “Annular focusing through a dielectric interface: scanning and confining the intensity,” Pure Appl. Opt. 7, 1237–1248 (1998).
[CrossRef]

Z. Wu, H. Jiang, H. Yang, and Q. Gong, “The refocusing behaviour of a focused femtosecond laser pulse in fused silica,” Pure Appl. Opt. 5, 102–107 (2003).
[CrossRef]

Other (2)

A. Maréchal, Imagerie géométrique, aberrations, (Edition de la revue d’optique théorique et instrumentale, Paris1952).

M. Born and E. Wolf, Principle of Optics, 4th ed. (Pergamon, Oxford1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Focusing geometry in an overcorrected case (n2>n1). A: focal point in a matched medium whose position defines the focusing depth x = S A ¯ ; A ' P : : paraxial focus; AM: marginal focus; l: longitudinal spherical aberration defined by l = A ' P A ' M ¯ . The best focus A is located somewhere between A P and A M .

Fig. 2.
Fig. 2.

Longitudinal spherical aberration (LSA) as a function of NA for a fixed depth x=3 mm in fused silica: red: deduced from the vectorial approach [16,17], solid line: using Eq. (1), dashed: using Seidel approximation, dots: using Eq. (7,8) [18], blue: confocal parameter.

Fig. 3.
Fig. 3.

Distance from paraxial to best focus given by Eq. (10) (solid line) and half Seidel LSA (dashed line) for fused silica as a function of depth for different NA. For low NA, the two curves are identical.

Fig. 4.
Fig. 4.

Observation of index variation in SiO2 (a) and BK7 (b) as a function of depth. Single shot (Num=1) and multishot (Num=1000) regimes are depicted at different input energies for different physical depths with respect to the sample surface, 200 µm (left) and 500 µm (right). The laser pulse is coming from the left and observations are made perpendicular to the propagation axis. The position of the best focus is given by the dot line and is located within the central region of the structure.

Fig. 5.
Fig. 5.

Relative length of the refractive index variation trace (taken as the dimension of the continuous trace) as a function of depth for different pulse numbers (Num) for fused silica together with theoretical predictions (solid black line). Dashed red: confocal parameter of the incident beam. Triangles: Num=1, circles: Num=10, squares: Num=1000. The input energy is 2.7 µJ. Data are normalized to the length measured for x=2 mm (see text for detail).

Fig. 6.
Fig. 6.

Distance from paraxial to best focus as a function of depth for different pulse numbers (Num) for fused silica with theoretical predictions (black line) given by Eq. (10). The experimental paraxial focus is supposed to coincide with the beginning of the modified area. Close to the surface, its distance to the best focus is then mainly given by half of the confocal parameter. Dashed red: half confocal parameter of the incident beam. Triangles: Num=1, circles: Num=10, squares: Num=1000. The input energy is 2.7 µJ.

Fig. 7.
Fig. 7.

Minimum spot diameter achievable as a function of depth for fused silica (solid line) and BK7 (dotted line). N is the order of the last corrected Zernike polynomial. The red line is a guideline for the typical working distance of corresponding objectives. NA values above 0.7 are not considered, corresponding to a mimimum spot diameter of 0.7 µm.

Fig. 8.
Fig. 8.

Maximum tolerable NA that gives a constant peak index variation from the surface up to a given depth in fused silica (full line) and BK7 (dotted line). N is the order of the last corrected Zernike polynomial. The red line is a guideline for the typical working distance of corresponding objectives.

Tables (1)

Tables Icon

Table 1. First Zernike polynomials R0n (ρ).

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

l = x n 2 n 1 { cos α ' [ 1 ( n 2 n 1 ) 2 sin 2 α ' ] 1 2 1 }
Δ 2 = 0 α ' l ( u ) sin u d u
Δ aberr n 1 Δ 1 = n 1 x [ cos α ( n 2 n 1 ) 2 cos α ' ]
a = 1 2 x . n 2 n 1 . n 2 2 n 1 2 n 1 2 > 0
Δ aberr = x NA [ csc 2 α ρ 2 n 2 n 1 csc 2 α ' ρ 2 ] = x NA [ A 00 + 1 2 n = 2 A n 0 R n 0 ( ρ ) ]
A n 0 = 2 ( n + 1 ) [ B n ( α ) n 2 n 1 B n ( α ' ) ]
u 1 u 2 I ( u ) d u = ε I ( u ) d u
u = ( 8 π n 1 z λ ) sin 2 ( α 2 )
l confocal = 4 n 2 λ N A 2
d z = 2 2 n 1 n 2 N A x . A 2 , 0
R S = 1 4 π 2 λ 2 σ 2 Δ = 1 1 2 ( 2 π λ x N A ) 2 j > 1 A 2 j , 0 2 2 j + 1
Δ remain = x N A 1 2 n = N + 2 A n 0 R n 0 ( ρ ) , n even

Metrics