Abstract

We analyze the resonant transmission of light through a photonic-crystal waveguide side coupled to a Kerr nonlinear cavity, and demonstrate how to design the structure geometry for achieving bistability and all-optical switching at ultralow powers in the slow-light regime. We show that the resonance quality factor in such structures scales inversely proportional to the group velocity of light at the resonant frequency and thus grows indefinitely in the slow-light regime. Accordingly, the power threshold required for all-optical switching in such structures scales as a square of the group velocity, rapidly vanishing in the slow-light regime.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.P. Dowling, M. Scalora, M.J. Bloemer, and C.M. Bowden, “The photonic band edge laser: A new aproach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
    [Crossref]
  2. M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F.I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
    [Crossref]
  3. T. Suzuki and P.K.L. Yu, “Emission power of an electric dipole in the photonic band structure of the fcc lattice,” J. Opt. Soc. Am. B 12, 570–582 (1995).
  4. M. Scalora, J.P. Dowling, C.W. Bowden, and M.J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
    [Crossref] [PubMed]
  5. J. Martorell, R. Vilaseca, and R. Corbalan, “Second-harmonic generation in a photonic crystal,” Appl. Phys. Lett. 70, 702–704 (1997).
    [Crossref]
  6. M. Soljacic, S.G. Johnson, S.H. Fan, M. Ibanescu, E. Ippen, and J.D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19, 2052–2059 (2002).
  7. Y. Chen and S. Blair, “Nonlinearity enhancement in finite coupled-resonator slow-light waveguides,” Opt. Express 12, 3353–3366 (2004).
    [Crossref] [PubMed]
  8. J.B. Khurgin, “Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis,” J. Opt. Soc. Am. B 22, 1062–1074 (2005).
  9. F. Xia, L. Sekaric, and Yu Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photon. 1, 65–72 (2007).
    [Crossref]
  10. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
    [Crossref] [PubMed]
  11. R.S. Jacobsen, A.V. Lavrinenko, L.H. Frandsen, C. Peucheret, B. Zsigri, G. Moulin, J.F. Pedersen, and P. I. Borel, “Direct experimental and numerical determination of extremely high group indices in photonic crystal waveguides,” Opt. Express 13, 7861–7871 (2005).
    [Crossref] [PubMed]
  12. Y.A. Vlasov, M. O’Boyle, H.F. Hamann, and S.J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
    [Crossref] [PubMed]
  13. H. Gersen, T.J. Karle, R.J.P. Engelen, W. Bogaerts, J.P. Korterik, N.F. van Hulst, T.F. Krauss, and L. Kuipers, “Near-field characterization of low-loss photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
    [Crossref] [PubMed]
  14. S. Assefa, S.J. McNab, and Y.A. Vlasov, “Transmission of slow light through photonic crystal waveguide bends,” Opt. Lett. 31, 745–747 (2006).
    [Crossref] [PubMed]
  15. Y.A. Vlasov and S.J. McNab, “Coupling into the slow light mode in slab-type photonic crystal waveguides,” Opt. Lett. 31, 50–52 (2006).
    [Crossref] [PubMed]
  16. J.T. Mok, C.M. de Sterke, I.C.M. Littler, and B.J. Eggleton, “Dispersionless slow light using gap solitons,” Nat. Phys. 2, 775–780 (2006).
    [Crossref]
  17. S.H. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80, 908–910 (2002).
    [Crossref]
  18. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
    [Crossref] [PubMed]
  19. P. E. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13, 801–820 (2005).
    [Crossref] [PubMed]
  20. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13, 2678–2687 (2005).
    [Crossref] [PubMed]
  21. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
    [Crossref]
  22. G. Priem, P. Dumon, W. Bogaerts, D. Van Thourhout, G. Morthier, and R. Baets, “Optical bistability and pulsating behaviour in Silicon-On-Insulator ring resonator structures,” Opt. Express 13, 9623–9528 (2005).
    [Crossref] [PubMed]
  23. T. Uesugi, B. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express 14, 377–386 (2006).
    [Crossref] [PubMed]
  24. X. Yang, C. Husko, M. Yu, D.-L. Kwong, and C.W. Wong, “Observation of femto-joule optical bistability involving Fano resonances in high-Q/Vm silicon photonic crystal nanocavities,” arXiv:physics/0703132 (2007).
  25. S. Hughes, L. Ramunno, J.F. Young, and J.E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005).
    [Crossref] [PubMed]
  26. S.F. Mingaleev, A.E. Miroshnichenko, Y.S. Kivshar, and K. Busch, “All-optical switching, bistability, and slow-light transmission in photonic crystal waveguide-resonator structures,” Phys. Rev. E 74, 046603 (2006).
  27. K. Busch, S.F. Mingaleev, A. Garcia-Martin, M. Schillinger, and D. Hermann, “Wannier function approach to photonic crystal circuits,” J. Phys.: Condens. Matter. 15, R1233–R1256 (2003).
    [Crossref]
  28. S.G. Johnson and J.D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
    [Crossref] [PubMed]
  29. A.E. Miroshnichenko, S.F. Mingaleev, S. Flach, and Yu.S. Kivshar, “Nonlinear Fano resonance and bistable wave transmission,” Phys. Rev. E 71, 036626 (2005).
  30. M.F. Yanik, S.H. Fan, and M. Soljacic, “High-contrast all-optical bistable switching in photonic crystal micro-cavities,” Appl. Phys. Lett. 83, 2739–2741 (2003).
    [Crossref]

2007 (1)

F. Xia, L. Sekaric, and Yu Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photon. 1, 65–72 (2007).
[Crossref]

2006 (6)

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F.I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
[Crossref]

S. Assefa, S.J. McNab, and Y.A. Vlasov, “Transmission of slow light through photonic crystal waveguide bends,” Opt. Lett. 31, 745–747 (2006).
[Crossref] [PubMed]

Y.A. Vlasov and S.J. McNab, “Coupling into the slow light mode in slab-type photonic crystal waveguides,” Opt. Lett. 31, 50–52 (2006).
[Crossref] [PubMed]

J.T. Mok, C.M. de Sterke, I.C.M. Littler, and B.J. Eggleton, “Dispersionless slow light using gap solitons,” Nat. Phys. 2, 775–780 (2006).
[Crossref]

T. Uesugi, B. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express 14, 377–386 (2006).
[Crossref] [PubMed]

S.F. Mingaleev, A.E. Miroshnichenko, Y.S. Kivshar, and K. Busch, “All-optical switching, bistability, and slow-light transmission in photonic crystal waveguide-resonator structures,” Phys. Rev. E 74, 046603 (2006).

2005 (10)

S. Hughes, L. Ramunno, J.F. Young, and J.E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005).
[Crossref] [PubMed]

P. E. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13, 801–820 (2005).
[Crossref] [PubMed]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13, 2678–2687 (2005).
[Crossref] [PubMed]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[Crossref]

G. Priem, P. Dumon, W. Bogaerts, D. Van Thourhout, G. Morthier, and R. Baets, “Optical bistability and pulsating behaviour in Silicon-On-Insulator ring resonator structures,” Opt. Express 13, 9623–9528 (2005).
[Crossref] [PubMed]

A.E. Miroshnichenko, S.F. Mingaleev, S. Flach, and Yu.S. Kivshar, “Nonlinear Fano resonance and bistable wave transmission,” Phys. Rev. E 71, 036626 (2005).

R.S. Jacobsen, A.V. Lavrinenko, L.H. Frandsen, C. Peucheret, B. Zsigri, G. Moulin, J.F. Pedersen, and P. I. Borel, “Direct experimental and numerical determination of extremely high group indices in photonic crystal waveguides,” Opt. Express 13, 7861–7871 (2005).
[Crossref] [PubMed]

Y.A. Vlasov, M. O’Boyle, H.F. Hamann, and S.J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref] [PubMed]

H. Gersen, T.J. Karle, R.J.P. Engelen, W. Bogaerts, J.P. Korterik, N.F. van Hulst, T.F. Krauss, and L. Kuipers, “Near-field characterization of low-loss photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[Crossref] [PubMed]

J.B. Khurgin, “Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis,” J. Opt. Soc. Am. B 22, 1062–1074 (2005).

2004 (2)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

Y. Chen and S. Blair, “Nonlinearity enhancement in finite coupled-resonator slow-light waveguides,” Opt. Express 12, 3353–3366 (2004).
[Crossref] [PubMed]

2003 (2)

M.F. Yanik, S.H. Fan, and M. Soljacic, “High-contrast all-optical bistable switching in photonic crystal micro-cavities,” Appl. Phys. Lett. 83, 2739–2741 (2003).
[Crossref]

K. Busch, S.F. Mingaleev, A. Garcia-Martin, M. Schillinger, and D. Hermann, “Wannier function approach to photonic crystal circuits,” J. Phys.: Condens. Matter. 15, R1233–R1256 (2003).
[Crossref]

2002 (2)

M. Soljacic, S.G. Johnson, S.H. Fan, M. Ibanescu, E. Ippen, and J.D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19, 2052–2059 (2002).

S.H. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80, 908–910 (2002).
[Crossref]

2001 (2)

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[Crossref] [PubMed]

S.G. Johnson and J.D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[Crossref] [PubMed]

1997 (1)

J. Martorell, R. Vilaseca, and R. Corbalan, “Second-harmonic generation in a photonic crystal,” Appl. Phys. Lett. 70, 702–704 (1997).
[Crossref]

1995 (1)

T. Suzuki and P.K.L. Yu, “Emission power of an electric dipole in the photonic band structure of the fcc lattice,” J. Opt. Soc. Am. B 12, 570–582 (1995).

1994 (2)

M. Scalora, J.P. Dowling, C.W. Bowden, and M.J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[Crossref] [PubMed]

J.P. Dowling, M. Scalora, M.J. Bloemer, and C.M. Bowden, “The photonic band edge laser: A new aproach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
[Crossref]

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

Asano, T.

Assefa, S.

Baets, R.

Baida, F.I.

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F.I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
[Crossref]

Barclay, P. E.

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

Bernal, M.-P.

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F.I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
[Crossref]

Blair, S.

Bloemer, M.J.

M. Scalora, J.P. Dowling, C.W. Bowden, and M.J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[Crossref] [PubMed]

J.P. Dowling, M. Scalora, M.J. Bloemer, and C.M. Bowden, “The photonic band edge laser: A new aproach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
[Crossref]

Bogaerts, W.

H. Gersen, T.J. Karle, R.J.P. Engelen, W. Bogaerts, J.P. Korterik, N.F. van Hulst, T.F. Krauss, and L. Kuipers, “Near-field characterization of low-loss photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[Crossref] [PubMed]

G. Priem, P. Dumon, W. Bogaerts, D. Van Thourhout, G. Morthier, and R. Baets, “Optical bistability and pulsating behaviour in Silicon-On-Insulator ring resonator structures,” Opt. Express 13, 9623–9528 (2005).
[Crossref] [PubMed]

Borel, P. I.

Bowden, C.M.

J.P. Dowling, M. Scalora, M.J. Bloemer, and C.M. Bowden, “The photonic band edge laser: A new aproach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
[Crossref]

Bowden, C.W.

M. Scalora, J.P. Dowling, C.W. Bowden, and M.J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[Crossref] [PubMed]

Busch, K.

S.F. Mingaleev, A.E. Miroshnichenko, Y.S. Kivshar, and K. Busch, “All-optical switching, bistability, and slow-light transmission in photonic crystal waveguide-resonator structures,” Phys. Rev. E 74, 046603 (2006).

K. Busch, S.F. Mingaleev, A. Garcia-Martin, M. Schillinger, and D. Hermann, “Wannier function approach to photonic crystal circuits,” J. Phys.: Condens. Matter. 15, R1233–R1256 (2003).
[Crossref]

Chen, Y.

Corbalan, R.

J. Martorell, R. Vilaseca, and R. Corbalan, “Second-harmonic generation in a photonic crystal,” Appl. Phys. Lett. 70, 702–704 (1997).
[Crossref]

Courjal, N.

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F.I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
[Crossref]

Dowling, J.P.

M. Scalora, J.P. Dowling, C.W. Bowden, and M.J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[Crossref] [PubMed]

J.P. Dowling, M. Scalora, M.J. Bloemer, and C.M. Bowden, “The photonic band edge laser: A new aproach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
[Crossref]

Dumon, P.

Eggleton, B.J.

J.T. Mok, C.M. de Sterke, I.C.M. Littler, and B.J. Eggleton, “Dispersionless slow light using gap solitons,” Nat. Phys. 2, 775–780 (2006).
[Crossref]

Engelen, R.J.P.

H. Gersen, T.J. Karle, R.J.P. Engelen, W. Bogaerts, J.P. Korterik, N.F. van Hulst, T.F. Krauss, and L. Kuipers, “Near-field characterization of low-loss photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[Crossref] [PubMed]

Fan, S.H.

M.F. Yanik, S.H. Fan, and M. Soljacic, “High-contrast all-optical bistable switching in photonic crystal micro-cavities,” Appl. Phys. Lett. 83, 2739–2741 (2003).
[Crossref]

S.H. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80, 908–910 (2002).
[Crossref]

M. Soljacic, S.G. Johnson, S.H. Fan, M. Ibanescu, E. Ippen, and J.D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19, 2052–2059 (2002).

Flach, S.

A.E. Miroshnichenko, S.F. Mingaleev, S. Flach, and Yu.S. Kivshar, “Nonlinear Fano resonance and bistable wave transmission,” Phys. Rev. E 71, 036626 (2005).

Frandsen, L.H.

Garcia-Martin, A.

K. Busch, S.F. Mingaleev, A. Garcia-Martin, M. Schillinger, and D. Hermann, “Wannier function approach to photonic crystal circuits,” J. Phys.: Condens. Matter. 15, R1233–R1256 (2003).
[Crossref]

Gersen, H.

H. Gersen, T.J. Karle, R.J.P. Engelen, W. Bogaerts, J.P. Korterik, N.F. van Hulst, T.F. Krauss, and L. Kuipers, “Near-field characterization of low-loss photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[Crossref] [PubMed]

Hamann, H.F.

Y.A. Vlasov, M. O’Boyle, H.F. Hamann, and S.J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref] [PubMed]

Hermann, D.

K. Busch, S.F. Mingaleev, A. Garcia-Martin, M. Schillinger, and D. Hermann, “Wannier function approach to photonic crystal circuits,” J. Phys.: Condens. Matter. 15, R1233–R1256 (2003).
[Crossref]

Hughes, S.

S. Hughes, L. Ramunno, J.F. Young, and J.E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005).
[Crossref] [PubMed]

Hulst, N.F. van

H. Gersen, T.J. Karle, R.J.P. Engelen, W. Bogaerts, J.P. Korterik, N.F. van Hulst, T.F. Krauss, and L. Kuipers, “Near-field characterization of low-loss photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[Crossref] [PubMed]

Husko, C.

X. Yang, C. Husko, M. Yu, D.-L. Kwong, and C.W. Wong, “Observation of femto-joule optical bistability involving Fano resonances in high-Q/Vm silicon photonic crystal nanocavities,” arXiv:physics/0703132 (2007).

Ibanescu, M.

M. Soljacic, S.G. Johnson, S.H. Fan, M. Ibanescu, E. Ippen, and J.D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19, 2052–2059 (2002).

Ippen, E.

M. Soljacic, S.G. Johnson, S.H. Fan, M. Ibanescu, E. Ippen, and J.D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19, 2052–2059 (2002).

Jacobsen, R.S.

Joannopoulos, J.D.

M. Soljacic, S.G. Johnson, S.H. Fan, M. Ibanescu, E. Ippen, and J.D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19, 2052–2059 (2002).

S.G. Johnson and J.D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[Crossref] [PubMed]

Johnson, S.G.

M. Soljacic, S.G. Johnson, S.H. Fan, M. Ibanescu, E. Ippen, and J.D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19, 2052–2059 (2002).

S.G. Johnson and J.D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[Crossref] [PubMed]

Karle, T.J.

H. Gersen, T.J. Karle, R.J.P. Engelen, W. Bogaerts, J.P. Korterik, N.F. van Hulst, T.F. Krauss, and L. Kuipers, “Near-field characterization of low-loss photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[Crossref] [PubMed]

Khurgin, J.B.

J.B. Khurgin, “Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis,” J. Opt. Soc. Am. B 22, 1062–1074 (2005).

Kira, G.

Kivshar, Y.S.

S.F. Mingaleev, A.E. Miroshnichenko, Y.S. Kivshar, and K. Busch, “All-optical switching, bistability, and slow-light transmission in photonic crystal waveguide-resonator structures,” Phys. Rev. E 74, 046603 (2006).

Kivshar, Yu.S.

A.E. Miroshnichenko, S.F. Mingaleev, S. Flach, and Yu.S. Kivshar, “Nonlinear Fano resonance and bistable wave transmission,” Phys. Rev. E 71, 036626 (2005).

Korterik, J.P.

H. Gersen, T.J. Karle, R.J.P. Engelen, W. Bogaerts, J.P. Korterik, N.F. van Hulst, T.F. Krauss, and L. Kuipers, “Near-field characterization of low-loss photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[Crossref] [PubMed]

Krauss, T.F.

H. Gersen, T.J. Karle, R.J.P. Engelen, W. Bogaerts, J.P. Korterik, N.F. van Hulst, T.F. Krauss, and L. Kuipers, “Near-field characterization of low-loss photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[Crossref] [PubMed]

Kuipers, L.

H. Gersen, T.J. Karle, R.J.P. Engelen, W. Bogaerts, J.P. Korterik, N.F. van Hulst, T.F. Krauss, and L. Kuipers, “Near-field characterization of low-loss photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[Crossref] [PubMed]

Kuramochi, E.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[Crossref]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13, 2678–2687 (2005).
[Crossref] [PubMed]

Kwong, D.-L.

X. Yang, C. Husko, M. Yu, D.-L. Kwong, and C.W. Wong, “Observation of femto-joule optical bistability involving Fano resonances in high-Q/Vm silicon photonic crystal nanocavities,” arXiv:physics/0703132 (2007).

Labeke, D. Van

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F.I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
[Crossref]

Lavrinenko, A.V.

Lipson, M.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

Littler, I.C.M.

J.T. Mok, C.M. de Sterke, I.C.M. Littler, and B.J. Eggleton, “Dispersionless slow light using gap solitons,” Nat. Phys. 2, 775–780 (2006).
[Crossref]

Martorell, J.

J. Martorell, R. Vilaseca, and R. Corbalan, “Second-harmonic generation in a photonic crystal,” Appl. Phys. Lett. 70, 702–704 (1997).
[Crossref]

McNab, S.J.

Mingaleev, S.F.

S.F. Mingaleev, A.E. Miroshnichenko, Y.S. Kivshar, and K. Busch, “All-optical switching, bistability, and slow-light transmission in photonic crystal waveguide-resonator structures,” Phys. Rev. E 74, 046603 (2006).

A.E. Miroshnichenko, S.F. Mingaleev, S. Flach, and Yu.S. Kivshar, “Nonlinear Fano resonance and bistable wave transmission,” Phys. Rev. E 71, 036626 (2005).

K. Busch, S.F. Mingaleev, A. Garcia-Martin, M. Schillinger, and D. Hermann, “Wannier function approach to photonic crystal circuits,” J. Phys.: Condens. Matter. 15, R1233–R1256 (2003).
[Crossref]

Miroshnichenko, A.E.

S.F. Mingaleev, A.E. Miroshnichenko, Y.S. Kivshar, and K. Busch, “All-optical switching, bistability, and slow-light transmission in photonic crystal waveguide-resonator structures,” Phys. Rev. E 74, 046603 (2006).

A.E. Miroshnichenko, S.F. Mingaleev, S. Flach, and Yu.S. Kivshar, “Nonlinear Fano resonance and bistable wave transmission,” Phys. Rev. E 71, 036626 (2005).

Mitsugi, S.

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13, 2678–2687 (2005).
[Crossref] [PubMed]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[Crossref]

Mok, J.T.

J.T. Mok, C.M. de Sterke, I.C.M. Littler, and B.J. Eggleton, “Dispersionless slow light using gap solitons,” Nat. Phys. 2, 775–780 (2006).
[Crossref]

Morthier, G.

Moulin, G.

Noda, S.

Notomi, M.

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13, 2678–2687 (2005).
[Crossref] [PubMed]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[Crossref]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[Crossref] [PubMed]

O’Boyle, M.

Y.A. Vlasov, M. O’Boyle, H.F. Hamann, and S.J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref] [PubMed]

Painter, O.

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

Pedersen, J.F.

Peucheret, C.

Priem, G.

Ramunno, L.

S. Hughes, L. Ramunno, J.F. Young, and J.E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005).
[Crossref] [PubMed]

Roussey, M.

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F.I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
[Crossref]

Salut, R.

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F.I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
[Crossref]

Scalora, M.

J.P. Dowling, M. Scalora, M.J. Bloemer, and C.M. Bowden, “The photonic band edge laser: A new aproach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
[Crossref]

M. Scalora, J.P. Dowling, C.W. Bowden, and M.J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[Crossref] [PubMed]

Schillinger, M.

K. Busch, S.F. Mingaleev, A. Garcia-Martin, M. Schillinger, and D. Hermann, “Wannier function approach to photonic crystal circuits,” J. Phys.: Condens. Matter. 15, R1233–R1256 (2003).
[Crossref]

Sekaric, L.

F. Xia, L. Sekaric, and Yu Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photon. 1, 65–72 (2007).
[Crossref]

Shinya, A.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[Crossref]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13, 2678–2687 (2005).
[Crossref] [PubMed]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[Crossref] [PubMed]

Sipe, J.E.

S. Hughes, L. Ramunno, J.F. Young, and J.E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005).
[Crossref] [PubMed]

Soljacic, M.

M.F. Yanik, S.H. Fan, and M. Soljacic, “High-contrast all-optical bistable switching in photonic crystal micro-cavities,” Appl. Phys. Lett. 83, 2739–2741 (2003).
[Crossref]

M. Soljacic, S.G. Johnson, S.H. Fan, M. Ibanescu, E. Ippen, and J.D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19, 2052–2059 (2002).

Song, B.

Srinivasan, K.

Sterke, C.M. de

J.T. Mok, C.M. de Sterke, I.C.M. Littler, and B.J. Eggleton, “Dispersionless slow light using gap solitons,” Nat. Phys. 2, 775–780 (2006).
[Crossref]

Suzuki, T.

T. Suzuki and P.K.L. Yu, “Emission power of an electric dipole in the photonic band structure of the fcc lattice,” J. Opt. Soc. Am. B 12, 570–582 (1995).

Takahashi, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[Crossref] [PubMed]

Takahashi, J.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[Crossref] [PubMed]

Tanabe, T.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[Crossref]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13, 2678–2687 (2005).
[Crossref] [PubMed]

Thourhout, D. Van

Uesugi, T.

Vilaseca, R.

J. Martorell, R. Vilaseca, and R. Corbalan, “Second-harmonic generation in a photonic crystal,” Appl. Phys. Lett. 70, 702–704 (1997).
[Crossref]

Vlasov, Y.A.

Vlasov, Yu

F. Xia, L. Sekaric, and Yu Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photon. 1, 65–72 (2007).
[Crossref]

Wong, C.W.

X. Yang, C. Husko, M. Yu, D.-L. Kwong, and C.W. Wong, “Observation of femto-joule optical bistability involving Fano resonances in high-Q/Vm silicon photonic crystal nanocavities,” arXiv:physics/0703132 (2007).

Xia, F.

F. Xia, L. Sekaric, and Yu Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photon. 1, 65–72 (2007).
[Crossref]

Yamada, K.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[Crossref] [PubMed]

Yang, X.

X. Yang, C. Husko, M. Yu, D.-L. Kwong, and C.W. Wong, “Observation of femto-joule optical bistability involving Fano resonances in high-Q/Vm silicon photonic crystal nanocavities,” arXiv:physics/0703132 (2007).

Yanik, M.F.

M.F. Yanik, S.H. Fan, and M. Soljacic, “High-contrast all-optical bistable switching in photonic crystal micro-cavities,” Appl. Phys. Lett. 83, 2739–2741 (2003).
[Crossref]

Yokohama, I.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[Crossref] [PubMed]

Young, J.F.

S. Hughes, L. Ramunno, J.F. Young, and J.E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005).
[Crossref] [PubMed]

Yu, M.

X. Yang, C. Husko, M. Yu, D.-L. Kwong, and C.W. Wong, “Observation of femto-joule optical bistability involving Fano resonances in high-Q/Vm silicon photonic crystal nanocavities,” arXiv:physics/0703132 (2007).

Yu, P.K.L.

T. Suzuki and P.K.L. Yu, “Emission power of an electric dipole in the photonic band structure of the fcc lattice,” J. Opt. Soc. Am. B 12, 570–582 (1995).

Zsigri, B.

Appl. Phys. Lett. (5)

J. Martorell, R. Vilaseca, and R. Corbalan, “Second-harmonic generation in a photonic crystal,” Appl. Phys. Lett. 70, 702–704 (1997).
[Crossref]

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F.I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
[Crossref]

S.H. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80, 908–910 (2002).
[Crossref]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[Crossref]

M.F. Yanik, S.H. Fan, and M. Soljacic, “High-contrast all-optical bistable switching in photonic crystal micro-cavities,” Appl. Phys. Lett. 83, 2739–2741 (2003).
[Crossref]

J. Appl. Phys. (1)

J.P. Dowling, M. Scalora, M.J. Bloemer, and C.M. Bowden, “The photonic band edge laser: A new aproach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
[Crossref]

J. Opt. Soc. Am. (3)

T. Suzuki and P.K.L. Yu, “Emission power of an electric dipole in the photonic band structure of the fcc lattice,” J. Opt. Soc. Am. B 12, 570–582 (1995).

M. Soljacic, S.G. Johnson, S.H. Fan, M. Ibanescu, E. Ippen, and J.D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19, 2052–2059 (2002).

J.B. Khurgin, “Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis,” J. Opt. Soc. Am. B 22, 1062–1074 (2005).

J. Phys.: Condens. Matter. (1)

K. Busch, S.F. Mingaleev, A. Garcia-Martin, M. Schillinger, and D. Hermann, “Wannier function approach to photonic crystal circuits,” J. Phys.: Condens. Matter. 15, R1233–R1256 (2003).
[Crossref]

Nat. Photon. (1)

F. Xia, L. Sekaric, and Yu Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photon. 1, 65–72 (2007).
[Crossref]

Nat. Phys. (1)

J.T. Mok, C.M. de Sterke, I.C.M. Littler, and B.J. Eggleton, “Dispersionless slow light using gap solitons,” Nat. Phys. 2, 775–780 (2006).
[Crossref]

Nature (2)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

Y.A. Vlasov, M. O’Boyle, H.F. Hamann, and S.J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref] [PubMed]

Opt. Express (7)

T. Uesugi, B. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express 14, 377–386 (2006).
[Crossref] [PubMed]

S.G. Johnson and J.D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[Crossref] [PubMed]

Y. Chen and S. Blair, “Nonlinearity enhancement in finite coupled-resonator slow-light waveguides,” Opt. Express 12, 3353–3366 (2004).
[Crossref] [PubMed]

P. E. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13, 801–820 (2005).
[Crossref] [PubMed]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13, 2678–2687 (2005).
[Crossref] [PubMed]

R.S. Jacobsen, A.V. Lavrinenko, L.H. Frandsen, C. Peucheret, B. Zsigri, G. Moulin, J.F. Pedersen, and P. I. Borel, “Direct experimental and numerical determination of extremely high group indices in photonic crystal waveguides,” Opt. Express 13, 7861–7871 (2005).
[Crossref] [PubMed]

G. Priem, P. Dumon, W. Bogaerts, D. Van Thourhout, G. Morthier, and R. Baets, “Optical bistability and pulsating behaviour in Silicon-On-Insulator ring resonator structures,” Opt. Express 13, 9623–9528 (2005).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Rev. (2)

A.E. Miroshnichenko, S.F. Mingaleev, S. Flach, and Yu.S. Kivshar, “Nonlinear Fano resonance and bistable wave transmission,” Phys. Rev. E 71, 036626 (2005).

S.F. Mingaleev, A.E. Miroshnichenko, Y.S. Kivshar, and K. Busch, “All-optical switching, bistability, and slow-light transmission in photonic crystal waveguide-resonator structures,” Phys. Rev. E 74, 046603 (2006).

Phys. Rev. Lett. (4)

S. Hughes, L. Ramunno, J.F. Young, and J.E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005).
[Crossref] [PubMed]

H. Gersen, T.J. Karle, R.J.P. Engelen, W. Bogaerts, J.P. Korterik, N.F. van Hulst, T.F. Krauss, and L. Kuipers, “Near-field characterization of low-loss photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[Crossref] [PubMed]

M. Scalora, J.P. Dowling, C.W. Bowden, and M.J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[Crossref] [PubMed]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[Crossref] [PubMed]

Other (1)

X. Yang, C. Husko, M. Yu, D.-L. Kwong, and C.W. Wong, “Observation of femto-joule optical bistability involving Fano resonances in high-Q/Vm silicon photonic crystal nanocavities,” arXiv:physics/0703132 (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Frequencies of localized cavity modes created by changing the radius r def of (a) single defect rod and (b) two neighboring defect rods in the photonic crystal created by a triangular lattice of rods with ε=12 and radius r=0.25a in air, a is the lattice spacing. (c) Dispersion of the W1 photonic-crystal waveguide created by removing a row of rods in the same photonic crystal. Results are calculated using 11 maximally localized Wannier functions [27] (blue lines) and the supercell plane-waves method [28] (red circles).

Fig. 2.
Fig. 2.

Single-defect waveguide-cavity structure with the radius of the defect rod r def: (a) Electric field at the resonance reflection for r def=0.102a; (b) Transmission spectra for different values of r def: 0.1a (black), 0.101a (blue), 0.102a (red), 0.1025a (green). For convenience, in addition to the light frequency on the bottom axis, we indicate on the top axis the complementary group velocity, vg (ω), of the waveguide’s guided mode.

Fig. 3.
Fig. 3.

Double-defect waveguide-cavity structure with the cavity created by two defect rods with the radius r def: (a) Electric field at the resonance reflection for r def=0.121a; (b) Transmission spectra for different values of r def: 0.119a (black), 0.120a (blue), 0.121a (red), 0.1213a (green).

Fig. 4.
Fig. 4.

(a) Quality factor Q vs. group velocity vg at resonance for the structure shown in Fig. 3; (b) Nonlinear bistable transmission in the same structure at the frequencies with 80% of linear light transmission vs. the incoming light power for different values of r def: 0.119a (black), 0.120a (blue), 0.121a (red), 0.1214a (green); (c) Switch-off bistability threshold Pth vs. the group velocity vg at resonance for the same structure.

Metrics