Abstract

In this paper, we propose a novel signal/pump double-pass Raman fiber amplifier using fiber Brag gratings (FBGs). In order to compensate the dispersion slop mismatch among channels in lightwave system, FBGs embedded in different positions along dispersion compensated fiber are used to control the travel length of each WDM signal. Gain equalization can be achieved by optimizing the reflectivity of each FBG. Maximum output power variation among channels is less than ±0.5 dB after appropriate optimization. Finally, a wavelength division multiplexing (WDM) system using 40-Gb/s x 8 ch non return-to-zero (NRZ) signal transmission in a 100-km transmission fiber is simulated to confirm the system performance. Using proposed dispersion compensation method, it may lead to 2 dB improvement in Q value. Such kind of RFA may find vast applications in WDM system where dispersion management is a crucial issue.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. Y. Sun, J. W. Sulhoff, A. K. Srivastava, J. L. Zyskind, T. A. Strasser, J. R. Pedrazzani, C. Wolf, J. Zhou, J. B. Judkins, R. P. Espindola and A. M. Vengsarkar, "80 nm ultra-wide-band erbium-doped silica fiber amplifier," Electron. Lett. 33, 1965-1967 (1997).
    [CrossRef]
  2. L. Dou, M. Li, Z. Li, A. Xu, C.-Y. David Lan and S.-K. Liaw, "Improvement in characteristics of a distributed Raman fiber amplifier by using signal-pump double-pass scheme," Opt. Eng. 45, 094201 (2006).
    [CrossRef]
  3. M. Tang, Y. D. Gong, and P. Shum, "Design of Double-Pass Dispersion-Compensated Raman Amplifiers for Improved Efficiency: Guidelines and Optimizations," J. Lightwave Technol. 22, 1899-1908 (2004).
    [CrossRef]
  4. V. E. Perlin and H. G. Winful, "Optimal design of flat-gain wide-band fiber Raman amplifiers," J. Lightwave Technol. 20, 250-254 (2002).
    [CrossRef]
  5. S. Wen and S. Chi, "DCF-based fiber Raman amplifiers with fiber grating reflectors for tailoring accumulated-dispersion spectra," Opt. Commun. 272, 247-251 (2007).
    [CrossRef]
  6. S.-K. Liaw, K.-P. Ho and S. Chi, "Dynamic power-equalized EDFA modules using strain tunable fiber gratings," IEEE Photon. Technol. Lett. 11, 797-799 (1999)
    [CrossRef]
  7. M. Rochette, M. Guy, S. LaRochelle, J. Lauzon, and F. Trépanier, "Gain equalization of EDFAs' with Bragg gratings," Photon. Technol. Lett. 11, 536-538 (1999).
    [CrossRef]
  8. L. Dou, S.-K. Liaw, M. Li, Y.-T. Lin and A. Xu, "Parameters optimization of high efficiency discrete Raman fiber amplifier by using the coupled steady-state equations," Opt. Commun. 273, 149-152 (2007).
    [CrossRef]
  9. C. G. Broyden, "A class of methods for solving nonlinear simultaneous equations," Mathematics of Computation 19, 577-593 (1965).
    [CrossRef]
  10. W. H. Press, Numerical Recipes in C: the art of scientific computing, (Cambridge University Press, New York 1995).
  11. L. G-Nielsen, M. Wandel, P.Kristensen, C. Jørgensen, L.Vilbrad Jørgensen, B. Edvold, B. Pálsdóttir, and D. Jakobsen, "Dispersion-Compensating Fibers," J. Lightwave Technol. 23, 3566-3579 (2005).
    [CrossRef]
  12. E. M. Dianov, "Advances in Raman fibers," J. Lightwave Technol. 20, 1457-1462 (2002).
    [CrossRef]
  13. L Kazovsky, S. Benedetto, and A. Willner, Optical fiber Communication Systems, 1st ed. (Artech House Publishers, Norwood, 1996).
  14. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, New York, 2001).
  15. C. J. Anderson, and J. A. Lyle, "Technique for evaluating system performance using Q in numerical simulations exhibiting intersymbol interference," Electron. Lett. 30, 71-72 (1994).
    [CrossRef]

2007

S. Wen and S. Chi, "DCF-based fiber Raman amplifiers with fiber grating reflectors for tailoring accumulated-dispersion spectra," Opt. Commun. 272, 247-251 (2007).
[CrossRef]

L. Dou, S.-K. Liaw, M. Li, Y.-T. Lin and A. Xu, "Parameters optimization of high efficiency discrete Raman fiber amplifier by using the coupled steady-state equations," Opt. Commun. 273, 149-152 (2007).
[CrossRef]

2006

L. Dou, M. Li, Z. Li, A. Xu, C.-Y. David Lan and S.-K. Liaw, "Improvement in characteristics of a distributed Raman fiber amplifier by using signal-pump double-pass scheme," Opt. Eng. 45, 094201 (2006).
[CrossRef]

2005

2004

2002

1999

S.-K. Liaw, K.-P. Ho and S. Chi, "Dynamic power-equalized EDFA modules using strain tunable fiber gratings," IEEE Photon. Technol. Lett. 11, 797-799 (1999)
[CrossRef]

M. Rochette, M. Guy, S. LaRochelle, J. Lauzon, and F. Trépanier, "Gain equalization of EDFAs' with Bragg gratings," Photon. Technol. Lett. 11, 536-538 (1999).
[CrossRef]

1997

Y. Sun, J. W. Sulhoff, A. K. Srivastava, J. L. Zyskind, T. A. Strasser, J. R. Pedrazzani, C. Wolf, J. Zhou, J. B. Judkins, R. P. Espindola and A. M. Vengsarkar, "80 nm ultra-wide-band erbium-doped silica fiber amplifier," Electron. Lett. 33, 1965-1967 (1997).
[CrossRef]

1994

C. J. Anderson, and J. A. Lyle, "Technique for evaluating system performance using Q in numerical simulations exhibiting intersymbol interference," Electron. Lett. 30, 71-72 (1994).
[CrossRef]

1965

C. G. Broyden, "A class of methods for solving nonlinear simultaneous equations," Mathematics of Computation 19, 577-593 (1965).
[CrossRef]

Electron. Lett.

Y. Sun, J. W. Sulhoff, A. K. Srivastava, J. L. Zyskind, T. A. Strasser, J. R. Pedrazzani, C. Wolf, J. Zhou, J. B. Judkins, R. P. Espindola and A. M. Vengsarkar, "80 nm ultra-wide-band erbium-doped silica fiber amplifier," Electron. Lett. 33, 1965-1967 (1997).
[CrossRef]

C. J. Anderson, and J. A. Lyle, "Technique for evaluating system performance using Q in numerical simulations exhibiting intersymbol interference," Electron. Lett. 30, 71-72 (1994).
[CrossRef]

IEEE Photon. Technol. Lett.

S.-K. Liaw, K.-P. Ho and S. Chi, "Dynamic power-equalized EDFA modules using strain tunable fiber gratings," IEEE Photon. Technol. Lett. 11, 797-799 (1999)
[CrossRef]

J. Lightwave Technol.

Mathematics of Computation

C. G. Broyden, "A class of methods for solving nonlinear simultaneous equations," Mathematics of Computation 19, 577-593 (1965).
[CrossRef]

Opt. Commun.

S. Wen and S. Chi, "DCF-based fiber Raman amplifiers with fiber grating reflectors for tailoring accumulated-dispersion spectra," Opt. Commun. 272, 247-251 (2007).
[CrossRef]

L. Dou, S.-K. Liaw, M. Li, Y.-T. Lin and A. Xu, "Parameters optimization of high efficiency discrete Raman fiber amplifier by using the coupled steady-state equations," Opt. Commun. 273, 149-152 (2007).
[CrossRef]

Opt. Eng.

L. Dou, M. Li, Z. Li, A. Xu, C.-Y. David Lan and S.-K. Liaw, "Improvement in characteristics of a distributed Raman fiber amplifier by using signal-pump double-pass scheme," Opt. Eng. 45, 094201 (2006).
[CrossRef]

Photon. Technol. Lett.

M. Rochette, M. Guy, S. LaRochelle, J. Lauzon, and F. Trépanier, "Gain equalization of EDFAs' with Bragg gratings," Photon. Technol. Lett. 11, 536-538 (1999).
[CrossRef]

Other

L Kazovsky, S. Benedetto, and A. Willner, Optical fiber Communication Systems, 1st ed. (Artech House Publishers, Norwood, 1996).

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, New York, 2001).

W. H. Press, Numerical Recipes in C: the art of scientific computing, (Cambridge University Press, New York 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Configuration of the proposed RFA.

Fig. 2.
Fig. 2.

Residual dispersion of the RFA versus signal wavelength.

Fig. 3.
Fig. 3.

(a). Output power of the RFA versus signal wavelength. Fig. 3(b). Distributed effective loss coefficient of signal 1 along DCF.

Fig. 4.
Fig. 4.

(a) BER as a function of input signal wavelength, and (b) Q value as a function of input signal wavelength.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

L DCF = L SMF D SMF ( λ ) 2 D DCF ( λ )
d P ± ( z , v i ) dz = α ( v i ) P ± ( z , v i ) ± P ± ( z , v i ) m = 1 i 1 g R ( v m v i ) Γ A eff [ P ± ( z , v i ) + P ( z , v i ) ]
P ± ( z , v i ) m = i + 1 n v i v m g R ( v i v m ) Γ A eff [ P ± ( z , v i ) + P ( z , v i ) ]
f i ( R i ) = abs ( P i avg [ P ( R ) ] avg [ P ( R ) ] ) i [ 1 , N ]
R b = C 4 D res λ 2
i A j z + i v gj A j t 1 2 β 2 j 2 A j t 2 + i 6 β 3 j 3 A j t 3 + γ ( A j 2 + 2 m j M A m 2 ) A j = i α 2 A i
BER = 1 2 erfc ( Q 2 )

Metrics