Abstract

In this paper, we propose a novel signal/pump double-pass Raman fiber amplifier using fiber Brag gratings (FBGs). In order to compensate the dispersion slop mismatch among channels in lightwave system, FBGs embedded in different positions along dispersion compensated fiber are used to control the travel length of each WDM signal. Gain equalization can be achieved by optimizing the reflectivity of each FBG. Maximum output power variation among channels is less than ±0.5 dB after appropriate optimization. Finally, a wavelength division multiplexing (WDM) system using 40-Gb/s x 8 ch non return-to-zero (NRZ) signal transmission in a 100-km transmission fiber is simulated to confirm the system performance. Using proposed dispersion compensation method, it may lead to 2 dB improvement in Q value. Such kind of RFA may find vast applications in WDM system where dispersion management is a crucial issue.

© 2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Numerical comparison between conventional dispersion compensating fibers and photonic crystal fibers as lumped Raman amplifiers

C. E. S. Castellani, S. P. N. Cani, M. E. V. Segatto, M. J. Pontes, and M. A. Romero
Opt. Express 17(25) 23169-23180 (2009)

Intra-channel nonlinearity compensation with scaled translational symmetry

Haiqing Wei and David V. Plant
Opt. Express 12(18) 4282-4296 (2004)

Design of double-pass discrete Raman amplifier and the impairments induced by Rayleigh backscattering

M. Tang, P. Shum, and Y.D Gong
Opt. Express 11(16) 1887-1893 (2003)

References

  • View by:
  • |
  • |
  • |

  1. Y. Sun, J.W. Y., A.K. Sulhoff, J.L. Srivastava, T.A. Zyskind, J.R. Strasser, C. Pedrazzani, J. Wolf, J.B. Zhou, R.P. Judkins, A.M. Espindola, and Vengsarkar, “80 nm ultra-wide-band erbium-doped silica fiber amplifier,” Electron. Lett. 33, 1965–1967 (1997).
    [Crossref]
  2. L. Dou, M. Li, Z. Li, A. Xu, C.-Y. David Lan, and S.-K. Liaw, “Improvement in characteristics of a distributed Raman fiber amplifier by using signal-pump double-pass scheme,” Optical Engineering 45, No. 094201 (2006).
    [Crossref]
  3. M. Tang, Y. D. Gong, and P. Shum, “Design of Double-Pass Dispersion-Compensated Raman Amplifiers for Improved Efficiency: Guidelines and Optimizations,” J. Lightwave Technology 22, 1899–1908 (2004).
    [Crossref]
  4. V. E. Perlin and H. G. Winful, “Optimal design of flat-gain wide-band fiber Raman amplifiers,” J. Lightwave Technol. 20, 250–254 (2002).
    [Crossref]
  5. S. Wen and S. Chi, “DCF-based fiber Raman amplifiers with fiber grating reflectors for tailoring accumulated-dispersion spectra,” Opt. Commun. 272, 247–251 (2007).
    [Crossref]
  6. S.-K. Liaw, K.-P. Ho, and S. Chi, “Dynamic power-equalized EDFA modules using strain tunable fiber gratings,” IEEE Photon. Technol. Lett. 11, 797–799 (1999)
    [Crossref]
  7. M. Rochette, M. Guy, S. LaRochelle, J. Lauzon, and F. Trépanier, “Gain equalization of EDFAs’ with Bragg gratings,” Photon. Technol. Lett. 11, 536–538 (1999).
    [Crossref]
  8. L. Dou, S.-K. Liaw, M. Li, Y.-T. Lin, and A. Xu, “Parameters optimization of high efficiency discrete Raman fiber amplifier by using the coupled steady-state equations,” Opt. Commun. 273, 149–152 (2007).
    [Crossref]
  9. C. G. Broyden, “A class of methods for solving nonlinear simultaneous equations,” Mathematics of Computation 19, 577–593 (1965).
    [Crossref]
  10. W. H. Press, Numerical Recipes in C: the art of scientific computing, (Cambridge University Press, New York1995).
  11. L. G-Nielsen, M. Wandel, P. Kristensen, C. Jørgensen, L.Vilbrad Jørgensen, B. Edvold, B. Pálsdóttir, and D. Jakobsen, “Dispersion-Compensating Fibers,” J. of Lightwave Technol. 23, 3566–3579 (2005).
    [Crossref]
  12. E.M. Dianov, “Advances in Raman fibers,” J. Lightwave Technol. 20, 1457–1462 (2002).
    [Crossref]
  13. L Kazovsky, S. Benedetto, and A. Willner, Optical fiber Communication Systems, 1st ed. (Artech House Publishers, Norwood, 1996).
  14. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, New York, 2001).
  15. C. J. Anderson and J. A. Lyle, “Technique for evaluating system performance using Q in numerical simulations exhibiting intersymbol interference,” Electron. Lett. 30, 71–72 (1994).
    [Crossref]

2007 (2)

S. Wen and S. Chi, “DCF-based fiber Raman amplifiers with fiber grating reflectors for tailoring accumulated-dispersion spectra,” Opt. Commun. 272, 247–251 (2007).
[Crossref]

L. Dou, S.-K. Liaw, M. Li, Y.-T. Lin, and A. Xu, “Parameters optimization of high efficiency discrete Raman fiber amplifier by using the coupled steady-state equations,” Opt. Commun. 273, 149–152 (2007).
[Crossref]

2006 (1)

L. Dou, M. Li, Z. Li, A. Xu, C.-Y. David Lan, and S.-K. Liaw, “Improvement in characteristics of a distributed Raman fiber amplifier by using signal-pump double-pass scheme,” Optical Engineering 45, No. 094201 (2006).
[Crossref]

2005 (1)

L. G-Nielsen, M. Wandel, P. Kristensen, C. Jørgensen, L.Vilbrad Jørgensen, B. Edvold, B. Pálsdóttir, and D. Jakobsen, “Dispersion-Compensating Fibers,” J. of Lightwave Technol. 23, 3566–3579 (2005).
[Crossref]

2004 (1)

M. Tang, Y. D. Gong, and P. Shum, “Design of Double-Pass Dispersion-Compensated Raman Amplifiers for Improved Efficiency: Guidelines and Optimizations,” J. Lightwave Technology 22, 1899–1908 (2004).
[Crossref]

2002 (2)

1999 (2)

S.-K. Liaw, K.-P. Ho, and S. Chi, “Dynamic power-equalized EDFA modules using strain tunable fiber gratings,” IEEE Photon. Technol. Lett. 11, 797–799 (1999)
[Crossref]

M. Rochette, M. Guy, S. LaRochelle, J. Lauzon, and F. Trépanier, “Gain equalization of EDFAs’ with Bragg gratings,” Photon. Technol. Lett. 11, 536–538 (1999).
[Crossref]

1997 (1)

Y. Sun, J.W. Y., A.K. Sulhoff, J.L. Srivastava, T.A. Zyskind, J.R. Strasser, C. Pedrazzani, J. Wolf, J.B. Zhou, R.P. Judkins, A.M. Espindola, and Vengsarkar, “80 nm ultra-wide-band erbium-doped silica fiber amplifier,” Electron. Lett. 33, 1965–1967 (1997).
[Crossref]

1994 (1)

C. J. Anderson and J. A. Lyle, “Technique for evaluating system performance using Q in numerical simulations exhibiting intersymbol interference,” Electron. Lett. 30, 71–72 (1994).
[Crossref]

1965 (1)

C. G. Broyden, “A class of methods for solving nonlinear simultaneous equations,” Mathematics of Computation 19, 577–593 (1965).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, New York, 2001).

Anderson, C. J.

C. J. Anderson and J. A. Lyle, “Technique for evaluating system performance using Q in numerical simulations exhibiting intersymbol interference,” Electron. Lett. 30, 71–72 (1994).
[Crossref]

Benedetto, S.

L Kazovsky, S. Benedetto, and A. Willner, Optical fiber Communication Systems, 1st ed. (Artech House Publishers, Norwood, 1996).

Broyden, C. G.

C. G. Broyden, “A class of methods for solving nonlinear simultaneous equations,” Mathematics of Computation 19, 577–593 (1965).
[Crossref]

Chi, S.

S. Wen and S. Chi, “DCF-based fiber Raman amplifiers with fiber grating reflectors for tailoring accumulated-dispersion spectra,” Opt. Commun. 272, 247–251 (2007).
[Crossref]

S.-K. Liaw, K.-P. Ho, and S. Chi, “Dynamic power-equalized EDFA modules using strain tunable fiber gratings,” IEEE Photon. Technol. Lett. 11, 797–799 (1999)
[Crossref]

Dianov, E.M.

Dou, L.

L. Dou, S.-K. Liaw, M. Li, Y.-T. Lin, and A. Xu, “Parameters optimization of high efficiency discrete Raman fiber amplifier by using the coupled steady-state equations,” Opt. Commun. 273, 149–152 (2007).
[Crossref]

L. Dou, M. Li, Z. Li, A. Xu, C.-Y. David Lan, and S.-K. Liaw, “Improvement in characteristics of a distributed Raman fiber amplifier by using signal-pump double-pass scheme,” Optical Engineering 45, No. 094201 (2006).
[Crossref]

Edvold, B.

L. G-Nielsen, M. Wandel, P. Kristensen, C. Jørgensen, L.Vilbrad Jørgensen, B. Edvold, B. Pálsdóttir, and D. Jakobsen, “Dispersion-Compensating Fibers,” J. of Lightwave Technol. 23, 3566–3579 (2005).
[Crossref]

Espindola, A.M.

Y. Sun, J.W. Y., A.K. Sulhoff, J.L. Srivastava, T.A. Zyskind, J.R. Strasser, C. Pedrazzani, J. Wolf, J.B. Zhou, R.P. Judkins, A.M. Espindola, and Vengsarkar, “80 nm ultra-wide-band erbium-doped silica fiber amplifier,” Electron. Lett. 33, 1965–1967 (1997).
[Crossref]

G-Nielsen, L.

L. G-Nielsen, M. Wandel, P. Kristensen, C. Jørgensen, L.Vilbrad Jørgensen, B. Edvold, B. Pálsdóttir, and D. Jakobsen, “Dispersion-Compensating Fibers,” J. of Lightwave Technol. 23, 3566–3579 (2005).
[Crossref]

Gong, Y. D.

M. Tang, Y. D. Gong, and P. Shum, “Design of Double-Pass Dispersion-Compensated Raman Amplifiers for Improved Efficiency: Guidelines and Optimizations,” J. Lightwave Technology 22, 1899–1908 (2004).
[Crossref]

Guy, M.

M. Rochette, M. Guy, S. LaRochelle, J. Lauzon, and F. Trépanier, “Gain equalization of EDFAs’ with Bragg gratings,” Photon. Technol. Lett. 11, 536–538 (1999).
[Crossref]

Ho, K.-P.

S.-K. Liaw, K.-P. Ho, and S. Chi, “Dynamic power-equalized EDFA modules using strain tunable fiber gratings,” IEEE Photon. Technol. Lett. 11, 797–799 (1999)
[Crossref]

Jakobsen, D.

L. G-Nielsen, M. Wandel, P. Kristensen, C. Jørgensen, L.Vilbrad Jørgensen, B. Edvold, B. Pálsdóttir, and D. Jakobsen, “Dispersion-Compensating Fibers,” J. of Lightwave Technol. 23, 3566–3579 (2005).
[Crossref]

Jørgensen, C.

L. G-Nielsen, M. Wandel, P. Kristensen, C. Jørgensen, L.Vilbrad Jørgensen, B. Edvold, B. Pálsdóttir, and D. Jakobsen, “Dispersion-Compensating Fibers,” J. of Lightwave Technol. 23, 3566–3579 (2005).
[Crossref]

Jørgensen, L.Vilbrad

L. G-Nielsen, M. Wandel, P. Kristensen, C. Jørgensen, L.Vilbrad Jørgensen, B. Edvold, B. Pálsdóttir, and D. Jakobsen, “Dispersion-Compensating Fibers,” J. of Lightwave Technol. 23, 3566–3579 (2005).
[Crossref]

Judkins, R.P.

Y. Sun, J.W. Y., A.K. Sulhoff, J.L. Srivastava, T.A. Zyskind, J.R. Strasser, C. Pedrazzani, J. Wolf, J.B. Zhou, R.P. Judkins, A.M. Espindola, and Vengsarkar, “80 nm ultra-wide-band erbium-doped silica fiber amplifier,” Electron. Lett. 33, 1965–1967 (1997).
[Crossref]

Kazovsky, L

L Kazovsky, S. Benedetto, and A. Willner, Optical fiber Communication Systems, 1st ed. (Artech House Publishers, Norwood, 1996).

Kristensen, P.

L. G-Nielsen, M. Wandel, P. Kristensen, C. Jørgensen, L.Vilbrad Jørgensen, B. Edvold, B. Pálsdóttir, and D. Jakobsen, “Dispersion-Compensating Fibers,” J. of Lightwave Technol. 23, 3566–3579 (2005).
[Crossref]

Lan, C.-Y. David

L. Dou, M. Li, Z. Li, A. Xu, C.-Y. David Lan, and S.-K. Liaw, “Improvement in characteristics of a distributed Raman fiber amplifier by using signal-pump double-pass scheme,” Optical Engineering 45, No. 094201 (2006).
[Crossref]

LaRochelle, S.

M. Rochette, M. Guy, S. LaRochelle, J. Lauzon, and F. Trépanier, “Gain equalization of EDFAs’ with Bragg gratings,” Photon. Technol. Lett. 11, 536–538 (1999).
[Crossref]

Lauzon, J.

M. Rochette, M. Guy, S. LaRochelle, J. Lauzon, and F. Trépanier, “Gain equalization of EDFAs’ with Bragg gratings,” Photon. Technol. Lett. 11, 536–538 (1999).
[Crossref]

Li, M.

L. Dou, S.-K. Liaw, M. Li, Y.-T. Lin, and A. Xu, “Parameters optimization of high efficiency discrete Raman fiber amplifier by using the coupled steady-state equations,” Opt. Commun. 273, 149–152 (2007).
[Crossref]

L. Dou, M. Li, Z. Li, A. Xu, C.-Y. David Lan, and S.-K. Liaw, “Improvement in characteristics of a distributed Raman fiber amplifier by using signal-pump double-pass scheme,” Optical Engineering 45, No. 094201 (2006).
[Crossref]

Li, Z.

L. Dou, M. Li, Z. Li, A. Xu, C.-Y. David Lan, and S.-K. Liaw, “Improvement in characteristics of a distributed Raman fiber amplifier by using signal-pump double-pass scheme,” Optical Engineering 45, No. 094201 (2006).
[Crossref]

Liaw, S.-K.

L. Dou, S.-K. Liaw, M. Li, Y.-T. Lin, and A. Xu, “Parameters optimization of high efficiency discrete Raman fiber amplifier by using the coupled steady-state equations,” Opt. Commun. 273, 149–152 (2007).
[Crossref]

L. Dou, M. Li, Z. Li, A. Xu, C.-Y. David Lan, and S.-K. Liaw, “Improvement in characteristics of a distributed Raman fiber amplifier by using signal-pump double-pass scheme,” Optical Engineering 45, No. 094201 (2006).
[Crossref]

S.-K. Liaw, K.-P. Ho, and S. Chi, “Dynamic power-equalized EDFA modules using strain tunable fiber gratings,” IEEE Photon. Technol. Lett. 11, 797–799 (1999)
[Crossref]

Lin, Y.-T.

L. Dou, S.-K. Liaw, M. Li, Y.-T. Lin, and A. Xu, “Parameters optimization of high efficiency discrete Raman fiber amplifier by using the coupled steady-state equations,” Opt. Commun. 273, 149–152 (2007).
[Crossref]

Lyle, J. A.

C. J. Anderson and J. A. Lyle, “Technique for evaluating system performance using Q in numerical simulations exhibiting intersymbol interference,” Electron. Lett. 30, 71–72 (1994).
[Crossref]

Pálsdóttir, B.

L. G-Nielsen, M. Wandel, P. Kristensen, C. Jørgensen, L.Vilbrad Jørgensen, B. Edvold, B. Pálsdóttir, and D. Jakobsen, “Dispersion-Compensating Fibers,” J. of Lightwave Technol. 23, 3566–3579 (2005).
[Crossref]

Pedrazzani, C.

Y. Sun, J.W. Y., A.K. Sulhoff, J.L. Srivastava, T.A. Zyskind, J.R. Strasser, C. Pedrazzani, J. Wolf, J.B. Zhou, R.P. Judkins, A.M. Espindola, and Vengsarkar, “80 nm ultra-wide-band erbium-doped silica fiber amplifier,” Electron. Lett. 33, 1965–1967 (1997).
[Crossref]

Perlin, V. E.

Press, W. H.

W. H. Press, Numerical Recipes in C: the art of scientific computing, (Cambridge University Press, New York1995).

Rochette, M.

M. Rochette, M. Guy, S. LaRochelle, J. Lauzon, and F. Trépanier, “Gain equalization of EDFAs’ with Bragg gratings,” Photon. Technol. Lett. 11, 536–538 (1999).
[Crossref]

Shum, P.

M. Tang, Y. D. Gong, and P. Shum, “Design of Double-Pass Dispersion-Compensated Raman Amplifiers for Improved Efficiency: Guidelines and Optimizations,” J. Lightwave Technology 22, 1899–1908 (2004).
[Crossref]

Srivastava, J.L.

Y. Sun, J.W. Y., A.K. Sulhoff, J.L. Srivastava, T.A. Zyskind, J.R. Strasser, C. Pedrazzani, J. Wolf, J.B. Zhou, R.P. Judkins, A.M. Espindola, and Vengsarkar, “80 nm ultra-wide-band erbium-doped silica fiber amplifier,” Electron. Lett. 33, 1965–1967 (1997).
[Crossref]

Strasser, J.R.

Y. Sun, J.W. Y., A.K. Sulhoff, J.L. Srivastava, T.A. Zyskind, J.R. Strasser, C. Pedrazzani, J. Wolf, J.B. Zhou, R.P. Judkins, A.M. Espindola, and Vengsarkar, “80 nm ultra-wide-band erbium-doped silica fiber amplifier,” Electron. Lett. 33, 1965–1967 (1997).
[Crossref]

Sulhoff, A.K.

Y. Sun, J.W. Y., A.K. Sulhoff, J.L. Srivastava, T.A. Zyskind, J.R. Strasser, C. Pedrazzani, J. Wolf, J.B. Zhou, R.P. Judkins, A.M. Espindola, and Vengsarkar, “80 nm ultra-wide-band erbium-doped silica fiber amplifier,” Electron. Lett. 33, 1965–1967 (1997).
[Crossref]

Sun, Y.

Y. Sun, J.W. Y., A.K. Sulhoff, J.L. Srivastava, T.A. Zyskind, J.R. Strasser, C. Pedrazzani, J. Wolf, J.B. Zhou, R.P. Judkins, A.M. Espindola, and Vengsarkar, “80 nm ultra-wide-band erbium-doped silica fiber amplifier,” Electron. Lett. 33, 1965–1967 (1997).
[Crossref]

Tang, M.

M. Tang, Y. D. Gong, and P. Shum, “Design of Double-Pass Dispersion-Compensated Raman Amplifiers for Improved Efficiency: Guidelines and Optimizations,” J. Lightwave Technology 22, 1899–1908 (2004).
[Crossref]

Trépanier, F.

M. Rochette, M. Guy, S. LaRochelle, J. Lauzon, and F. Trépanier, “Gain equalization of EDFAs’ with Bragg gratings,” Photon. Technol. Lett. 11, 536–538 (1999).
[Crossref]

Vengsarkar,

Y. Sun, J.W. Y., A.K. Sulhoff, J.L. Srivastava, T.A. Zyskind, J.R. Strasser, C. Pedrazzani, J. Wolf, J.B. Zhou, R.P. Judkins, A.M. Espindola, and Vengsarkar, “80 nm ultra-wide-band erbium-doped silica fiber amplifier,” Electron. Lett. 33, 1965–1967 (1997).
[Crossref]

Wandel, M.

L. G-Nielsen, M. Wandel, P. Kristensen, C. Jørgensen, L.Vilbrad Jørgensen, B. Edvold, B. Pálsdóttir, and D. Jakobsen, “Dispersion-Compensating Fibers,” J. of Lightwave Technol. 23, 3566–3579 (2005).
[Crossref]

Wen, S.

S. Wen and S. Chi, “DCF-based fiber Raman amplifiers with fiber grating reflectors for tailoring accumulated-dispersion spectra,” Opt. Commun. 272, 247–251 (2007).
[Crossref]

Willner, A.

L Kazovsky, S. Benedetto, and A. Willner, Optical fiber Communication Systems, 1st ed. (Artech House Publishers, Norwood, 1996).

Winful, H. G.

Wolf, J.

Y. Sun, J.W. Y., A.K. Sulhoff, J.L. Srivastava, T.A. Zyskind, J.R. Strasser, C. Pedrazzani, J. Wolf, J.B. Zhou, R.P. Judkins, A.M. Espindola, and Vengsarkar, “80 nm ultra-wide-band erbium-doped silica fiber amplifier,” Electron. Lett. 33, 1965–1967 (1997).
[Crossref]

Xu, A.

L. Dou, S.-K. Liaw, M. Li, Y.-T. Lin, and A. Xu, “Parameters optimization of high efficiency discrete Raman fiber amplifier by using the coupled steady-state equations,” Opt. Commun. 273, 149–152 (2007).
[Crossref]

L. Dou, M. Li, Z. Li, A. Xu, C.-Y. David Lan, and S.-K. Liaw, “Improvement in characteristics of a distributed Raman fiber amplifier by using signal-pump double-pass scheme,” Optical Engineering 45, No. 094201 (2006).
[Crossref]

Y., J.W.

Y. Sun, J.W. Y., A.K. Sulhoff, J.L. Srivastava, T.A. Zyskind, J.R. Strasser, C. Pedrazzani, J. Wolf, J.B. Zhou, R.P. Judkins, A.M. Espindola, and Vengsarkar, “80 nm ultra-wide-band erbium-doped silica fiber amplifier,” Electron. Lett. 33, 1965–1967 (1997).
[Crossref]

Zhou, J.B.

Y. Sun, J.W. Y., A.K. Sulhoff, J.L. Srivastava, T.A. Zyskind, J.R. Strasser, C. Pedrazzani, J. Wolf, J.B. Zhou, R.P. Judkins, A.M. Espindola, and Vengsarkar, “80 nm ultra-wide-band erbium-doped silica fiber amplifier,” Electron. Lett. 33, 1965–1967 (1997).
[Crossref]

Zyskind, T.A.

Y. Sun, J.W. Y., A.K. Sulhoff, J.L. Srivastava, T.A. Zyskind, J.R. Strasser, C. Pedrazzani, J. Wolf, J.B. Zhou, R.P. Judkins, A.M. Espindola, and Vengsarkar, “80 nm ultra-wide-band erbium-doped silica fiber amplifier,” Electron. Lett. 33, 1965–1967 (1997).
[Crossref]

Electron. Lett. (2)

Y. Sun, J.W. Y., A.K. Sulhoff, J.L. Srivastava, T.A. Zyskind, J.R. Strasser, C. Pedrazzani, J. Wolf, J.B. Zhou, R.P. Judkins, A.M. Espindola, and Vengsarkar, “80 nm ultra-wide-band erbium-doped silica fiber amplifier,” Electron. Lett. 33, 1965–1967 (1997).
[Crossref]

C. J. Anderson and J. A. Lyle, “Technique for evaluating system performance using Q in numerical simulations exhibiting intersymbol interference,” Electron. Lett. 30, 71–72 (1994).
[Crossref]

IEEE Photon. Technol. Lett. (1)

S.-K. Liaw, K.-P. Ho, and S. Chi, “Dynamic power-equalized EDFA modules using strain tunable fiber gratings,” IEEE Photon. Technol. Lett. 11, 797–799 (1999)
[Crossref]

J. Lightwave Technol. (2)

J. Lightwave Technology (1)

M. Tang, Y. D. Gong, and P. Shum, “Design of Double-Pass Dispersion-Compensated Raman Amplifiers for Improved Efficiency: Guidelines and Optimizations,” J. Lightwave Technology 22, 1899–1908 (2004).
[Crossref]

J. of Lightwave Technol. (1)

L. G-Nielsen, M. Wandel, P. Kristensen, C. Jørgensen, L.Vilbrad Jørgensen, B. Edvold, B. Pálsdóttir, and D. Jakobsen, “Dispersion-Compensating Fibers,” J. of Lightwave Technol. 23, 3566–3579 (2005).
[Crossref]

Mathematics of Computation (1)

C. G. Broyden, “A class of methods for solving nonlinear simultaneous equations,” Mathematics of Computation 19, 577–593 (1965).
[Crossref]

Opt. Commun. (2)

S. Wen and S. Chi, “DCF-based fiber Raman amplifiers with fiber grating reflectors for tailoring accumulated-dispersion spectra,” Opt. Commun. 272, 247–251 (2007).
[Crossref]

L. Dou, S.-K. Liaw, M. Li, Y.-T. Lin, and A. Xu, “Parameters optimization of high efficiency discrete Raman fiber amplifier by using the coupled steady-state equations,” Opt. Commun. 273, 149–152 (2007).
[Crossref]

Optical Engineering (1)

L. Dou, M. Li, Z. Li, A. Xu, C.-Y. David Lan, and S.-K. Liaw, “Improvement in characteristics of a distributed Raman fiber amplifier by using signal-pump double-pass scheme,” Optical Engineering 45, No. 094201 (2006).
[Crossref]

Photon. Technol. Lett. (1)

M. Rochette, M. Guy, S. LaRochelle, J. Lauzon, and F. Trépanier, “Gain equalization of EDFAs’ with Bragg gratings,” Photon. Technol. Lett. 11, 536–538 (1999).
[Crossref]

Other (3)

W. H. Press, Numerical Recipes in C: the art of scientific computing, (Cambridge University Press, New York1995).

L Kazovsky, S. Benedetto, and A. Willner, Optical fiber Communication Systems, 1st ed. (Artech House Publishers, Norwood, 1996).

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, New York, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Configuration of the proposed RFA.

Fig. 2.
Fig. 2.

Residual dispersion of the RFA versus signal wavelength.

Fig. 3.
Fig. 3.

(a). Output power of the RFA versus signal wavelength. Fig. 3(b). Distributed effective loss coefficient of signal 1 along DCF.

Fig. 4.
Fig. 4.

(a) BER as a function of input signal wavelength, and (b) Q value as a function of input signal wavelength.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

L DCF = L SMF D SMF ( λ ) 2 D DCF ( λ )
d P ± ( z , v i ) dz = α ( v i ) P ± ( z , v i ) ± P ± ( z , v i ) m = 1 i 1 g R ( v m v i ) Γ A eff [ P ± ( z , v i ) + P ( z , v i ) ]
P ± ( z , v i ) m = i + 1 n v i v m g R ( v i v m ) Γ A eff [ P ± ( z , v i ) + P ( z , v i ) ]
f i ( R i ) = abs ( P i avg [ P ( R ) ] avg [ P ( R ) ] ) i [ 1 , N ]
R b = C 4 D res λ 2
i A j z + i v gj A j t 1 2 β 2 j 2 A j t 2 + i 6 β 3 j 3 A j t 3 + γ ( A j 2 + 2 m j M A m 2 ) A j = i α 2 A i
BER = 1 2 erfc ( Q 2 )

Metrics