Abstract

This article presents a projection system with a novel composite pattern for one-shot acquisition of 3D surface shape. The pattern is composed of color encoded stripes and cosinoidal intensity fringes, with parallel arrangement. The stripe edges offer absolute height phases with high accuracy, and the cosinoidal fringes provide abundant relative phases involved in the intensity distribution. Wavelet transform is utilized to obtain the relative phase distribution of the fringe pattern, and the absolute height phases measured by triangulation are combined to calibrate the phase data in unwrapping, so as to eliminate the initial and noise errors and to reduce the accumulation and approximation errors. Numerical simulations are performed to prove the new unwrapping algorithms and actual experiments are carried out to show the validity of the proposed technique for accurate 3-D shape measurement.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. E. Trucco and A. Verri, Introductory Techniques for 3-D Computer Vision, (Prentice Hall, 1998).
  2. R. Furukawa and H. Kawasaki, "Interactive shape acquisition using marker attached laser projector," in Proceedings of the Fourth International Conference on 3-D Digital Imaging and Modeling (2003), pp. 491- 498.
  3. J. Salvia, J. Pages, and J. Batlle, "Pattern codification strategies in structured light systems," Pattern Recogn. 37, 827-849 (2004).
    [CrossRef]
  4. D. Caspi, N. Kiryati, and J. Shamir, "Range imaging with adaptive color structured light," IEEE Trans Pattern Anal. Mach. Intell. 20, 470-480 (1998).
    [CrossRef]
  5. F. Tsalakanidou, F. Forster, S. Malassiotis and M. G. Strintzis, "Real-time acquisition of depth and color images using structured light and its application to 3D face recognition," Real-Time Imag. 11, 358-369 (2005).
    [CrossRef]
  6. Z. J. Geng, "Rainbow 3-dimensional camera: new concept of high-speed 3-dimensional vision systems," Opt. Eng. 35, 376-383 (1996).
    [CrossRef]
  7. M. S. Jeong and S. W. Kim, "Color grating projection moiré with time-integral fringe capturing for high-speed 3-D imaging," Opt. Eng. 41, 1912-1917 (2002).
    [CrossRef]
  8. O. A. Skydan, M. J. Lalor, and D. R. Burton, "Technique for phase measurement and surface reconstruction by use of colored structured light," Appl. Opt. 41, 6104-6117 (2002).
    [CrossRef] [PubMed]
  9. Z. H. Zhang, C. E. Towers, and D. P. Towers "Time efficient color fringe projection system for 3D shape and color using optimum 3-frequency selection," Opt. Express 14, 6444-6455 (2006).
    [CrossRef] [PubMed]
  10. S. Zhang and S. -T. Yau, "High-resolution, real-time 3D absolute coordinate measurement based on a phase-shifting method," Opt. Express 14, 2644-2649 (2006).
    [CrossRef] [PubMed]
  11. C. Karaalioglu and Y. Skarlatos, "Fourier transform method for measurement of thin film thickness by speckle interferometry," Opt. Eng. 42, 1694-1698 (2003).
    [CrossRef]
  12. H. J. Li, H. J. Chen, J. Zhang, C. Y. Xiong, and J. Fang, "Statistical searching of deformation phases on wavelet transform maps of fringe patterns," Opt. Laser Technol. 39, 275-281 (2006).
    [CrossRef]
  13. C. Guan, L. G. Hassebrook, and D. L. Lau, "Composite structured light pattern for three-dimensional video," Opt. Express 11, 406-417 (2003).
    [CrossRef] [PubMed]
  14. A. K.C. Wong, P. Niu, and X. He, "Fast acquisition of dense depth data by a new structured light scheme," Comput. Vis. Image Underst. 98, 398-422 (2005).
    [CrossRef]
  15. P. Fong and F. Buron, "Sensing deforming and moving objects with commercial off the shelf hardware," in Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2005), Vol. 3, pp.20-26.
  16. J Fang, C. Y. Xiong and Z. L. Yang, "Digital transform processing of carrier fringe patterns from speckle-shearing interferometry," J. Mod. Opt. 48, 507-520 (2001).
    [CrossRef]
  17. H. J. Li and H. J. Chen, "Phase solution of modulated fringe carrier using wavelet transform," Acta Sci. Nat. Uni. Pek. 43, 317-320 (2007).

2007 (1)

H. J. Li and H. J. Chen, "Phase solution of modulated fringe carrier using wavelet transform," Acta Sci. Nat. Uni. Pek. 43, 317-320 (2007).

2006 (3)

2005 (2)

F. Tsalakanidou, F. Forster, S. Malassiotis and M. G. Strintzis, "Real-time acquisition of depth and color images using structured light and its application to 3D face recognition," Real-Time Imag. 11, 358-369 (2005).
[CrossRef]

A. K.C. Wong, P. Niu, and X. He, "Fast acquisition of dense depth data by a new structured light scheme," Comput. Vis. Image Underst. 98, 398-422 (2005).
[CrossRef]

2004 (1)

J. Salvia, J. Pages, and J. Batlle, "Pattern codification strategies in structured light systems," Pattern Recogn. 37, 827-849 (2004).
[CrossRef]

2003 (2)

C. Karaalioglu and Y. Skarlatos, "Fourier transform method for measurement of thin film thickness by speckle interferometry," Opt. Eng. 42, 1694-1698 (2003).
[CrossRef]

C. Guan, L. G. Hassebrook, and D. L. Lau, "Composite structured light pattern for three-dimensional video," Opt. Express 11, 406-417 (2003).
[CrossRef] [PubMed]

2002 (2)

M. S. Jeong and S. W. Kim, "Color grating projection moiré with time-integral fringe capturing for high-speed 3-D imaging," Opt. Eng. 41, 1912-1917 (2002).
[CrossRef]

O. A. Skydan, M. J. Lalor, and D. R. Burton, "Technique for phase measurement and surface reconstruction by use of colored structured light," Appl. Opt. 41, 6104-6117 (2002).
[CrossRef] [PubMed]

2001 (1)

J Fang, C. Y. Xiong and Z. L. Yang, "Digital transform processing of carrier fringe patterns from speckle-shearing interferometry," J. Mod. Opt. 48, 507-520 (2001).
[CrossRef]

1998 (1)

D. Caspi, N. Kiryati, and J. Shamir, "Range imaging with adaptive color structured light," IEEE Trans Pattern Anal. Mach. Intell. 20, 470-480 (1998).
[CrossRef]

1996 (1)

Z. J. Geng, "Rainbow 3-dimensional camera: new concept of high-speed 3-dimensional vision systems," Opt. Eng. 35, 376-383 (1996).
[CrossRef]

Acta Sci. Nat. Uni. Pek. (1)

H. J. Li and H. J. Chen, "Phase solution of modulated fringe carrier using wavelet transform," Acta Sci. Nat. Uni. Pek. 43, 317-320 (2007).

Appl. Opt. (1)

Comput. Vis. Image Underst. (1)

A. K.C. Wong, P. Niu, and X. He, "Fast acquisition of dense depth data by a new structured light scheme," Comput. Vis. Image Underst. 98, 398-422 (2005).
[CrossRef]

IEEE Trans Pattern Anal. Mach. Intell. (1)

D. Caspi, N. Kiryati, and J. Shamir, "Range imaging with adaptive color structured light," IEEE Trans Pattern Anal. Mach. Intell. 20, 470-480 (1998).
[CrossRef]

J. Mod. Opt. (1)

J Fang, C. Y. Xiong and Z. L. Yang, "Digital transform processing of carrier fringe patterns from speckle-shearing interferometry," J. Mod. Opt. 48, 507-520 (2001).
[CrossRef]

Opt. Eng. (3)

C. Karaalioglu and Y. Skarlatos, "Fourier transform method for measurement of thin film thickness by speckle interferometry," Opt. Eng. 42, 1694-1698 (2003).
[CrossRef]

Z. J. Geng, "Rainbow 3-dimensional camera: new concept of high-speed 3-dimensional vision systems," Opt. Eng. 35, 376-383 (1996).
[CrossRef]

M. S. Jeong and S. W. Kim, "Color grating projection moiré with time-integral fringe capturing for high-speed 3-D imaging," Opt. Eng. 41, 1912-1917 (2002).
[CrossRef]

Opt. Express (3)

Opt. Laser Technol. (1)

H. J. Li, H. J. Chen, J. Zhang, C. Y. Xiong, and J. Fang, "Statistical searching of deformation phases on wavelet transform maps of fringe patterns," Opt. Laser Technol. 39, 275-281 (2006).
[CrossRef]

Pattern Recogn. (1)

J. Salvia, J. Pages, and J. Batlle, "Pattern codification strategies in structured light systems," Pattern Recogn. 37, 827-849 (2004).
[CrossRef]

Real-Time Imag. (1)

F. Tsalakanidou, F. Forster, S. Malassiotis and M. G. Strintzis, "Real-time acquisition of depth and color images using structured light and its application to 3D face recognition," Real-Time Imag. 11, 358-369 (2005).
[CrossRef]

Other (3)

E. Trucco and A. Verri, Introductory Techniques for 3-D Computer Vision, (Prentice Hall, 1998).

R. Furukawa and H. Kawasaki, "Interactive shape acquisition using marker attached laser projector," in Proceedings of the Fourth International Conference on 3-D Digital Imaging and Modeling (2003), pp. 491- 498.

P. Fong and F. Buron, "Sensing deforming and moving objects with commercial off the shelf hardware," in Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2005), Vol. 3, pp.20-26.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Optical system for structured pattern projection and triangulation.

Fig. 2.
Fig. 2.

The structured light pattern consists of color encoded stripes (a) and cosinoidal intensity fringes (b), to form the composite pattern (c).

Fig. 3.
Fig. 3.

(a). A captured image from the reference plane. (b) The extracted pattern in the hue channel. (c) The extracted pattern in the value channel.

Fig. 4.
Fig. 4.

(a). The stripe edges searched by the Canny edge detector. (b) The edge lines processed by the statistical and morphological algorithms.

Fig. 5.
Fig. 5.

A simulation of WT processing and unwrapping for a signal of ϕm (x)=5|sin(2πx) (a). The WT magnitude map (b) and the phase map (c) are used to track the magnitude maxima and the fringe phases. The results from the traditional WT processing (d) and from the proposed processing (e).are compared with the designed values.

Fig. 6.
Fig. 6.

(a). A pattern projected on a piece of curved paper. (b) 3D surface shape from traditional wavelet transform and unwrap process. (c) 3D shape from the proposed method by eliminating the approximation errors in WT process.

Fig. 7.
Fig. 7.

(a). A pattern projected on a female model. (b) 3D surface shape from traditional wavelet transform and unwrapping process. (c) 3D shape topography from the proposed method by calibrating the phases in unwrapping.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

h = ( H × d × k ) ( d × k + D ) ,
V ( x ) = cos ( 2 π x f v ) × 3 8 + 5 8 ,
H t = { ( G B ) ( max ( R , G , B ) min ( R , G , B ) ) , R = max ( R , G , B ) 2 + ( B R ) ( max ( R , G , B ) min ( R , G , B ) ) , G = max ( R , G , B ) 4 + ( R G ) ( max ( R , G , B ) min ( R , G , B ) ) , B = max ( R , G , B )
H = { H t 6 , H t > 0 H t 6 + 2 , H t < 0 ,
S = ( max ( R , G , B ) min ( R , G , B ) ) max ( R , G , B )
V = max ( R , G , B )
I ( x ) = I 0 ( x ) + I 1 ( x ) cos ( ϕ ( x ) ) ,
ϕ ( x ) = 2 π f ( x ) + ϕ m ( x ) ,
W T I ( a , b ) = 1 a I ( x ) ψ * ( x b a ) dx ,
WT ( a , b ) = 2 π ( 1 + a 4 ϕ 2 ( b ) ) 1 4 exp ( i 2 arctan ( a 2 ϕ ( b ) ) )
× exp ( a 2 2 ( ϕ ( b ) ω 0 a ) 2 1 1 i a 2 ϕ ( b ) ) I 1 ( b ) exp ( i ϕ ( b ) ) .
ϕ 1 diff = ϕ 1 ϕ 1 unwrap , ϕ len diff = ϕ len ϕ len unwrap .
ϕ i linear = ( ϕ len diff ϕ 1 diff ) ( len 1 ) × ( i 1 ) + ϕ 1 diff .
ϕ i = ϕ i unwrap + ϕ i linear .
I ( x ) = 1 + cos ( 32 π + 5 sin ( 2 π x ) ) .

Metrics