Abstract

Near-infrared photoacoustic images of regions-of-interest in 4 of the 5 cases of patients with symptomatic breasts reveal higher intensity regions which we attribute to vascular distribution associated with cancer. Of the 2 cases presented here, one is especially significant where benign indicators dominate in conventional radiological images, while photoacoustic images reveal vascular features suggestive of malignancy, which is corroborated by histopathology. The results show that photoacoustic imaging may have potential in visualizing certain breast cancers based on intrinsic optical absorption contrast. A future role for the approach could be in supplementing conventional breast imaging to assist detection and/or diagnosis.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Parkin, F. Bray, J. Ferlay, and P. Pisani, “Global Cancer Statistics, 2002,” C. A. Cancer J. Clin. 55, 74–108 (2005).
    [Crossref]
  2. S. J. Nass, I. C. Henderson, and J. C. Lashof, Mammography and Beyond: Developing Technologies for the Early Detection of Breast Cancer (National Academy Press, 2001).
  3. M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: Initial clinical results,” PNAS 94, 6468–6473 (1997).
    [Crossref] [PubMed]
  4. D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, and P. M. Schlag, “Development of a time domain optical mammograph and first in vivo applications,” Appl. Opt. 38, 2927–2943 (1999).
    [Crossref]
  5. P. Carmeliet and R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature 407, 249–257 (2000).
    [Crossref] [PubMed]
  6. P. Vaupel, F. Kallinowski, and P. Okunieff, “Blood Flow, Oxygen and Nutrient Supply, and Metabolic Microenvironment of Human Tumors: A Review,” Cancer Res. 49, 6449–6465 (1989).
    [PubMed]
  7. B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
    [Crossref] [PubMed]
  8. B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative Hemoglobin Tomography with Diffuse Near-Infrared Spectroscopy: Pilot Results in the Breast,” Radiology 218, 261–266 (2001).
    [PubMed]
  9. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
    [Crossref]
  10. A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, and P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” Proc. SPIE 4618, 81–94 (2002).
    [Crossref]
  11. T. Khamapirad, P. M. Henrichs, K. Mehta, T. G. Miller, A. T. Yee, and A. A. Oraevsky, “Diagnostic imaging of breast cancer with LOIS: clinical feasibility,” Proc. SPIE 5697, 35–44 (2005).
    [Crossref]
  12. R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, “Breast Cancer in vivo: Contrast Enhancement with Thermoacoustic CT at 434 MHz-Feasibility Study,” Radiology 216, 279–283 (2000).
    [PubMed]
  13. S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “The Twente Photoacoustic Mammoscope: system overview and performance,” Phys. Med. Biol. 502543–2557 (2005).
    [Crossref] [PubMed]
  14. S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” J. Biomed. Opt. 9, 1172–1181 (2004).
    [Crossref] [PubMed]
  15. F. A. Duck, Physical Properties of Tissue (Academic Press, 1990).
  16. L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography,” J. Biomed. Opt. 9, 1137–1142 (2004).
    [Crossref] [PubMed]
  17. T. P. Padera, B. R. Stoll, J. B. Tooredman, D. Capen, E. Di Tomaso, and R. K. Jain, “Cancer cells compress intratumour vessels,” Nature 427, 695 (2004).
    [Crossref] [PubMed]
  18. M. Sarntinoranont, F. Rooney, and M. Ferrari, “Interstitial stress and fluid pressure within a growing tumor,” Ann. Biomed. Eng. 31, 327–335 (2003).
    [Crossref] [PubMed]
  19. J. Holash, P. C. Maisonpierre, D. Compton, P. Boland, C. R. Alexander, D. Zagzag, G. D. Yancopoulos, and S. J. Wiegand, “Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF,” Science 284, 1994–1998 (1999).
    [Crossref] [PubMed]
  20. G. D. Yancopoulos, S. Davis, N. W. Gale, J. S. Rudge, S. J. Wiegand, and J. Holash, “Vascular-specific growth factors and blood vessel formation,” Nature 407, 242–248 (2000).
    [Crossref] [PubMed]
  21. R. Matsubayashi, Y. Matsuo, G. Edakuni, T. Satoh, O. Tokunaga, and S. Kudo, “Breast Masses with Peripheral Rim Enhancement on Dynamic Contrast-enhanced MR Images: Correlation of MR Findings with Histologic Features and Expression of Growth Factors,” Radiology 217, 841–848 (2000).
    [PubMed]
  22. J. Laufer, D. Delpy, C. Elwell, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy:application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol. 52, 141–168 (2007).
    [Crossref]

2007 (1)

J. Laufer, D. Delpy, C. Elwell, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy:application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol. 52, 141–168 (2007).
[Crossref]

2006 (1)

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
[Crossref]

2005 (3)

T. Khamapirad, P. M. Henrichs, K. Mehta, T. G. Miller, A. T. Yee, and A. A. Oraevsky, “Diagnostic imaging of breast cancer with LOIS: clinical feasibility,” Proc. SPIE 5697, 35–44 (2005).
[Crossref]

D. M. Parkin, F. Bray, J. Ferlay, and P. Pisani, “Global Cancer Statistics, 2002,” C. A. Cancer J. Clin. 55, 74–108 (2005).
[Crossref]

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “The Twente Photoacoustic Mammoscope: system overview and performance,” Phys. Med. Biol. 502543–2557 (2005).
[Crossref] [PubMed]

2004 (3)

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” J. Biomed. Opt. 9, 1172–1181 (2004).
[Crossref] [PubMed]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography,” J. Biomed. Opt. 9, 1137–1142 (2004).
[Crossref] [PubMed]

T. P. Padera, B. R. Stoll, J. B. Tooredman, D. Capen, E. Di Tomaso, and R. K. Jain, “Cancer cells compress intratumour vessels,” Nature 427, 695 (2004).
[Crossref] [PubMed]

2003 (1)

M. Sarntinoranont, F. Rooney, and M. Ferrari, “Interstitial stress and fluid pressure within a growing tumor,” Ann. Biomed. Eng. 31, 327–335 (2003).
[Crossref] [PubMed]

2002 (1)

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, and P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” Proc. SPIE 4618, 81–94 (2002).
[Crossref]

2001 (1)

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative Hemoglobin Tomography with Diffuse Near-Infrared Spectroscopy: Pilot Results in the Breast,” Radiology 218, 261–266 (2001).
[PubMed]

2000 (5)

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[Crossref] [PubMed]

P. Carmeliet and R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature 407, 249–257 (2000).
[Crossref] [PubMed]

R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, “Breast Cancer in vivo: Contrast Enhancement with Thermoacoustic CT at 434 MHz-Feasibility Study,” Radiology 216, 279–283 (2000).
[PubMed]

G. D. Yancopoulos, S. Davis, N. W. Gale, J. S. Rudge, S. J. Wiegand, and J. Holash, “Vascular-specific growth factors and blood vessel formation,” Nature 407, 242–248 (2000).
[Crossref] [PubMed]

R. Matsubayashi, Y. Matsuo, G. Edakuni, T. Satoh, O. Tokunaga, and S. Kudo, “Breast Masses with Peripheral Rim Enhancement on Dynamic Contrast-enhanced MR Images: Correlation of MR Findings with Histologic Features and Expression of Growth Factors,” Radiology 217, 841–848 (2000).
[PubMed]

1999 (2)

J. Holash, P. C. Maisonpierre, D. Compton, P. Boland, C. R. Alexander, D. Zagzag, G. D. Yancopoulos, and S. J. Wiegand, “Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF,” Science 284, 1994–1998 (1999).
[Crossref] [PubMed]

D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, and P. M. Schlag, “Development of a time domain optical mammograph and first in vivo applications,” Appl. Opt. 38, 2927–2943 (1999).
[Crossref]

1997 (1)

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: Initial clinical results,” PNAS 94, 6468–6473 (1997).
[Crossref] [PubMed]

1989 (1)

P. Vaupel, F. Kallinowski, and P. Okunieff, “Blood Flow, Oxygen and Nutrient Supply, and Metabolic Microenvironment of Human Tumors: A Review,” Cancer Res. 49, 6449–6465 (1989).
[PubMed]

Alexander, C. R.

J. Holash, P. C. Maisonpierre, D. Compton, P. Boland, C. R. Alexander, D. Zagzag, G. D. Yancopoulos, and S. J. Wiegand, “Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF,” Science 284, 1994–1998 (1999).
[Crossref] [PubMed]

Andreev, V. G.

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, and P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” Proc. SPIE 4618, 81–94 (2002).
[Crossref]

Beard, P.

J. Laufer, D. Delpy, C. Elwell, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy:application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol. 52, 141–168 (2007).
[Crossref]

Boland, P.

J. Holash, P. C. Maisonpierre, D. Compton, P. Boland, C. R. Alexander, D. Zagzag, G. D. Yancopoulos, and S. J. Wiegand, “Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF,” Science 284, 1994–1998 (1999).
[Crossref] [PubMed]

Bray, F.

D. M. Parkin, F. Bray, J. Ferlay, and P. Pisani, “Global Cancer Statistics, 2002,” C. A. Cancer J. Clin. 55, 74–108 (2005).
[Crossref]

Butler, J.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[Crossref] [PubMed]

Capen, D.

T. P. Padera, B. R. Stoll, J. B. Tooredman, D. Capen, E. Di Tomaso, and R. K. Jain, “Cancer cells compress intratumour vessels,” Nature 427, 695 (2004).
[Crossref] [PubMed]

Carmeliet, P.

P. Carmeliet and R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature 407, 249–257 (2000).
[Crossref] [PubMed]

Cerussi, A.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[Crossref] [PubMed]

Compton, D.

J. Holash, P. C. Maisonpierre, D. Compton, P. Boland, C. R. Alexander, D. Zagzag, G. D. Yancopoulos, and S. J. Wiegand, “Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF,” Science 284, 1994–1998 (1999).
[Crossref] [PubMed]

Cubeddu, R.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography,” J. Biomed. Opt. 9, 1137–1142 (2004).
[Crossref] [PubMed]

Danesini, G. M.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography,” J. Biomed. Opt. 9, 1137–1142 (2004).
[Crossref] [PubMed]

Davis, S.

G. D. Yancopoulos, S. Davis, N. W. Gale, J. S. Rudge, S. J. Wiegand, and J. Holash, “Vascular-specific growth factors and blood vessel formation,” Nature 407, 242–248 (2000).
[Crossref] [PubMed]

Delpy, D.

J. Laufer, D. Delpy, C. Elwell, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy:application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol. 52, 141–168 (2007).
[Crossref]

Di Tomaso, E.

T. P. Padera, B. R. Stoll, J. B. Tooredman, D. Capen, E. Di Tomaso, and R. K. Jain, “Cancer cells compress intratumour vessels,” Nature 427, 695 (2004).
[Crossref] [PubMed]

Duck, F. A.

F. A. Duck, Physical Properties of Tissue (Academic Press, 1990).

Edakuni, G.

R. Matsubayashi, Y. Matsuo, G. Edakuni, T. Satoh, O. Tokunaga, and S. Kudo, “Breast Masses with Peripheral Rim Enhancement on Dynamic Contrast-enhanced MR Images: Correlation of MR Findings with Histologic Features and Expression of Growth Factors,” Radiology 217, 841–848 (2000).
[PubMed]

Elwell, C.

J. Laufer, D. Delpy, C. Elwell, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy:application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol. 52, 141–168 (2007).
[Crossref]

Espinoza, J.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[Crossref] [PubMed]

Fantini, S.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: Initial clinical results,” PNAS 94, 6468–6473 (1997).
[Crossref] [PubMed]

Ferlay, J.

D. M. Parkin, F. Bray, J. Ferlay, and P. Pisani, “Global Cancer Statistics, 2002,” C. A. Cancer J. Clin. 55, 74–108 (2005).
[Crossref]

Ferrari, M.

M. Sarntinoranont, F. Rooney, and M. Ferrari, “Interstitial stress and fluid pressure within a growing tumor,” Ann. Biomed. Eng. 31, 327–335 (2003).
[Crossref] [PubMed]

Franceschini, M. A.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: Initial clinical results,” PNAS 94, 6468–6473 (1997).
[Crossref] [PubMed]

Gaida, G.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: Initial clinical results,” PNAS 94, 6468–6473 (1997).
[Crossref] [PubMed]

Gale, N. W.

G. D. Yancopoulos, S. Davis, N. W. Gale, J. S. Rudge, S. J. Wiegand, and J. Holash, “Vascular-specific growth factors and blood vessel formation,” Nature 407, 242–248 (2000).
[Crossref] [PubMed]

Gatalica, Z.

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, and P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” Proc. SPIE 4618, 81–94 (2002).
[Crossref]

Gratton, E.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: Initial clinical results,” PNAS 94, 6468–6473 (1997).
[Crossref] [PubMed]

Grosenick, D.

Henderson, I. C.

S. J. Nass, I. C. Henderson, and J. C. Lashof, Mammography and Beyond: Developing Technologies for the Early Detection of Breast Cancer (National Academy Press, 2001).

Henrichs, P. M.

T. Khamapirad, P. M. Henrichs, K. Mehta, T. G. Miller, A. T. Yee, and A. A. Oraevsky, “Diagnostic imaging of breast cancer with LOIS: clinical feasibility,” Proc. SPIE 5697, 35–44 (2005).
[Crossref]

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, and P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” Proc. SPIE 4618, 81–94 (2002).
[Crossref]

Holash, J.

G. D. Yancopoulos, S. Davis, N. W. Gale, J. S. Rudge, S. J. Wiegand, and J. Holash, “Vascular-specific growth factors and blood vessel formation,” Nature 407, 242–248 (2000).
[Crossref] [PubMed]

J. Holash, P. C. Maisonpierre, D. Compton, P. Boland, C. R. Alexander, D. Zagzag, G. D. Yancopoulos, and S. J. Wiegand, “Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF,” Science 284, 1994–1998 (1999).
[Crossref] [PubMed]

Jain, R. K.

T. P. Padera, B. R. Stoll, J. B. Tooredman, D. Capen, E. Di Tomaso, and R. K. Jain, “Cancer cells compress intratumour vessels,” Nature 427, 695 (2004).
[Crossref] [PubMed]

P. Carmeliet and R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature 407, 249–257 (2000).
[Crossref] [PubMed]

Jess, H.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: Initial clinical results,” PNAS 94, 6468–6473 (1997).
[Crossref] [PubMed]

Kallinowski, F.

P. Vaupel, F. Kallinowski, and P. Okunieff, “Blood Flow, Oxygen and Nutrient Supply, and Metabolic Microenvironment of Human Tumors: A Review,” Cancer Res. 49, 6449–6465 (1989).
[PubMed]

Karabutov, A. A.

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, and P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” Proc. SPIE 4618, 81–94 (2002).
[Crossref]

Kaschke, M.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: Initial clinical results,” PNAS 94, 6468–6473 (1997).
[Crossref] [PubMed]

Khamapirad, T.

T. Khamapirad, P. M. Henrichs, K. Mehta, T. G. Miller, A. T. Yee, and A. A. Oraevsky, “Diagnostic imaging of breast cancer with LOIS: clinical feasibility,” Proc. SPIE 5697, 35–44 (2005).
[Crossref]

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, and P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” Proc. SPIE 4618, 81–94 (2002).
[Crossref]

Kharine, A.

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “The Twente Photoacoustic Mammoscope: system overview and performance,” Phys. Med. Biol. 502543–2557 (2005).
[Crossref] [PubMed]

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” J. Biomed. Opt. 9, 1172–1181 (2004).
[Crossref] [PubMed]

Kiser, W. L.

R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, “Breast Cancer in vivo: Contrast Enhancement with Thermoacoustic CT at 434 MHz-Feasibility Study,” Radiology 216, 279–283 (2000).
[PubMed]

Kruger, G. A.

R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, “Breast Cancer in vivo: Contrast Enhancement with Thermoacoustic CT at 434 MHz-Feasibility Study,” Radiology 216, 279–283 (2000).
[PubMed]

Kruger, R. A.

R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, “Breast Cancer in vivo: Contrast Enhancement with Thermoacoustic CT at 434 MHz-Feasibility Study,” Radiology 216, 279–283 (2000).
[PubMed]

Kudo, S.

R. Matsubayashi, Y. Matsuo, G. Edakuni, T. Satoh, O. Tokunaga, and S. Kudo, “Breast Masses with Peripheral Rim Enhancement on Dynamic Contrast-enhanced MR Images: Correlation of MR Findings with Histologic Features and Expression of Growth Factors,” Radiology 217, 841–848 (2000).
[PubMed]

Lanning, R.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[Crossref] [PubMed]

Lashof, J. C.

S. J. Nass, I. C. Henderson, and J. C. Lashof, Mammography and Beyond: Developing Technologies for the Early Detection of Breast Cancer (National Academy Press, 2001).

Laufer, J.

J. Laufer, D. Delpy, C. Elwell, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy:application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol. 52, 141–168 (2007).
[Crossref]

Maisonpierre, P. C.

J. Holash, P. C. Maisonpierre, D. Compton, P. Boland, C. R. Alexander, D. Zagzag, G. D. Yancopoulos, and S. J. Wiegand, “Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF,” Science 284, 1994–1998 (1999).
[Crossref] [PubMed]

Manohar, S.

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “The Twente Photoacoustic Mammoscope: system overview and performance,” Phys. Med. Biol. 502543–2557 (2005).
[Crossref] [PubMed]

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” J. Biomed. Opt. 9, 1172–1181 (2004).
[Crossref] [PubMed]

Mantulin, W. W.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: Initial clinical results,” PNAS 94, 6468–6473 (1997).
[Crossref] [PubMed]

Matsubayashi, R.

R. Matsubayashi, Y. Matsuo, G. Edakuni, T. Satoh, O. Tokunaga, and S. Kudo, “Breast Masses with Peripheral Rim Enhancement on Dynamic Contrast-enhanced MR Images: Correlation of MR Findings with Histologic Features and Expression of Growth Factors,” Radiology 217, 841–848 (2000).
[PubMed]

Matsuo, Y.

R. Matsubayashi, Y. Matsuo, G. Edakuni, T. Satoh, O. Tokunaga, and S. Kudo, “Breast Masses with Peripheral Rim Enhancement on Dynamic Contrast-enhanced MR Images: Correlation of MR Findings with Histologic Features and Expression of Growth Factors,” Radiology 217, 841–848 (2000).
[PubMed]

McBride, T. O.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative Hemoglobin Tomography with Diffuse Near-Infrared Spectroscopy: Pilot Results in the Breast,” Radiology 218, 261–266 (2001).
[PubMed]

Mehta, K.

T. Khamapirad, P. M. Henrichs, K. Mehta, T. G. Miller, A. T. Yee, and A. A. Oraevsky, “Diagnostic imaging of breast cancer with LOIS: clinical feasibility,” Proc. SPIE 5697, 35–44 (2005).
[Crossref]

Miller, K. D.

R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, “Breast Cancer in vivo: Contrast Enhancement with Thermoacoustic CT at 434 MHz-Feasibility Study,” Radiology 216, 279–283 (2000).
[PubMed]

Miller, T. G.

T. Khamapirad, P. M. Henrichs, K. Mehta, T. G. Miller, A. T. Yee, and A. A. Oraevsky, “Diagnostic imaging of breast cancer with LOIS: clinical feasibility,” Proc. SPIE 5697, 35–44 (2005).
[Crossref]

Moesta, K. T.

D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, and P. M. Schlag, “Development of a time domain optical mammograph and first in vivo applications,” Appl. Opt. 38, 2927–2943 (1999).
[Crossref]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: Initial clinical results,” PNAS 94, 6468–6473 (1997).
[Crossref] [PubMed]

Nass, S. J.

S. J. Nass, I. C. Henderson, and J. C. Lashof, Mammography and Beyond: Developing Technologies for the Early Detection of Breast Cancer (National Academy Press, 2001).

Okunieff, P.

P. Vaupel, F. Kallinowski, and P. Okunieff, “Blood Flow, Oxygen and Nutrient Supply, and Metabolic Microenvironment of Human Tumors: A Review,” Cancer Res. 49, 6449–6465 (1989).
[PubMed]

Oraevsky, A. A.

T. Khamapirad, P. M. Henrichs, K. Mehta, T. G. Miller, A. T. Yee, and A. A. Oraevsky, “Diagnostic imaging of breast cancer with LOIS: clinical feasibility,” Proc. SPIE 5697, 35–44 (2005).
[Crossref]

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, and P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” Proc. SPIE 4618, 81–94 (2002).
[Crossref]

Osterberg, U. L.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative Hemoglobin Tomography with Diffuse Near-Infrared Spectroscopy: Pilot Results in the Breast,” Radiology 218, 261–266 (2001).
[PubMed]

Osterman, K. S.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative Hemoglobin Tomography with Diffuse Near-Infrared Spectroscopy: Pilot Results in the Breast,” Radiology 218, 261–266 (2001).
[PubMed]

Padera, T. P.

T. P. Padera, B. R. Stoll, J. B. Tooredman, D. Capen, E. Di Tomaso, and R. K. Jain, “Cancer cells compress intratumour vessels,” Nature 427, 695 (2004).
[Crossref] [PubMed]

Parkin, D. M.

D. M. Parkin, F. Bray, J. Ferlay, and P. Pisani, “Global Cancer Statistics, 2002,” C. A. Cancer J. Clin. 55, 74–108 (2005).
[Crossref]

Paulsen, K. D.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative Hemoglobin Tomography with Diffuse Near-Infrared Spectroscopy: Pilot Results in the Breast,” Radiology 218, 261–266 (2001).
[PubMed]

Pham, T.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[Crossref] [PubMed]

Pifferi, A.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography,” J. Biomed. Opt. 9, 1137–1142 (2004).
[Crossref] [PubMed]

Pisani, P.

D. M. Parkin, F. Bray, J. Ferlay, and P. Pisani, “Global Cancer Statistics, 2002,” C. A. Cancer J. Clin. 55, 74–108 (2005).
[Crossref]

Pogue, B. W.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative Hemoglobin Tomography with Diffuse Near-Infrared Spectroscopy: Pilot Results in the Breast,” Radiology 218, 261–266 (2001).
[PubMed]

Poplack, S. P.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative Hemoglobin Tomography with Diffuse Near-Infrared Spectroscopy: Pilot Results in the Breast,” Radiology 218, 261–266 (2001).
[PubMed]

Reinecke, D. R.

R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, “Breast Cancer in vivo: Contrast Enhancement with Thermoacoustic CT at 434 MHz-Feasibility Study,” Radiology 216, 279–283 (2000).
[PubMed]

Reynolds, H. E.

R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, “Breast Cancer in vivo: Contrast Enhancement with Thermoacoustic CT at 434 MHz-Feasibility Study,” Radiology 216, 279–283 (2000).
[PubMed]

Rinneberg, H. H.

Rooney, F.

M. Sarntinoranont, F. Rooney, and M. Ferrari, “Interstitial stress and fluid pressure within a growing tumor,” Ann. Biomed. Eng. 31, 327–335 (2003).
[Crossref] [PubMed]

Rudge, J. S.

G. D. Yancopoulos, S. Davis, N. W. Gale, J. S. Rudge, S. J. Wiegand, and J. Holash, “Vascular-specific growth factors and blood vessel formation,” Nature 407, 242–248 (2000).
[Crossref] [PubMed]

Sarntinoranont, M.

M. Sarntinoranont, F. Rooney, and M. Ferrari, “Interstitial stress and fluid pressure within a growing tumor,” Ann. Biomed. Eng. 31, 327–335 (2003).
[Crossref] [PubMed]

Satoh, T.

R. Matsubayashi, Y. Matsuo, G. Edakuni, T. Satoh, O. Tokunaga, and S. Kudo, “Breast Masses with Peripheral Rim Enhancement on Dynamic Contrast-enhanced MR Images: Correlation of MR Findings with Histologic Features and Expression of Growth Factors,” Radiology 217, 841–848 (2000).
[PubMed]

Savateeva, E. V.

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, and P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” Proc. SPIE 4618, 81–94 (2002).
[Crossref]

Schlag, P. M.

D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, and P. M. Schlag, “Development of a time domain optical mammograph and first in vivo applications,” Appl. Opt. 38, 2927–2943 (1999).
[Crossref]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: Initial clinical results,” PNAS 94, 6468–6473 (1997).
[Crossref] [PubMed]

Seeber, M.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: Initial clinical results,” PNAS 94, 6468–6473 (1997).
[Crossref] [PubMed]

Shah, N.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[Crossref] [PubMed]

Solomatin, S. V.

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, and P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” Proc. SPIE 4618, 81–94 (2002).
[Crossref]

Spinelli, L.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography,” J. Biomed. Opt. 9, 1137–1142 (2004).
[Crossref] [PubMed]

Steenbergen, W.

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “The Twente Photoacoustic Mammoscope: system overview and performance,” Phys. Med. Biol. 502543–2557 (2005).
[Crossref] [PubMed]

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” J. Biomed. Opt. 9, 1172–1181 (2004).
[Crossref] [PubMed]

Stoll, B. R.

T. P. Padera, B. R. Stoll, J. B. Tooredman, D. Capen, E. Di Tomaso, and R. K. Jain, “Cancer cells compress intratumour vessels,” Nature 427, 695 (2004).
[Crossref] [PubMed]

Svaasand, L.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[Crossref] [PubMed]

Taroni, P.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography,” J. Biomed. Opt. 9, 1137–1142 (2004).
[Crossref] [PubMed]

Tokunaga, O.

R. Matsubayashi, Y. Matsuo, G. Edakuni, T. Satoh, O. Tokunaga, and S. Kudo, “Breast Masses with Peripheral Rim Enhancement on Dynamic Contrast-enhanced MR Images: Correlation of MR Findings with Histologic Features and Expression of Growth Factors,” Radiology 217, 841–848 (2000).
[PubMed]

Tooredman, J. B.

T. P. Padera, B. R. Stoll, J. B. Tooredman, D. Capen, E. Di Tomaso, and R. K. Jain, “Cancer cells compress intratumour vessels,” Nature 427, 695 (2004).
[Crossref] [PubMed]

Torricelli, A.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography,” J. Biomed. Opt. 9, 1137–1142 (2004).
[Crossref] [PubMed]

Tromberg, B. J.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[Crossref] [PubMed]

van Hespen, J. C. G.

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “The Twente Photoacoustic Mammoscope: system overview and performance,” Phys. Med. Biol. 502543–2557 (2005).
[Crossref] [PubMed]

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” J. Biomed. Opt. 9, 1172–1181 (2004).
[Crossref] [PubMed]

van Leeuwen, T. G.

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “The Twente Photoacoustic Mammoscope: system overview and performance,” Phys. Med. Biol. 502543–2557 (2005).
[Crossref] [PubMed]

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” J. Biomed. Opt. 9, 1172–1181 (2004).
[Crossref] [PubMed]

Vaupel, P.

P. Vaupel, F. Kallinowski, and P. Okunieff, “Blood Flow, Oxygen and Nutrient Supply, and Metabolic Microenvironment of Human Tumors: A Review,” Cancer Res. 49, 6449–6465 (1989).
[PubMed]

Wabnitz, H.

Wang, L. V.

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
[Crossref]

Wells, W. A.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative Hemoglobin Tomography with Diffuse Near-Infrared Spectroscopy: Pilot Results in the Breast,” Radiology 218, 261–266 (2001).
[PubMed]

Wiegand, S. J.

G. D. Yancopoulos, S. Davis, N. W. Gale, J. S. Rudge, S. J. Wiegand, and J. Holash, “Vascular-specific growth factors and blood vessel formation,” Nature 407, 242–248 (2000).
[Crossref] [PubMed]

J. Holash, P. C. Maisonpierre, D. Compton, P. Boland, C. R. Alexander, D. Zagzag, G. D. Yancopoulos, and S. J. Wiegand, “Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF,” Science 284, 1994–1998 (1999).
[Crossref] [PubMed]

Xu, M.

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
[Crossref]

Yancopoulos, G. D.

G. D. Yancopoulos, S. Davis, N. W. Gale, J. S. Rudge, S. J. Wiegand, and J. Holash, “Vascular-specific growth factors and blood vessel formation,” Nature 407, 242–248 (2000).
[Crossref] [PubMed]

J. Holash, P. C. Maisonpierre, D. Compton, P. Boland, C. R. Alexander, D. Zagzag, G. D. Yancopoulos, and S. J. Wiegand, “Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF,” Science 284, 1994–1998 (1999).
[Crossref] [PubMed]

Yee, A. T.

T. Khamapirad, P. M. Henrichs, K. Mehta, T. G. Miller, A. T. Yee, and A. A. Oraevsky, “Diagnostic imaging of breast cancer with LOIS: clinical feasibility,” Proc. SPIE 5697, 35–44 (2005).
[Crossref]

Zagzag, D.

J. Holash, P. C. Maisonpierre, D. Compton, P. Boland, C. R. Alexander, D. Zagzag, G. D. Yancopoulos, and S. J. Wiegand, “Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF,” Science 284, 1994–1998 (1999).
[Crossref] [PubMed]

Ann. Biomed. Eng. (1)

M. Sarntinoranont, F. Rooney, and M. Ferrari, “Interstitial stress and fluid pressure within a growing tumor,” Ann. Biomed. Eng. 31, 327–335 (2003).
[Crossref] [PubMed]

Appl. Opt. (1)

C. A. Cancer J. Clin. (1)

D. M. Parkin, F. Bray, J. Ferlay, and P. Pisani, “Global Cancer Statistics, 2002,” C. A. Cancer J. Clin. 55, 74–108 (2005).
[Crossref]

Cancer Res. (1)

P. Vaupel, F. Kallinowski, and P. Okunieff, “Blood Flow, Oxygen and Nutrient Supply, and Metabolic Microenvironment of Human Tumors: A Review,” Cancer Res. 49, 6449–6465 (1989).
[PubMed]

J. Biomed. Opt. (2)

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” J. Biomed. Opt. 9, 1172–1181 (2004).
[Crossref] [PubMed]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography,” J. Biomed. Opt. 9, 1137–1142 (2004).
[Crossref] [PubMed]

Nature (3)

T. P. Padera, B. R. Stoll, J. B. Tooredman, D. Capen, E. Di Tomaso, and R. K. Jain, “Cancer cells compress intratumour vessels,” Nature 427, 695 (2004).
[Crossref] [PubMed]

P. Carmeliet and R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature 407, 249–257 (2000).
[Crossref] [PubMed]

G. D. Yancopoulos, S. Davis, N. W. Gale, J. S. Rudge, S. J. Wiegand, and J. Holash, “Vascular-specific growth factors and blood vessel formation,” Nature 407, 242–248 (2000).
[Crossref] [PubMed]

Neoplasia (1)

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[Crossref] [PubMed]

Phys. Med. Biol. (2)

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “The Twente Photoacoustic Mammoscope: system overview and performance,” Phys. Med. Biol. 502543–2557 (2005).
[Crossref] [PubMed]

J. Laufer, D. Delpy, C. Elwell, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy:application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol. 52, 141–168 (2007).
[Crossref]

PNAS (1)

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: Initial clinical results,” PNAS 94, 6468–6473 (1997).
[Crossref] [PubMed]

Proc. SPIE (2)

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, and P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” Proc. SPIE 4618, 81–94 (2002).
[Crossref]

T. Khamapirad, P. M. Henrichs, K. Mehta, T. G. Miller, A. T. Yee, and A. A. Oraevsky, “Diagnostic imaging of breast cancer with LOIS: clinical feasibility,” Proc. SPIE 5697, 35–44 (2005).
[Crossref]

Radiology (3)

R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, “Breast Cancer in vivo: Contrast Enhancement with Thermoacoustic CT at 434 MHz-Feasibility Study,” Radiology 216, 279–283 (2000).
[PubMed]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative Hemoglobin Tomography with Diffuse Near-Infrared Spectroscopy: Pilot Results in the Breast,” Radiology 218, 261–266 (2001).
[PubMed]

R. Matsubayashi, Y. Matsuo, G. Edakuni, T. Satoh, O. Tokunaga, and S. Kudo, “Breast Masses with Peripheral Rim Enhancement on Dynamic Contrast-enhanced MR Images: Correlation of MR Findings with Histologic Features and Expression of Growth Factors,” Radiology 217, 841–848 (2000).
[PubMed]

Rev. Sci. Instrum. (1)

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006).
[Crossref]

Science (1)

J. Holash, P. C. Maisonpierre, D. Compton, P. Boland, C. R. Alexander, D. Zagzag, G. D. Yancopoulos, and S. J. Wiegand, “Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF,” Science 284, 1994–1998 (1999).
[Crossref] [PubMed]

Other (2)

S. J. Nass, I. C. Henderson, and J. C. Lashof, Mammography and Beyond: Developing Technologies for the Early Detection of Breast Cancer (National Academy Press, 2001).

F. A. Duck, Physical Properties of Tissue (Academic Press, 1990).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

The Twente Photoacoustic Mammoscope. a – aperture to insert breast, b – ultrasound detector matrix, c – glass window of d – scanning system compartment, e – Q-switched Nd:YAG laser operated at 1064 nm with 5 ns pulses, f – laser safety curtain which is drawn around the instrument during the measurement, g – interface electronics between detector and computer, h – linear stage carrying detector matrix driven by handwheel to apply mild compression to breast, I – laser remote control unit, j – laser power supply.

Fig. 2.
Fig. 2.

Case 1 of 50 year old woman with invasive ductal carcinoma in right breast. (a) Craniocaudal x-ray mammogram reveals architectural distortion with spiculations. Window shows expected location of the ROI for the photoacoustic scan. (b) Transverse sonographic scan image shows 17 mm irregular hypoechoic solid mass. (c) Craniocaudal photoacoustic MIP image in top-view reveals higher intensity regions attributed to tumor vascularization. Contour lines (black dotted) are drawn using the level indicated in the image histogram above. The possible extent of the tumor mass (major axis 35 mm) is indicated by the white dotted line encompassing the cluster of vascular regions. The photoacoustic image cannot be compared point by point with the x-ray image in ROI due to differences in compression and in ROI positioning.

Fig. 3.
Fig. 3.

Case 1 of 50 year old woman with invasive ductal carcinoma in right breast. Montage of selected slice images of photoacoustic reconstructed data set in craniocaudal view. The inter-slice spacing is 1.5 mm with the first slice 6.5 mm below the illuminated breast surface and the last 17 mm. High intensity regions correspond to vascular ‘hot spots’.

Fig. 4.
Fig. 4.

Case 2 of 57 year old woman with invasive ductal carcinoma exhibiting neuroendocrine differentiation in right breast. Gross features in craniocaudal x-ray mammogram (a) and transverse sonographic scan image (b) indicate benignity, but presence of microcalcifications in (a) and age of patient prompted core biopsy. Craniocaudal photoacoustic MIP image (c) in ROI (red window in x-ray mammogram) shows high intensity distributions in a ring shape attributable to higher vascular densities at tumor periphery. Contour lines (black dotted) are superposed using level indicated in the image histogram above. The photoacoustic image cannot be compared point by point with the x-ray image in ROI due to differences in compression and in ROI positioning.

Fig. 5.
Fig. 5.

Magnified region-of-interest of craniocaudal x-ray mammogram (inset) of Case 2. Image shows oval mass with predominantly circumscribed borders with a small number of irregular microcalcifications within dotted red oval.

Fig. 6.
Fig. 6.

Case 2 of 57 year old woman with invasive ductal carcinoma exhibiting neuroendocrine differentiation in right breast. Selected slice images of photoacoustic reconstructed data set in craniocaudal view. The inter-slice spacing is 1 mm with the first slice 9.5 mm below the illuminated breast surface. The ring pattern of higher intensity which depicts strong vascularization at the tumor periphery is evident in the slices at depths 11.5 to 14.5 mm

Tables (1)

Tables Icon

Table 1. Specifications of the Photoacoustic Mammoscope

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S V ( t ) = i w i V [ S i ( t ) h ( t + τ + δ i V ) ] max min i w i V ,
h ( t + τ ) = { 1 for t τ 2 0 otherwise

Metrics