Abstract

253GB have been recorded in 300 layers inside the volume of one of our two-photon 3D disks. Each layer contains the equivalent of CD layer bit-densities recorded with a 0.5NA objective lens. A new 1.0NA lens with the desirable first order optical properties of long working distance and small diameter, 1.2mm and 4.5mm, and a self-compensating spherical aberration correction mechanism is designed, manufactured and integrated into our single beam two-photon 3D automated recording system. Experimental data obtained with the 1.0NA lens are presented. The resulting bit densities obtained with our new high-performance liquid immersion singlet (LIS) objective lens indicate that our system is capable of full disk recordings from 0.5 to 1 TB within a standard optical disk form factor of 120mm x 1.2mm thick utilizing our very stable and efficient materials. A compact optical head based on our new objective lens capable of TB storage is described.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. D. A. Parthenopoulos and P. M. Rentzepis, "Three-Dimensional Optical Storage Memory," Science 245, 843-845 (1989).
    [CrossRef] [PubMed]
  2. A. S. Dvornikov, I. Cokgor, M. Wang, F. B. McCormick, S. E. Esener and P. M. Rentzepis, "Materials and Systems for Two Photon 3D ROM Device," IEEE TCPMT - Part A 20, 200-212 (1997).
  3. Y. Liang, A. S. Dvornikov and P. M. Rentzepis, "Synthesis of novel photochromic fluorescing 2-indolylfulgimides," Tetrahedron Lett. 40, 8067-8069 (1999).
    [CrossRef]
  4. A. S. Dvornikov, T. D. Milster, E. Walker, and P. M. Rentzepis, "Two-photon 3D high-density optical storage media: optical properties, temperature, radiation, and fatigue studies," Proc. SPIE 6308, 630802 (2006).
    [CrossRef]
  5. M. Akiba, A. S. Dvornikov, and P. M. Rentzepis, "Formation of oxazine dye by photochemical reaction of N-acyl oxazine derivatives," J. Photochem. Photobiol. A 190, 69-76 (2007).
    [CrossRef]
  6. A. S. Dvornikov, Y. Liang and and P. M. Rentzepis, "Dependence of the Fluorescence of a Composite Photochromic Molecule on a Structure and Viscosity," J. Mater. Chem. 15, 1072-1078 (2005).
    [CrossRef]
  7. Yi Zhang, A. Dvornikov, Y. Taketomi, E. P. Walker, P. Rentzepis, and S. Esener, "Towards ultra high density multi-layer disk recording by two-photon absorption," Proc. SPIE 5362, 1-9 (2004).
    [CrossRef]
  8. A. S. Dvornikov, Y. C. Liang, and P. M. Rentzepis, "Ultra high density non-destructive readout, rewritable molecular memory," Res. Chem. Intermed. 30, 545-561 (2004).
    [CrossRef]
  9. A. S. Dvornikov, Y. Liang, C. S. Cruse, and P. M. Rentzepis, "Spectroscopy and kinetics of a molecular memory with non-destructive readout for use in 2D and 3D storage systems," J. Phys. Chem. B 108, 8652-8658 (2004).
    [CrossRef]
  10. E. P. Walker and T. D. Milster, "Beam shaping for optical data storage," in Laser Beam Shaping Applications, F. M. Dickey, S. C. Holswade, D. L. Shealy, eds., (CRC Press Taylor & Francis Group, 2006) 157-181.
  11. H. Zhang, A. Dvornikov, E. Walker, N. Kim, F. B. McCormick, "Single-beam two-photon-recorded monolithic multi-layer optical disks," Proc. SPIE 4090, 174-178 (2000).
    [CrossRef]
  12. E. Walker, W. Feng, Y. Zhang, H. Zhang, F. McCormick, and S. Esener, "3-D parallel readout in a 3-D multilayer optical data storage system," ISOM/ODS meeting Hawaii (2002) paper # TuB4.
  13. E. P. Walker, J Duparre, H. Zhang, W Feng, Y. Zhang, A. S. Dvornikov, "Spherical aberration correction for 2-photon recorded monolithic muiltilayer optical data storage," ODS 2001 Proc. SPIE. (2001).
  14. E. Walker, Y. Taketomi, Y. Zhang, "Optical Storage with Ultra High Storage Capacity," U.S. Patent Pending, Submission No. 10/868,742, filed December 23, 2004.
  15. S. Park, T. D. Milster, T. M. Miller, J. Butz and W. Bletscher, "Master and Slave Beam Servo Technique for Volumetric Bit-Wise Optical Data Storage," Jpn. J. Appl. Phys. 44, 3442-3444 (2005).
    [CrossRef]
  16. E. Walker, X. Zheng, F. B. McCormick, H. Zhang, N. Kim, J. Costa, and A. Dvornikov, "Servo error signal generation for two-photon-recorded monolithic multilayer optical data storage," Proc. SPIE 4090, 179-184 (2000).
    [CrossRef]

2007

M. Akiba, A. S. Dvornikov, and P. M. Rentzepis, "Formation of oxazine dye by photochemical reaction of N-acyl oxazine derivatives," J. Photochem. Photobiol. A 190, 69-76 (2007).
[CrossRef]

2006

A. S. Dvornikov, T. D. Milster, E. Walker, and P. M. Rentzepis, "Two-photon 3D high-density optical storage media: optical properties, temperature, radiation, and fatigue studies," Proc. SPIE 6308, 630802 (2006).
[CrossRef]

2005

A. S. Dvornikov, Y. Liang and and P. M. Rentzepis, "Dependence of the Fluorescence of a Composite Photochromic Molecule on a Structure and Viscosity," J. Mater. Chem. 15, 1072-1078 (2005).
[CrossRef]

S. Park, T. D. Milster, T. M. Miller, J. Butz and W. Bletscher, "Master and Slave Beam Servo Technique for Volumetric Bit-Wise Optical Data Storage," Jpn. J. Appl. Phys. 44, 3442-3444 (2005).
[CrossRef]

2004

Yi Zhang, A. Dvornikov, Y. Taketomi, E. P. Walker, P. Rentzepis, and S. Esener, "Towards ultra high density multi-layer disk recording by two-photon absorption," Proc. SPIE 5362, 1-9 (2004).
[CrossRef]

A. S. Dvornikov, Y. C. Liang, and P. M. Rentzepis, "Ultra high density non-destructive readout, rewritable molecular memory," Res. Chem. Intermed. 30, 545-561 (2004).
[CrossRef]

A. S. Dvornikov, Y. Liang, C. S. Cruse, and P. M. Rentzepis, "Spectroscopy and kinetics of a molecular memory with non-destructive readout for use in 2D and 3D storage systems," J. Phys. Chem. B 108, 8652-8658 (2004).
[CrossRef]

2000

H. Zhang, A. Dvornikov, E. Walker, N. Kim, F. B. McCormick, "Single-beam two-photon-recorded monolithic multi-layer optical disks," Proc. SPIE 4090, 174-178 (2000).
[CrossRef]

E. Walker, X. Zheng, F. B. McCormick, H. Zhang, N. Kim, J. Costa, and A. Dvornikov, "Servo error signal generation for two-photon-recorded monolithic multilayer optical data storage," Proc. SPIE 4090, 179-184 (2000).
[CrossRef]

1999

Y. Liang, A. S. Dvornikov and P. M. Rentzepis, "Synthesis of novel photochromic fluorescing 2-indolylfulgimides," Tetrahedron Lett. 40, 8067-8069 (1999).
[CrossRef]

1989

D. A. Parthenopoulos and P. M. Rentzepis, "Three-Dimensional Optical Storage Memory," Science 245, 843-845 (1989).
[CrossRef] [PubMed]

J. Mater. Chem.

A. S. Dvornikov, Y. Liang and and P. M. Rentzepis, "Dependence of the Fluorescence of a Composite Photochromic Molecule on a Structure and Viscosity," J. Mater. Chem. 15, 1072-1078 (2005).
[CrossRef]

J. Photochem. Photobiol. A

M. Akiba, A. S. Dvornikov, and P. M. Rentzepis, "Formation of oxazine dye by photochemical reaction of N-acyl oxazine derivatives," J. Photochem. Photobiol. A 190, 69-76 (2007).
[CrossRef]

J. Phys. Chem. B

A. S. Dvornikov, Y. Liang, C. S. Cruse, and P. M. Rentzepis, "Spectroscopy and kinetics of a molecular memory with non-destructive readout for use in 2D and 3D storage systems," J. Phys. Chem. B 108, 8652-8658 (2004).
[CrossRef]

Jpn. J. Appl. Phys.

S. Park, T. D. Milster, T. M. Miller, J. Butz and W. Bletscher, "Master and Slave Beam Servo Technique for Volumetric Bit-Wise Optical Data Storage," Jpn. J. Appl. Phys. 44, 3442-3444 (2005).
[CrossRef]

Proc. SPIE

E. Walker, X. Zheng, F. B. McCormick, H. Zhang, N. Kim, J. Costa, and A. Dvornikov, "Servo error signal generation for two-photon-recorded monolithic multilayer optical data storage," Proc. SPIE 4090, 179-184 (2000).
[CrossRef]

H. Zhang, A. Dvornikov, E. Walker, N. Kim, F. B. McCormick, "Single-beam two-photon-recorded monolithic multi-layer optical disks," Proc. SPIE 4090, 174-178 (2000).
[CrossRef]

Yi Zhang, A. Dvornikov, Y. Taketomi, E. P. Walker, P. Rentzepis, and S. Esener, "Towards ultra high density multi-layer disk recording by two-photon absorption," Proc. SPIE 5362, 1-9 (2004).
[CrossRef]

A. S. Dvornikov, T. D. Milster, E. Walker, and P. M. Rentzepis, "Two-photon 3D high-density optical storage media: optical properties, temperature, radiation, and fatigue studies," Proc. SPIE 6308, 630802 (2006).
[CrossRef]

Res. Chem. Intermed.

A. S. Dvornikov, Y. C. Liang, and P. M. Rentzepis, "Ultra high density non-destructive readout, rewritable molecular memory," Res. Chem. Intermed. 30, 545-561 (2004).
[CrossRef]

Science

D. A. Parthenopoulos and P. M. Rentzepis, "Three-Dimensional Optical Storage Memory," Science 245, 843-845 (1989).
[CrossRef] [PubMed]

Tetrahedron Lett.

Y. Liang, A. S. Dvornikov and P. M. Rentzepis, "Synthesis of novel photochromic fluorescing 2-indolylfulgimides," Tetrahedron Lett. 40, 8067-8069 (1999).
[CrossRef]

Other

A. S. Dvornikov, I. Cokgor, M. Wang, F. B. McCormick, S. E. Esener and P. M. Rentzepis, "Materials and Systems for Two Photon 3D ROM Device," IEEE TCPMT - Part A 20, 200-212 (1997).

E. P. Walker and T. D. Milster, "Beam shaping for optical data storage," in Laser Beam Shaping Applications, F. M. Dickey, S. C. Holswade, D. L. Shealy, eds., (CRC Press Taylor & Francis Group, 2006) 157-181.

E. Walker, W. Feng, Y. Zhang, H. Zhang, F. McCormick, and S. Esener, "3-D parallel readout in a 3-D multilayer optical data storage system," ISOM/ODS meeting Hawaii (2002) paper # TuB4.

E. P. Walker, J Duparre, H. Zhang, W Feng, Y. Zhang, A. S. Dvornikov, "Spherical aberration correction for 2-photon recorded monolithic muiltilayer optical data storage," ODS 2001 Proc. SPIE. (2001).

E. Walker, Y. Taketomi, Y. Zhang, "Optical Storage with Ultra High Storage Capacity," U.S. Patent Pending, Submission No. 10/868,742, filed December 23, 2004.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

energy band diagram picture of the single laser beam two-photon 3D recording.

Fig. 2.
Fig. 2.

Volumetric storage. WORM, media composition and spectra.

Fig. 3.
Fig. 3.

Typical photoacid generators (PAG) used in the recording process.

Fig. 4.
Fig. 4.

Polymerization cell, compression mold and fabricated WORM disk.

Fig. 5.
Fig. 5.

Write and Read isomeric forms of 3D media

Fig. 6.
Fig. 6.

Write/Read/Erase forms and mechanism of non-destructive read out material.

Fig. 7.
Fig. 7.

Single-beam two-photon recording system diagram

Fig. 8.
Fig. 8.

Layout of tracks and zones in table form (a) and pictorial layout (b) for a zoned CLV (constant linear velocity) approach to maximize layer capacity in a 102mm diameter disk recording having a capacity of ~253GB with a track pitch of 1.4µm, layer pitch 15µm, and 300 layers.

Fig. 9.
Fig. 9.

Photograph of 102mm diameter disk Zone 2 during recording and Zone5 during recording.

Fig. 10.
Fig. 10.

(a). typical xy confocal microscope scan throughout the different layers (b) xz confocal microscope scan of ~60 layers (c) zoomed in region of 24 layer group, showing a track pitch of 1.4µm and layer spacing of 15µm recorded in the 102mm diameter disk.

Fig. 11.
Fig. 11.

(a). Zemax layout of Liquid Immersion Singlet (LIS) Objective lens, (b) SolidWorks design of prototype package for testing.

Fig. 12.
Fig. 12.

Photo of received lenses from AGC Micro Glass Co., Ltd. and initial LIS laboratory assembly for testing in the recording system.

Fig. 13.
Fig. 13.

Confocal microscope image showing a single layer XY scan of 3D data bits recorded with 50nJ/bit of recording energy within a 75layer group recorded at 15MHz data rate, ~5.5m/s linear velocity, track pitch of 0.8µm, showing bit dimension ~0.5µm as expected from the 1.0NA of the LIS. Multiple layer XZ scan showing 30 layers observed with the confocal microscope recorded at 15MHzd ata rate with layer spacing of ~4µm showing bit volumetric dimensions of ~0.5×0.5×2µm as expected.

Fig. 14.
Fig. 14.

Zemax design layout of compact two-photon 3D optical head indicating the recording, readout, and detection paths

Fig. 15.
Fig. 15.

On-axis and ±0.5deg field of view wavefront aberration diagrams from Zemax of the compact optical head design indicating diffraction limited performance for the (a) recording, 532nm path, (b) the readout, 635nm path, and (c) the fluorescence path.

Metrics