Abstract

We report a systematic investigation on nonlinear optical properties of CdSe nanoparticles that are smaller as well as larger than the Bohr radius. Multiphoton absorption and nonlinear refraction properties of CdSe nanoparticles observed with 800nm wavelength and 110femtosecond Ti:Sapphire laser are presented. These nonlinear optical studies were undertaken by performing open and closed aperture Z-scan measurements. The four different sizes of CdSe nanoparticles investigated are 5nm, 10nm, 25nm and 400nm. Both the quantum dots 5nm, 10nm sizes (taking the literature value of 10.6nm as the Bohr exciton diameter) show four photon absorption (4PA), while the 25nm and 400nm show the three photon absorption (3PA) properties. All four sizes of CdSe nanoparticles show the positive nonlinear refraction (n2).

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. P. Alivisatos, "Semiconductor Clusters, Nanocrystals, and Quantum Dots," Science,  271, 933-937 (1996).
    [CrossRef]
  2. A. P. Alivisatos, "Perspectives on the physical chemistry of semiconductor nanocrystals," J. Phys. Chem. 100, 13226-13239 (1996).
    [CrossRef]
  3. A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, "Ultrafast all-optical switching in semiconductor nonlinear directional couplers at half the band gap," Appl. Phys. Lett. 61, 147-149 (1992).
    [CrossRef]
  4. C. C. Yang, A. Villeneuve, G. I. Stegeman, and J. S. Aitchison, "Effects of three-photon absorption on nonlinear directional coupling," Opt. Lett. 17, 710-712 (1992).
    [CrossRef] [PubMed]
  5. N. Venkatram, R. Sai Santosh Kumar, and D. Narayana Rao "Nonlinear absorption and scattering properties of cadmium sulphide nanocrystals with its application as a potential optical limiter," J. Appl. Phys. 100, 074309, 1-8, (2006).
    [CrossRef]
  6. N. Venkatram, M. A. Akundi, and D. Narayana Rao, "Nonlinear absorption, scattering and optical limiting studies of CdS nanoparticles," Opt. Express 13, 867-872 (2005).
    [CrossRef] [PubMed]
  7. R. A. Morgan, S. H. Park, S. W. Koch, and N. Peyghambarian, ‘Experimental studies of the non-linear optical properties of cadmium selenide quantum-confined microcrystallites," Semicond. Sci. Technol. 5, 544-548 (1990)
    [CrossRef]
  8. J. W. M. Chon, M. Gu, C. Bullen, and P. Mulvaney, "Three-photon excited band edge and trap emission of CdS semiconductor nanocrystals," Appl. Phys. Lett. 84, 4472-4474 (2004).
    [CrossRef]
  9. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nature Materials,  3, 444 - 447 (2004).
    [CrossRef] [PubMed]
  10. Jun He, Yingli Qu, Heping Li, Jun Mi, and Wei Ji, "Three-photon absorption in ZnO and ZnS crystals," Opt. Express,  13, 9235-9247 (2005).
    [CrossRef] [PubMed]
  11. R. L. Sutherland with contributions by D. G. McLean and S. Kirkpatrick, Handbook of Nonlinear Optics, Second Edition, Revised and Expanded (New York, NY: Marcel Dekker, 2003).
  12. K. S. Bindra and A. K. Kar, "Role of femtosecond pulses in distinguishing third- and fifth-order nonlinearity for semiconductor-doped glasses," Appl. Phys. Lett. 79, 3761-3763 (2001).
    [CrossRef]
  13. G. S. He, Q. Zheng, A. Baev, and ParasN. Prasad, "Saturation of multiphoton absorption upon strong and ultrafast infrared laser excitation," J. Appl. Phys. 101, 083108-1- 083108-6 (2007).
    [CrossRef]
  14. V. Pacebutas, A. Krotkus, T. Suski, P. Perlin, and M. Leszczynski, "Photoconductive Z-scan measurement of multiphoton absorption in GaN," J. Appl. Phys. 92, 6930-6932 (2002).
    [CrossRef]
  15. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
    [CrossRef]
  16. F. Z. Henari, W. J. Blau, L. R. Milgrom, G. Yahioglu, D. Philips, J. A. Lacey, "Third-order Optical Non-linearity in Zn(II) Complexes of 5, 10, 15, 10-tetraarylethynyl-substituted Porphyrins," Chem. Phys. Lett. 267, 229-233 (1997).
    [CrossRef]
  17. S. M. Ma, J. T. Seo, Q. Yang, R. Battle, H. Brown, K. Lee, L. Creekmore, A. Jackson, T. Skyles, B. Tabibi, S. S. Jung, W. Yu, M. Namkung, "Third-Order Nonlinear Susceptibility and Hyperpolarizability of CdSe Nanocrystals with Femtosecond Excitation," Journal of Korean Physical Society. 48, 1379-1384 (2006).

2006 (2)

N. Venkatram, R. Sai Santosh Kumar, and D. Narayana Rao "Nonlinear absorption and scattering properties of cadmium sulphide nanocrystals with its application as a potential optical limiter," J. Appl. Phys. 100, 074309, 1-8, (2006).
[CrossRef]

S. M. Ma, J. T. Seo, Q. Yang, R. Battle, H. Brown, K. Lee, L. Creekmore, A. Jackson, T. Skyles, B. Tabibi, S. S. Jung, W. Yu, M. Namkung, "Third-Order Nonlinear Susceptibility and Hyperpolarizability of CdSe Nanocrystals with Femtosecond Excitation," Journal of Korean Physical Society. 48, 1379-1384 (2006).

2005 (2)

2004 (2)

J. W. M. Chon, M. Gu, C. Bullen, and P. Mulvaney, "Three-photon excited band edge and trap emission of CdS semiconductor nanocrystals," Appl. Phys. Lett. 84, 4472-4474 (2004).
[CrossRef]

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nature Materials,  3, 444 - 447 (2004).
[CrossRef] [PubMed]

2002 (1)

V. Pacebutas, A. Krotkus, T. Suski, P. Perlin, and M. Leszczynski, "Photoconductive Z-scan measurement of multiphoton absorption in GaN," J. Appl. Phys. 92, 6930-6932 (2002).
[CrossRef]

2001 (1)

K. S. Bindra and A. K. Kar, "Role of femtosecond pulses in distinguishing third- and fifth-order nonlinearity for semiconductor-doped glasses," Appl. Phys. Lett. 79, 3761-3763 (2001).
[CrossRef]

1997 (1)

F. Z. Henari, W. J. Blau, L. R. Milgrom, G. Yahioglu, D. Philips, J. A. Lacey, "Third-order Optical Non-linearity in Zn(II) Complexes of 5, 10, 15, 10-tetraarylethynyl-substituted Porphyrins," Chem. Phys. Lett. 267, 229-233 (1997).
[CrossRef]

1996 (2)

A. P. Alivisatos, "Semiconductor Clusters, Nanocrystals, and Quantum Dots," Science,  271, 933-937 (1996).
[CrossRef]

A. P. Alivisatos, "Perspectives on the physical chemistry of semiconductor nanocrystals," J. Phys. Chem. 100, 13226-13239 (1996).
[CrossRef]

1992 (2)

A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, "Ultrafast all-optical switching in semiconductor nonlinear directional couplers at half the band gap," Appl. Phys. Lett. 61, 147-149 (1992).
[CrossRef]

C. C. Yang, A. Villeneuve, G. I. Stegeman, and J. S. Aitchison, "Effects of three-photon absorption on nonlinear directional coupling," Opt. Lett. 17, 710-712 (1992).
[CrossRef] [PubMed]

1990 (2)

R. A. Morgan, S. H. Park, S. W. Koch, and N. Peyghambarian, ‘Experimental studies of the non-linear optical properties of cadmium selenide quantum-confined microcrystallites," Semicond. Sci. Technol. 5, 544-548 (1990)
[CrossRef]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

Appl. Phys. Lett. (3)

A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, "Ultrafast all-optical switching in semiconductor nonlinear directional couplers at half the band gap," Appl. Phys. Lett. 61, 147-149 (1992).
[CrossRef]

J. W. M. Chon, M. Gu, C. Bullen, and P. Mulvaney, "Three-photon excited band edge and trap emission of CdS semiconductor nanocrystals," Appl. Phys. Lett. 84, 4472-4474 (2004).
[CrossRef]

K. S. Bindra and A. K. Kar, "Role of femtosecond pulses in distinguishing third- and fifth-order nonlinearity for semiconductor-doped glasses," Appl. Phys. Lett. 79, 3761-3763 (2001).
[CrossRef]

Chem. Phys. Lett. (1)

F. Z. Henari, W. J. Blau, L. R. Milgrom, G. Yahioglu, D. Philips, J. A. Lacey, "Third-order Optical Non-linearity in Zn(II) Complexes of 5, 10, 15, 10-tetraarylethynyl-substituted Porphyrins," Chem. Phys. Lett. 267, 229-233 (1997).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

J. Appl. Phys. (2)

V. Pacebutas, A. Krotkus, T. Suski, P. Perlin, and M. Leszczynski, "Photoconductive Z-scan measurement of multiphoton absorption in GaN," J. Appl. Phys. 92, 6930-6932 (2002).
[CrossRef]

N. Venkatram, R. Sai Santosh Kumar, and D. Narayana Rao "Nonlinear absorption and scattering properties of cadmium sulphide nanocrystals with its application as a potential optical limiter," J. Appl. Phys. 100, 074309, 1-8, (2006).
[CrossRef]

J. Phys. Chem. (1)

A. P. Alivisatos, "Perspectives on the physical chemistry of semiconductor nanocrystals," J. Phys. Chem. 100, 13226-13239 (1996).
[CrossRef]

Journal of Korean Physical Society. (1)

S. M. Ma, J. T. Seo, Q. Yang, R. Battle, H. Brown, K. Lee, L. Creekmore, A. Jackson, T. Skyles, B. Tabibi, S. S. Jung, W. Yu, M. Namkung, "Third-Order Nonlinear Susceptibility and Hyperpolarizability of CdSe Nanocrystals with Femtosecond Excitation," Journal of Korean Physical Society. 48, 1379-1384 (2006).

Nature Materials (1)

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nature Materials,  3, 444 - 447 (2004).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Science (1)

A. P. Alivisatos, "Semiconductor Clusters, Nanocrystals, and Quantum Dots," Science,  271, 933-937 (1996).
[CrossRef]

Semicond. Sci. Technol. (1)

R. A. Morgan, S. H. Park, S. W. Koch, and N. Peyghambarian, ‘Experimental studies of the non-linear optical properties of cadmium selenide quantum-confined microcrystallites," Semicond. Sci. Technol. 5, 544-548 (1990)
[CrossRef]

Other (2)

G. S. He, Q. Zheng, A. Baev, and ParasN. Prasad, "Saturation of multiphoton absorption upon strong and ultrafast infrared laser excitation," J. Appl. Phys. 101, 083108-1- 083108-6 (2007).
[CrossRef]

R. L. Sutherland with contributions by D. G. McLean and S. Kirkpatrick, Handbook of Nonlinear Optics, Second Edition, Revised and Expanded (New York, NY: Marcel Dekker, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Optical absorption spectra of CdSe nanoparticles, and snap shot of the four sizes, arrow shows the increase in size.

Fig. 2.
Fig. 2.

TEM images of four sizes of CdSe nanoparticles (a) 5nm, (b) 10nm, (c) 25nm, (d) 400nm.

Fig. 3.
Fig. 3.

(a) Open aperture Z-scan curve of the 5nm size CdSe nanoparticles (b) Open aperture Z-scan curve of the 400nm size CdSe nanoparticles, lines are the theoretical fits with equations (1, 2 and 3).

Fig. 4.
Fig. 4.

(a) Variation in the multiphoton absorption coefficients (2PA, 3PA, 4PA) with intensity of 5nm size CdSe nanoparticles, (b) Variation in the multiphoton absorption coefficients (2PA, 3PA) with intensity and saturation in the 4PA of CdSe 10nm sized nanoparticles with intensity, (c) Variation in the multiphoton absorption coefficients (2PA, 3PA) with intensity of 400nm size CdSe nanoparticles.

Fig.5. .
Fig.5. .

losed aperture Z-scan curve of the 5nm size CdSe nanoparticles, solid line is the theoretical fit with equation (4).

Tables (1)

Tables Icon

Table 1: Multiphoton absorption coefficients (3PA and 4PA), linear and nonlinear refractive index coefficients of the CdSe nanoparticles.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

d I d z = α n I n
T O A ( n P A ) = 1 [ 1 + ( n 1 ) α n L ( I 00 ( 1 + ( z z 0 ) 2 ) ) n 1 ] 1 n 1
T O A ( 2 P A ) = 1 1 + α 2 L eff ( I 00 ( 1 + ( z z 0 ) 2 ) )
T OA ( 3 PA ) = 1 [ 1 + 2 α 3 L eff ( I 00 ( 1 + ( z z 0 ) 2 ) ) 2 ] 1 2
T OA ( 4 PA ) = 1 [ 1 + 3 α 4 L eff ( I 00 ( 1 + ( z z 0 ) 2 ) ) 3 ] 1 3
T CA = 1 4 Δ φ 0 ( z z 0 ) [ 1 + ( z z 0 ) 2 ] [ 9 + ( z z 0 ) 2 ]
n 2 ( c m 2 W 1 ) = Δ φ 0 λ 2 π I 00 L eff
n 2 ( esu ) = 10 4 c n 0 40 π n 2 ( c m 2 W 1 )
n 0 = 1 + ε bulk 1 1 + ( 0.75 D ) 1.2

Metrics