Abstract

A generic approach to efficient visible light generation based on singly-resonant sum-frequency mixing of an external-cavity tapered diode laser and a diode pumped solid-state laser is presented. The principle is exemplified by generation of more than 300 mW of 488 nm coherent blue light by mixing of a 950 mW beam from an external-cavity 765 nm tapered diode laser with the intra-cavity field of a diode pumped, high finesse 1342 nm solid-state laser using periodically poled KTP as the nonlinear medium. Using this approach, a conversion efficiency of more than 30 % of the 765 nm beam was obtained.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. Janousek, S. Johansson, P. Tidemand-Lichtenberg, S. Wang, J. Mortensen, P. Buchhave, and F. Laurell, "Efficient all solid-state continuous-wave yellow-orange light source," Opt. Express 13, 1188 (2005).
    [CrossRef] [PubMed]
  2. S. Johansson, S. Wang, V. Pasiskevicius, and F. Laurell, "Compact 492-nm light source based on sum-frequency mixing," Opt. Express 13, 2590 (2005).
    [CrossRef] [PubMed]
  3. P. N. Kean, R. W. Standley and G. J. Dixon, "Generation of 20 mW of blue laser radiation from a diode-pumped sum-frequency laser," Appl. Phys. Lett. 63, 302-304 (1993).
    [CrossRef]
  4. W. P. Risk and W. Lenth, "Diode laser pumped blue-light source based on intra-cavity sum frequency generation," Appl. Phys. Lett. 54, 789-791 (1989).
    [CrossRef]
  5. M. Chi, O. B. Jensen, J. Holm, C. Pedersen, P. E. Andersen, G. Erbert, B. Sumpf, and P. M. Petersen, "Tunable high-power narrow-linewidth semiconductor laser based on an external-cavity tapered amplifier," Opt. Express 13, 10589 (2005).
    [CrossRef] [PubMed]
  6. S. Guha and J. Falk, "The effects of focusing in the three-frequency parametric upconverter," J. Appl. Phys. 51, 50-60 (1980).
    [CrossRef]
  7. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane and R. Ito, "Absolute scale of second-order nonlinear-optical coefficients," J. Opt. Soc. Am. B 14, 2268-2294 (1997).
    [CrossRef]
  8. M. M. Fejer, G. A. Magel, D. H. Jundt and R. L. Byer: "Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
    [CrossRef]
  9. K. Fradkin, A. Arie, A. Skliar, G. Rosenman, "Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4," Appl. Phys. Lett. 74, 914-916 (1999).
    [CrossRef]
  10. J. D. Bierlein and H. Vanherzeele, "Potassium titanyl phosphate: properties and new applications," J. Opt. Soc. Am. B 6, 622-633 (1989).
    [CrossRef]
  11. S. Emanueli and A. Arie, "Temperature-dependent dispersion equations for KTiOPO4 and KtiOAsO4," Appl. Opt. 42, 6661-6665 (2003).
    [CrossRef] [PubMed]

2005

2003

1999

K. Fradkin, A. Arie, A. Skliar, G. Rosenman, "Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4," Appl. Phys. Lett. 74, 914-916 (1999).
[CrossRef]

1997

1993

P. N. Kean, R. W. Standley and G. J. Dixon, "Generation of 20 mW of blue laser radiation from a diode-pumped sum-frequency laser," Appl. Phys. Lett. 63, 302-304 (1993).
[CrossRef]

1992

M. M. Fejer, G. A. Magel, D. H. Jundt and R. L. Byer: "Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

1989

W. P. Risk and W. Lenth, "Diode laser pumped blue-light source based on intra-cavity sum frequency generation," Appl. Phys. Lett. 54, 789-791 (1989).
[CrossRef]

J. D. Bierlein and H. Vanherzeele, "Potassium titanyl phosphate: properties and new applications," J. Opt. Soc. Am. B 6, 622-633 (1989).
[CrossRef]

1980

S. Guha and J. Falk, "The effects of focusing in the three-frequency parametric upconverter," J. Appl. Phys. 51, 50-60 (1980).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

K. Fradkin, A. Arie, A. Skliar, G. Rosenman, "Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4," Appl. Phys. Lett. 74, 914-916 (1999).
[CrossRef]

P. N. Kean, R. W. Standley and G. J. Dixon, "Generation of 20 mW of blue laser radiation from a diode-pumped sum-frequency laser," Appl. Phys. Lett. 63, 302-304 (1993).
[CrossRef]

W. P. Risk and W. Lenth, "Diode laser pumped blue-light source based on intra-cavity sum frequency generation," Appl. Phys. Lett. 54, 789-791 (1989).
[CrossRef]

IEEE J. Quantum Electron.

M. M. Fejer, G. A. Magel, D. H. Jundt and R. L. Byer: "Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

J. Appl. Phys.

S. Guha and J. Falk, "The effects of focusing in the three-frequency parametric upconverter," J. Appl. Phys. 51, 50-60 (1980).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the experimental setup. The 765 nm beam from a tapered laser diode (TD) in Littrow configuration is single-passed through a PPKTP crystal placed in the beam-waist of a high-finesse 1342 nm laser for efficient SFG into the blue spectral region.

Fig. 2.
Fig. 2.

(left) Spectrum of the 765 nm tapered diode laser and (right) spectrum of the highfinesse 1342 nm laser.

Fig. 3.
Fig. 3.

(left) Power of the generated 488 nm light as a function of the injected 765 nm power when P 808=2.3 W. (right) Power of the generated 488 nm light as a function of 808 nm pump power, P 808, for the 1342 nm laser and with P 765=950 mW incident on the nonlinear crystal.

Fig. 4.
Fig. 4.

(left) Spectrum of the generated 488 nm light and (right) normalized 488 nm output power as a function of the temperature of the PPKTP crystal (black squares). The green curve shows the theoretical acceptance temperature assuming spectral delta-functions. The corresponding change in the intra-cavity 1342 nm power (red circles) is also shown.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

1 λ SUM = 1 λ ECDL + 1 λ DPSSL
P 488 = η SFG · P 1342 , circ · P 765
α 1342 SFG η Q P 488 P 1342 , PM 0.046 %
α 1342 P P 1342 , PM · α 1342 SFG P 1342 , NPM P 1342 , PM 0.42 %

Metrics