Abstract

It is shown that the degree of polarization analysis is useful to find objective spectra of exoplanets immersed in noisy stellar spectra. We report the laboratory experiment of polarization differential objective spectroscopy with a four-quadrant polarization mask coronagraph, where partially polarized planetary signal is expected to be discerned from unpolarized stellar noise. The detection of the planet signal is impeded by the stellar noise remained after subtracting mutually orthogonally polarized components of light. We distinguish clearly the planetary spectrum by use of the degree of polarization. We also show the refinement of the spectrum of the planet model.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. http://vo.obspm.fr/exoplanets/encyclo/encycl.html
  2. N. Woolf and J. R. Angel, "Astronomical searches for Earth-like planets and signs of life," Annu. Rev. Astron. Astrophys. 36, 507-537 (1998).
    [CrossRef]
  3. C. A. Beichman, N. J. Woolf, and C. A. Lindensmith, The Terrestrial Planet Finder (JPL Publication 99-3 Pasadena, CA, 1999).
  4. E. Serabyn, J. K. Wallace, G. J. Hardy, E. G. H. Schmidtlin, and H. T. Nguyen, "Deep nulling of visible laser light," Appl. Opt. 38, 7128-7132 (1999).
    [CrossRef]
  5. N. Baba, N. Murakami, and T. Ishigaki, "Nulling interferometry by use of geometric phase," Opt. Lett. 26, 1167-1169 (2001).
    [CrossRef]
  6. A. Tavrov, R. Bohr, M. Totzeck, H. Tiziani, and M. Takeda, "Achromatic nulling interferometer based on a geometric spin-redirection phase," Opt. Lett. 27, 2070-2072 (2002).
    [CrossRef]
  7. F. Roddier and C. Roddier, "Stellar coronagraph with phase mask," Publ. Astron. Soc. Pac. 109, 815-820 (1997).
    [CrossRef]
  8. P. Baudoz, Y. Rabbia, and J. Gay, "Achromatic interfero coronagraphy," Astron. Astrophys. 141, 319-329 (2000).
  9. N. Baba, N. Murakami, T. Ishigaki, and N. Hashimoto, "Polarization interferometric stellar coronagraph," Opt. Lett. 27, 1373-1375 (2002).
    [CrossRef]
  10. O. Guyon and F. Roddier, "A nulling wide field imager for exoplanets detection and general astrophysics," Astron. Astrophys. 391, 379-395 (2002).
    [CrossRef]
  11. G. A. Swartzlander, Jr., "Peering into darkness with a vortex spatial filter," Opt. Lett. 26, 497-499 (2001).
    [CrossRef]
  12. D.  Mawet, P.  Riaud, O.  Absil, and J.  Surdej, "Annular groove phase mask coronagraph," Astrophys. J. 633, 1191-1200 (2005).
    [CrossRef]
  13. R. Racine, G. Walker, D. Nadeau, R. Doyon, and C. Marois, "Speckle noise and the detection of faint companions," Publ. Astron. Soc. Pac. 111, 587-594 (1999).
    [CrossRef]
  14. J. R. Kuhn, D. Potter, and B. Parise, "Imaging polarimetric observations of a new circumsteller disk system," Astrophys. J. 553, L189-L191 (2001).
    [CrossRef]
  15. N. Baba and N. Murakami, "A method to image extrasolar planets with polarized light," Publ. Astron. Soc. Pac. 115, 1363-1366 (2003).
    [CrossRef]
  16. O. Guyon. "Synchronous interferometric speckle subtraction," Astrophys. J. 615, 562-572 (2004).
    [CrossRef]
  17. C.  Marois, D.  Lafrenière, R.  Doyon, B.  Macintosh, and D.  Nadeau, "Angular differential imaging: a powerful high-contrast imaging technique," Astrophys. J. 641, 556-564 (2006).
  18. D. M. Stam, J. W. Hovenier, and L. B. F. M. Waters, "Using polarimetry to detect and characterize Jupiter-like extrasolar planets," Astron. Astrophys. 428, 663-672 (2004).
    [CrossRef]
  19. N. Murakami, N. Baba, Y. Tate, Y. Sato, and M. Tamura, "Polarization differential objective spectroscopy with nulling coronagraph," Publ. Astron. Soc. Pac. 118, 774-779 (2006).
    [CrossRef]
  20. D. Rouan, P. Riaud, A. Boccaletti, Y. Clenet, and A. Labeyrie, "The four-quadrant phase-mask coronagraph I. Principle," Publ. Astron. Soc. Pac. 112, 1479-1486 (2000).
    [CrossRef]
  21. J. B. Breckinridge & B. R. Oppenheimer, "Polarization effects in reflecting coronagraphs for white-light applications in astronomy," Astrophys. J. 600, 1091-1098 (2004).
    [CrossRef]
  22. J. B. Breckinridge, "Image Formation in high contrast optical systems: the role of polarization," Proc. SPIE 5487, 1337-1345 (2004).
    [CrossRef]
  23. J. Hong, "Precision compensation for polarization anisotropies in metal reflectors," Opt. Eng. 43, 1276-1277 (2004).
    [CrossRef]

2006 (2)

C.  Marois, D.  Lafrenière, R.  Doyon, B.  Macintosh, and D.  Nadeau, "Angular differential imaging: a powerful high-contrast imaging technique," Astrophys. J. 641, 556-564 (2006).

N. Murakami, N. Baba, Y. Tate, Y. Sato, and M. Tamura, "Polarization differential objective spectroscopy with nulling coronagraph," Publ. Astron. Soc. Pac. 118, 774-779 (2006).
[CrossRef]

2005 (1)

D.  Mawet, P.  Riaud, O.  Absil, and J.  Surdej, "Annular groove phase mask coronagraph," Astrophys. J. 633, 1191-1200 (2005).
[CrossRef]

2004 (5)

D. M. Stam, J. W. Hovenier, and L. B. F. M. Waters, "Using polarimetry to detect and characterize Jupiter-like extrasolar planets," Astron. Astrophys. 428, 663-672 (2004).
[CrossRef]

J. B. Breckinridge & B. R. Oppenheimer, "Polarization effects in reflecting coronagraphs for white-light applications in astronomy," Astrophys. J. 600, 1091-1098 (2004).
[CrossRef]

J. B. Breckinridge, "Image Formation in high contrast optical systems: the role of polarization," Proc. SPIE 5487, 1337-1345 (2004).
[CrossRef]

J. Hong, "Precision compensation for polarization anisotropies in metal reflectors," Opt. Eng. 43, 1276-1277 (2004).
[CrossRef]

O. Guyon. "Synchronous interferometric speckle subtraction," Astrophys. J. 615, 562-572 (2004).
[CrossRef]

2003 (1)

N. Baba and N. Murakami, "A method to image extrasolar planets with polarized light," Publ. Astron. Soc. Pac. 115, 1363-1366 (2003).
[CrossRef]

2002 (3)

2001 (3)

2000 (2)

D. Rouan, P. Riaud, A. Boccaletti, Y. Clenet, and A. Labeyrie, "The four-quadrant phase-mask coronagraph I. Principle," Publ. Astron. Soc. Pac. 112, 1479-1486 (2000).
[CrossRef]

P. Baudoz, Y. Rabbia, and J. Gay, "Achromatic interfero coronagraphy," Astron. Astrophys. 141, 319-329 (2000).

1999 (2)

E. Serabyn, J. K. Wallace, G. J. Hardy, E. G. H. Schmidtlin, and H. T. Nguyen, "Deep nulling of visible laser light," Appl. Opt. 38, 7128-7132 (1999).
[CrossRef]

R. Racine, G. Walker, D. Nadeau, R. Doyon, and C. Marois, "Speckle noise and the detection of faint companions," Publ. Astron. Soc. Pac. 111, 587-594 (1999).
[CrossRef]

1998 (1)

N. Woolf and J. R. Angel, "Astronomical searches for Earth-like planets and signs of life," Annu. Rev. Astron. Astrophys. 36, 507-537 (1998).
[CrossRef]

1997 (1)

F. Roddier and C. Roddier, "Stellar coronagraph with phase mask," Publ. Astron. Soc. Pac. 109, 815-820 (1997).
[CrossRef]

Annu. Rev. Astron. Astrophys. (1)

N. Woolf and J. R. Angel, "Astronomical searches for Earth-like planets and signs of life," Annu. Rev. Astron. Astrophys. 36, 507-537 (1998).
[CrossRef]

Appl. Opt. (1)

Astron. Astrophys. (3)

P. Baudoz, Y. Rabbia, and J. Gay, "Achromatic interfero coronagraphy," Astron. Astrophys. 141, 319-329 (2000).

O. Guyon and F. Roddier, "A nulling wide field imager for exoplanets detection and general astrophysics," Astron. Astrophys. 391, 379-395 (2002).
[CrossRef]

D. M. Stam, J. W. Hovenier, and L. B. F. M. Waters, "Using polarimetry to detect and characterize Jupiter-like extrasolar planets," Astron. Astrophys. 428, 663-672 (2004).
[CrossRef]

Astrophys. J. (5)

J. B. Breckinridge & B. R. Oppenheimer, "Polarization effects in reflecting coronagraphs for white-light applications in astronomy," Astrophys. J. 600, 1091-1098 (2004).
[CrossRef]

J. R. Kuhn, D. Potter, and B. Parise, "Imaging polarimetric observations of a new circumsteller disk system," Astrophys. J. 553, L189-L191 (2001).
[CrossRef]

O. Guyon. "Synchronous interferometric speckle subtraction," Astrophys. J. 615, 562-572 (2004).
[CrossRef]

C.  Marois, D.  Lafrenière, R.  Doyon, B.  Macintosh, and D.  Nadeau, "Angular differential imaging: a powerful high-contrast imaging technique," Astrophys. J. 641, 556-564 (2006).

D.  Mawet, P.  Riaud, O.  Absil, and J.  Surdej, "Annular groove phase mask coronagraph," Astrophys. J. 633, 1191-1200 (2005).
[CrossRef]

Opt. Eng. (1)

J. Hong, "Precision compensation for polarization anisotropies in metal reflectors," Opt. Eng. 43, 1276-1277 (2004).
[CrossRef]

Opt. Lett. (4)

Proc. SPIE (1)

J. B. Breckinridge, "Image Formation in high contrast optical systems: the role of polarization," Proc. SPIE 5487, 1337-1345 (2004).
[CrossRef]

Publ. Astron. Soc. Pac. (5)

N. Murakami, N. Baba, Y. Tate, Y. Sato, and M. Tamura, "Polarization differential objective spectroscopy with nulling coronagraph," Publ. Astron. Soc. Pac. 118, 774-779 (2006).
[CrossRef]

D. Rouan, P. Riaud, A. Boccaletti, Y. Clenet, and A. Labeyrie, "The four-quadrant phase-mask coronagraph I. Principle," Publ. Astron. Soc. Pac. 112, 1479-1486 (2000).
[CrossRef]

N. Baba and N. Murakami, "A method to image extrasolar planets with polarized light," Publ. Astron. Soc. Pac. 115, 1363-1366 (2003).
[CrossRef]

R. Racine, G. Walker, D. Nadeau, R. Doyon, and C. Marois, "Speckle noise and the detection of faint companions," Publ. Astron. Soc. Pac. 111, 587-594 (1999).
[CrossRef]

F. Roddier and C. Roddier, "Stellar coronagraph with phase mask," Publ. Astron. Soc. Pac. 109, 815-820 (1997).
[CrossRef]

Other (2)

http://vo.obspm.fr/exoplanets/encyclo/encycl.html

C. A. Beichman, N. J. Woolf, and C. A. Lindensmith, The Terrestrial Planet Finder (JPL Publication 99-3 Pasadena, CA, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Optical setup of polarization differential spectroscopy with an FQPoM coronagraph.

Fig. 2.
Fig. 2.

Coronagraphic images with the s- (a) and p- (b) polarized components of light and their differential image (c). The arrows indicate the planet position.

Fig. 3.
Fig. 3.

Objective spectra with s- (a) and p-polarized components (b) and their differential objective spectra (c). The arrows indicate the position of the planetary spectrum.

Fig. 4.
Fig. 4.

The degree of polarization of the differential spectra with a constant (a) and a linear (b) scaling factors. The blue color is used for displaying negative values and the red one for positive ones. The arrows indicate the location of the planetary spectrum.

Fig. 5.
Fig. 5.

(a). Spectral transmittance of our coronagraphic optics with retardations of the LCVR in the states of a wave plate, Twp (green) and a half-wave plate, Thwp (blue). (b) Plot of Twp/Thwp with respect to wavelength. The line shows the fitted one in the range of 580–680 nm.

Fig. 6.
Fig. 6.

(a). Comparison of the planetary spectrum extracted from the differential spectrum (red) and the spectrum of the planet without the LCVR and starlight (green). (b) Spectral transmittance of LCVR: a wave plate mode (upper), a half-wave plate mode (lower). (c) Refined planetary spectrum (blue) and the planetary spectrum without the LCVR and starlight (green).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

q ij = I ij wp I ij hwp I ij wp + I ij hwp ,
Q ij = I ij wp k j × I ij hwp .
q ij = I ij wp k j × I ij hwp I ij wp + k j × I ij hwp .

Metrics