Abstract

A new approach for remote reflectivity detecting based on optical feedback effect in distributed feedback (DFB) lasers is presented. A linear dependent relationship between the reflectivity of external target and the signal modulation depth is obtained. The experimental results show a good agreement with the theoretical analysis and the simulation, and indicate that the active sensing based on optical feedback effect in DFB laser is an effective approach for reflectivity detecting. With the advantage of simple and compact structure, this application can easily enhance the development of a new generation of active sensor.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. Th. H. Peek, P. T. Bolwjin, and C. Th. Alkemade, "Axial mode number of gas lasers from moving-mirror experiments," Am. J. Phys. 35, 820-831 (1967).
    [CrossRef]
  2. G. Mourat, N. Servagent, and T. Bosch, "Distance mearsurements using the self-mixing effect in a 3-electrode DBR laser diode," Opt. Eng. 39, 738-743 (2000).
    [CrossRef]
  3. M. Norgia and S. Donati, "A Displacement-Measuring Instrument Utilizing Self-Mixing Interferometry," IEEE T. Instrum. Meas. 52, 1765-1770 (2003).
    [CrossRef]
  4. L. Kervevan, H. Gilles, S. Girard, and M. Laroche, "Two-dimensional velocity measurements with self-mixing technique in diode-pumped Yb: Er glass laser," IEEE Photo. Tech. Lett. 16, 1709-1711 (2004).
    [CrossRef]
  5. L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, "Self-mixing laser diode velocimetry: Application to vibration and velocity measurement," IEEE T. Instrum. Meas. 53, 223-232 (2004).
    [CrossRef]
  6. J. Zhou and M. Wang, "Effects of self-mixing interference on gain-coupled distributed-feedback lasers," Opt. Express 13, 1848-1854 (2005).
    [CrossRef] [PubMed]
  7. T. Mukai and M. Ishikawa, "An active sensing method using estimated errors for multisensor fusion systems," IEEE Trans.Ind. Electron. 43, 380-386 (1996)
  8. P. C. Beard and T. N. Mills, "Miniature optical fibre ultrasonic hydrophone using a Fabry-Perot polymer film interferometer," Electron. Lett. 33, 801-803 (1997).
    [CrossRef]
  9. H. Sohn, G. Park, J. R. Wait, N. P. Limback, and C. R. Farrar, "Wavelet-based active sensing for delamination detection in composite structures," Smart Mater. Strust. 13, 153-160 (2004).
    [CrossRef]

2005 (1)

2004 (3)

L. Kervevan, H. Gilles, S. Girard, and M. Laroche, "Two-dimensional velocity measurements with self-mixing technique in diode-pumped Yb: Er glass laser," IEEE Photo. Tech. Lett. 16, 1709-1711 (2004).
[CrossRef]

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, "Self-mixing laser diode velocimetry: Application to vibration and velocity measurement," IEEE T. Instrum. Meas. 53, 223-232 (2004).
[CrossRef]

H. Sohn, G. Park, J. R. Wait, N. P. Limback, and C. R. Farrar, "Wavelet-based active sensing for delamination detection in composite structures," Smart Mater. Strust. 13, 153-160 (2004).
[CrossRef]

2003 (1)

M. Norgia and S. Donati, "A Displacement-Measuring Instrument Utilizing Self-Mixing Interferometry," IEEE T. Instrum. Meas. 52, 1765-1770 (2003).
[CrossRef]

2000 (1)

G. Mourat, N. Servagent, and T. Bosch, "Distance mearsurements using the self-mixing effect in a 3-electrode DBR laser diode," Opt. Eng. 39, 738-743 (2000).
[CrossRef]

1997 (1)

P. C. Beard and T. N. Mills, "Miniature optical fibre ultrasonic hydrophone using a Fabry-Perot polymer film interferometer," Electron. Lett. 33, 801-803 (1997).
[CrossRef]

1996 (1)

T. Mukai and M. Ishikawa, "An active sensing method using estimated errors for multisensor fusion systems," IEEE Trans.Ind. Electron. 43, 380-386 (1996)

1967 (1)

Th. H. Peek, P. T. Bolwjin, and C. Th. Alkemade, "Axial mode number of gas lasers from moving-mirror experiments," Am. J. Phys. 35, 820-831 (1967).
[CrossRef]

Am. J. Phys. (1)

Th. H. Peek, P. T. Bolwjin, and C. Th. Alkemade, "Axial mode number of gas lasers from moving-mirror experiments," Am. J. Phys. 35, 820-831 (1967).
[CrossRef]

Electron. Lett. (1)

P. C. Beard and T. N. Mills, "Miniature optical fibre ultrasonic hydrophone using a Fabry-Perot polymer film interferometer," Electron. Lett. 33, 801-803 (1997).
[CrossRef]

IEEE Photo. Tech. Lett. (1)

L. Kervevan, H. Gilles, S. Girard, and M. Laroche, "Two-dimensional velocity measurements with self-mixing technique in diode-pumped Yb: Er glass laser," IEEE Photo. Tech. Lett. 16, 1709-1711 (2004).
[CrossRef]

IEEE T. Instrum. Meas. (2)

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, "Self-mixing laser diode velocimetry: Application to vibration and velocity measurement," IEEE T. Instrum. Meas. 53, 223-232 (2004).
[CrossRef]

M. Norgia and S. Donati, "A Displacement-Measuring Instrument Utilizing Self-Mixing Interferometry," IEEE T. Instrum. Meas. 52, 1765-1770 (2003).
[CrossRef]

IEEE Trans.Ind. Electron. (1)

T. Mukai and M. Ishikawa, "An active sensing method using estimated errors for multisensor fusion systems," IEEE Trans.Ind. Electron. 43, 380-386 (1996)

Opt. Eng. (1)

G. Mourat, N. Servagent, and T. Bosch, "Distance mearsurements using the self-mixing effect in a 3-electrode DBR laser diode," Opt. Eng. 39, 738-743 (2000).
[CrossRef]

Opt. Express (1)

Smart Mater. Strust. (1)

H. Sohn, G. Park, J. R. Wait, N. P. Limback, and C. R. Farrar, "Wavelet-based active sensing for delamination detection in composite structures," Smart Mater. Strust. 13, 153-160 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Theoretical illustration for the active sensing application of optical feedback interference in DFB laser.

Fig. 2.
Fig. 2.

Experimental schematic for active sensing application of optical feedback interference in DFB laser.

Fig. 3.
Fig. 3.

Simulated and experimental results of output signal.

Fig. 4.
Fig. 4.

Simulated and experimental results versus different reflectivity of external reflector. (a). Simulation. (b). Experimental results and fitted linear regression lines.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Δ G = 2 c n L C r · r · cos [ ω τ arg ( C r ) ] ,
R = R 0 + η fe · ( 1 R 0 ) · r obj · exp ( i ω τ obj ) ,
P fb = P ff · R · exp { 0 L f [ α i ( x ) + α s ( x ) ] dx } ,
r r = η 1 f · [ R 0 + η fe ( 1 R 0 ) · r obj · exp ( i ω τ obj ) ]
· exp { 1 2 0 L f [ α i ( x ) + α s ( x ) ] dx i · 2 k 0 n f L f } ,
r r = r · exp ( i ω τ ) .
r = r r
η 1 f · exp { 1 2 0 L f [ α i ( x ) + α s ( x ) ] dx } · [ R 0 + η fe ( 1 R 0 ) · r obj · cos ( i ω τ obj ) ]
ω τ = arg ( r r ) + 2 m π
P [ R 0 + η fe ( 1 R 0 ) · r obj · cos ( i ω τ obj ) ] · cos [ arg ( r r ) arg ( C r ) ] .
δ P 2 η fe ( 1 R 0 ) · r obj .

Metrics