Abstract

The broadband optical feedforward transmitter with uncooled and unisolated distributed-feedback laser diodes (DFB LDs) is developed for a radio-over-fiber system. Although we use DFB LDs for digital communications, the feedforward compensation method can significantly suppress the intermodulation distortions and background noise. For the wide frequency range from 2.05 to 2.60 GHz (550 MHz), the third-order intermodulation distortion (IMD3) is suppressed by more than 10 dB. We also analyze the variation of IMD3 and noise for the bias current of LDs. With the linearization technique, the maximum IMD3 suppression and spurious-free dynamic range enhancement are 21.3 dB and 7.11 dB, respectively, at 2.3 GHz.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. J. Cooper, "Fibre/radio for the provision of cordless/mobile telephony services in the access network," Electron. Lett. 26, 2054-2056 (1990).
    [CrossRef]
  2. A. J. Seeds and K. J. Williams, "Microwave photonics," J. Lightw. Technol. 24, 4628-4641 (2006).
    [CrossRef]
  3. P. K. Tang, L. C. Ong, B. Luo, A. Alphones, and M. Fujise, "Transmission of multiple wireless standards over a radio-over-fiber network," 2004 IEEE MTT-S International, 3, 2051-2054 (2004).
  4. P. Hartmann, A. Bothwell, R. Cronin, K. Leeson, A. Loveridge, D. C. Parkinson, J. W. Ure, R. V. Penty, I. H. White, and A. J. Seeds, "Wideband fibre-agnostic DAS using pluggable analogue optical modules," Microwave Photonics 2006, P5 (2006).
  5. H.-T. Lin and Y.-H. Kao, "Nonlinear distortions and compensations of DFB laser diode in AM-VSB lightwave CATV applications," J. Lightw. Technol. 14, 2567-2574 (1996).
    [CrossRef]
  6. L. Roselli, V. Borgioni, F. Zepparelli, F. Ambrosi, M. Comez, P. Faccin, and A. Casini, "Analog laser predistortion for multiservice radio-over-fiber systems," J. Lightw. Technol. 21, 1211-1223 (2003).
    [CrossRef]
  7. L. S. Fock and R. S. Tucker, "Simultaneous reduction of intensity noise and distortion in semiconductor lasers by feedforward compensation," Electron. Lett. 27, 1297-1299 (1991).
    [CrossRef]
  8. D. Hassin and R. Vahldieck, "Feedforward linearization of analog modulated laser diodes-theoretical analysis and experimental verification," IEEE Trans. Microw. Theory Tech. 41, 2376-2382 (1993).
    [CrossRef]
  9. Hyun-Do Jung, and Sang-kookHan , "Nonlinear distortion suppression in directly modulated DFB-LD by dual-parallel modulation", IEEE Photon. Technol. Lett. 14, 980-982 (2002).
    [CrossRef]
  10. A. Kaszubowska, P. Anandarajah and L.P. Barry, "Improved performance of a hybrid radio/fibre system using a directly modulated laser transmitter with external injection," IEEE Photon. Technol. Lett. 14, 223-235 (2002).
    [CrossRef]
  11. R. S. Tucker, "Linearization techniques for wideband analog transmitters," Broadband Analog and Digital Optoelectronics, Optical Multiple Access Networks, Integrated Optoelectronics, Smart Pixels, LEOS 1992 Summer Topical Meeting Dig., 54-55 (1992).

2006 (2)

A. J. Seeds and K. J. Williams, "Microwave photonics," J. Lightw. Technol. 24, 4628-4641 (2006).
[CrossRef]

P. Hartmann, A. Bothwell, R. Cronin, K. Leeson, A. Loveridge, D. C. Parkinson, J. W. Ure, R. V. Penty, I. H. White, and A. J. Seeds, "Wideband fibre-agnostic DAS using pluggable analogue optical modules," Microwave Photonics 2006, P5 (2006).

2003 (1)

L. Roselli, V. Borgioni, F. Zepparelli, F. Ambrosi, M. Comez, P. Faccin, and A. Casini, "Analog laser predistortion for multiservice radio-over-fiber systems," J. Lightw. Technol. 21, 1211-1223 (2003).
[CrossRef]

2002 (2)

Hyun-Do Jung, and Sang-kookHan , "Nonlinear distortion suppression in directly modulated DFB-LD by dual-parallel modulation", IEEE Photon. Technol. Lett. 14, 980-982 (2002).
[CrossRef]

A. Kaszubowska, P. Anandarajah and L.P. Barry, "Improved performance of a hybrid radio/fibre system using a directly modulated laser transmitter with external injection," IEEE Photon. Technol. Lett. 14, 223-235 (2002).
[CrossRef]

1996 (1)

H.-T. Lin and Y.-H. Kao, "Nonlinear distortions and compensations of DFB laser diode in AM-VSB lightwave CATV applications," J. Lightw. Technol. 14, 2567-2574 (1996).
[CrossRef]

1993 (1)

D. Hassin and R. Vahldieck, "Feedforward linearization of analog modulated laser diodes-theoretical analysis and experimental verification," IEEE Trans. Microw. Theory Tech. 41, 2376-2382 (1993).
[CrossRef]

1991 (1)

L. S. Fock and R. S. Tucker, "Simultaneous reduction of intensity noise and distortion in semiconductor lasers by feedforward compensation," Electron. Lett. 27, 1297-1299 (1991).
[CrossRef]

1990 (1)

A. J. Cooper, "Fibre/radio for the provision of cordless/mobile telephony services in the access network," Electron. Lett. 26, 2054-2056 (1990).
[CrossRef]

Electron. Lett. (2)

A. J. Cooper, "Fibre/radio for the provision of cordless/mobile telephony services in the access network," Electron. Lett. 26, 2054-2056 (1990).
[CrossRef]

L. S. Fock and R. S. Tucker, "Simultaneous reduction of intensity noise and distortion in semiconductor lasers by feedforward compensation," Electron. Lett. 27, 1297-1299 (1991).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Hyun-Do Jung, and Sang-kookHan , "Nonlinear distortion suppression in directly modulated DFB-LD by dual-parallel modulation", IEEE Photon. Technol. Lett. 14, 980-982 (2002).
[CrossRef]

A. Kaszubowska, P. Anandarajah and L.P. Barry, "Improved performance of a hybrid radio/fibre system using a directly modulated laser transmitter with external injection," IEEE Photon. Technol. Lett. 14, 223-235 (2002).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

D. Hassin and R. Vahldieck, "Feedforward linearization of analog modulated laser diodes-theoretical analysis and experimental verification," IEEE Trans. Microw. Theory Tech. 41, 2376-2382 (1993).
[CrossRef]

J. Lightw. Technol. (3)

A. J. Seeds and K. J. Williams, "Microwave photonics," J. Lightw. Technol. 24, 4628-4641 (2006).
[CrossRef]

H.-T. Lin and Y.-H. Kao, "Nonlinear distortions and compensations of DFB laser diode in AM-VSB lightwave CATV applications," J. Lightw. Technol. 14, 2567-2574 (1996).
[CrossRef]

L. Roselli, V. Borgioni, F. Zepparelli, F. Ambrosi, M. Comez, P. Faccin, and A. Casini, "Analog laser predistortion for multiservice radio-over-fiber systems," J. Lightw. Technol. 21, 1211-1223 (2003).
[CrossRef]

Microwave Photonics (1)

P. Hartmann, A. Bothwell, R. Cronin, K. Leeson, A. Loveridge, D. C. Parkinson, J. W. Ure, R. V. Penty, I. H. White, and A. J. Seeds, "Wideband fibre-agnostic DAS using pluggable analogue optical modules," Microwave Photonics 2006, P5 (2006).

Other (2)

P. K. Tang, L. C. Ong, B. Luo, A. Alphones, and M. Fujise, "Transmission of multiple wireless standards over a radio-over-fiber network," 2004 IEEE MTT-S International, 3, 2051-2054 (2004).

R. S. Tucker, "Linearization techniques for wideband analog transmitters," Broadband Analog and Digital Optoelectronics, Optical Multiple Access Networks, Integrated Optoelectronics, Smart Pixels, LEOS 1992 Summer Topical Meeting Dig., 54-55 (1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Broadband feedforward compensation scheme.

Fig. 2.
Fig. 2.

Third-order intermodulation distortion (IMD) products with and without feedforward linearization method.

Fig. 3.
Fig. 3.

Variation of IMD3 and background noise as functions of (a) the optical modulation index (OMI) of the LD1 (b) the biasing current of LD2 at 2.3 and 2.4 GHz.

Fig. 4.
Fig. 4.

(a) Simultaneously suppressed intermodulation distortion and noise, and (b) spurious-free dynamic range (SFDR) with and without feedforward compensation at 2.3 GHz. The background noise floor with and without feedforward are -134.48 dBm/Hz, -132.91 dBm/Hz, respectively.

Tables (1)

Tables Icon

Table 1. Measured results for carrier frequencies

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ IMD = 10 log 1 + 10 Δ A 10 2 × 10 Δ A 20 cos ( Δ ϕ )

Metrics