Abstract

We demonstrate a fully stabilized frequency comb in the 1µm spectral region based on an Yb-fiber oscillator and a cladding pumped chirped pulse Yb-fiber amplifier whose output is spectrally broadened in a dispersion micromanaged holey fiber. The dispersion micromanaged fiber is used to generate efficient, low noise spectral components at 523nm which are heterodyned with the second harmonic of the amplifier output for standard f-to-2f self-referenced carrier envelope offset frequency detection. For comb stabilization we phase-lock this offset frequency and the oscillator repetition frequency simultaneously to an RF reference by feedback controlling the oscillator pump diode current and the driving voltage of an intracavity piezo-electric fiber stretcher respectively.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrierenvelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000)
    [CrossRef] [PubMed]
  2. Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical Frequency Metrology,” Nature 416, 233–237 (2002)
    [CrossRef] [PubMed]
  3. Jun Ye and Steven T. Cundiff eds., Femtosecond Optical Frequency Comb Technology,: Principle, Operation and Application (Springer New York, NY2005)
  4. B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jorgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29, 250–252. (2004).
    [CrossRef] [PubMed]
  5. T. R. Schibli, K. Minoshima, F.-L. Hong, H. Inaba, A. Onae, H. Matsumoto, I. Hartl, and M. E. Fermann, “Frequency metrology with a turnkey all-fiber system,” Opt. Lett. 29, 2467–2469 (2004).
    [CrossRef] [PubMed]
  6. Holger Hundertmark, Dieter Wandt, Carsten Fallnich, Nils Haverkamp, and Harald R. Telle, “Phase-locked carrier-envelope-offset frequency at 1560 nm,” Opt. Express 12, 770–775 (2004)
    [CrossRef] [PubMed]
  7. P. Kubina, P. Adel, F. Adler, G. Grosche, T. W. Hänsch, R. Holzwarth, A. Leitenstorfer, B. Lipphardt, and H. Schnatz, “Long term comparison of two fiber based frequency comb systems,” Opt. Express 13, 904–909 (2005).
    [CrossRef] [PubMed]
  8. H. Schnatz, B. Lipphardt, and G. Grosche, “Frequency Metrology using Fiber-Based fs-Frequency Combs,” in Conference on Lasers and Electro-Optics (Optical Society of America, Long Beach, Ca, 2006), paper CTuH1.
  9. W. C. Swann, J. J. McFerran, I. Coddington, N. R. Newbury, I. Hartl, M. E. Fermann, P. S. Westbrook, J. W. Nicholson, K. S. Feder, C. Langrock, and M. M. Fejer, “Fiber-laser frequency combs with subhertz relative linewidths,” Opt. Lett. 31, 3046–3048 (2006)
    [CrossRef] [PubMed]
  10. S. A. Diddams, J. C. Bergquist, S. R. Jefferts, and C. W. Oates, “Standards of time and frequency at the outset of the 21st century,” Science 306, 1318–1324. (2004).
    [CrossRef] [PubMed]
  11. I. Hartl, G. Imeshev, L. Dong, G. C. Cho, and M. E. Fermann, “Ultra-compact dispersion compensated femtosecond fiber oscillators and amplifiers,” CLEO (2004), Paper CThG1
  12. F. Röser, J. Rothhard, B. Ortac, A. Liem, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “131 W 220 fs fiber laser system,” Opt. Lett. 30, 2754 (2005).
    [CrossRef] [PubMed]
  13. H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999)
    [CrossRef]
  14. I. Hartl, M. E. Fermann, C. Langrock, M. M. Fejer, J. W. Nicholson, and D. J. DiGiovanni,“Integrated Fiber-Frequency Comb Using a PPLN Waveguide for Spectral Broadening and CEO Phase Detection,” in Conference on Lasers and Electro-Optics(Optical Society of America, 2006), paper CtuH5.
  15. F. Lu and W. H. Knox, “Generation, characterization, and application of broadband coherent, femtosecond visible pulses in dispersion micromanaged holey fibers,” J. Opt. Soc. Am. B,  23, 1221–1227 (2006)
    [CrossRef]
  16. Yujun Deng, Fei Lu, and Wayne H. Knox, “Fiber-laser-based difference frequency generation scheme for carrier-envelope-offset phase stabilization applications,” Opt. Express 13, 4589–4593 (2005)
    [CrossRef] [PubMed]
  17. A. V. Husakou and J. Herrmann, “Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers,” Phys. Rev. Lett. 87, 203901 (2001)
    [CrossRef] [PubMed]
  18. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler,“Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys B 77, 269–277 (2003)
    [CrossRef]
  19. John M. Dudley, Goery Genty, and Stephane Coen,” Supercontinuum generation in photonic crystal fiber” Rev. Mod. Phys. 78, 1135 (2006)
    [CrossRef]
  20. Tara M. Fortier, Jun Ye, Steven T. Cundiff, and Robert S. Windeler, “Nonlinear phase noise generated in air-silica microstructure fiber and its effect on carier-envelope phase,” Opt. Lett 27, 445–447 (2002)
    [CrossRef]
  21. I. Hartl, M. E. Fermann, T. R. Schibli, D. D. Hudson, M. J. Thorpe, R. J. Jones, and J. Ye, “Passive cavity enhancement of a femtosecond fiber chirped pulse amplification system to 204W average power,” Advanced Solid State Photonics (2007), Paper WA4
  22. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001)
  23. N. R. Newbury and B. R. Washburn, “Theory of the Frequency Comb Output From a Femtosecond Fiber Laser,” IEEE J. Quantum Electron. 41, 1388–1402 (2005).
    [CrossRef]
  24. N. R. Newbury and W. C. Swann, “Low-noise fiber-laser frequency combs (Invited),” J. Opt. Soc. Am. B 24, 1756–1770 (2007).
    [CrossRef]
  25. R. Jason Jones, Kevin D. Moll, Michael J. Thorpe, and Jun Ye, “Phase-Coherent Frequency Combs in the Vacuum Ultraviolet via High-Harmonic generation inside a Femtosecond Enhancement Cavity,” Phys. Rev. Lett. 94, 193201 (2005).
    [CrossRef] [PubMed]
  26. Christoph Gohle, Thomas Udem, Maximilian Herrmann, Jens Rauschenberger, Ronald Holzwarth, Hans A. Schuessler, Ferenc Krausz, and Theodor W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
    [CrossRef] [PubMed]

2007 (1)

2006 (3)

2005 (6)

P. Kubina, P. Adel, F. Adler, G. Grosche, T. W. Hänsch, R. Holzwarth, A. Leitenstorfer, B. Lipphardt, and H. Schnatz, “Long term comparison of two fiber based frequency comb systems,” Opt. Express 13, 904–909 (2005).
[CrossRef] [PubMed]

Yujun Deng, Fei Lu, and Wayne H. Knox, “Fiber-laser-based difference frequency generation scheme for carrier-envelope-offset phase stabilization applications,” Opt. Express 13, 4589–4593 (2005)
[CrossRef] [PubMed]

F. Röser, J. Rothhard, B. Ortac, A. Liem, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “131 W 220 fs fiber laser system,” Opt. Lett. 30, 2754 (2005).
[CrossRef] [PubMed]

R. Jason Jones, Kevin D. Moll, Michael J. Thorpe, and Jun Ye, “Phase-Coherent Frequency Combs in the Vacuum Ultraviolet via High-Harmonic generation inside a Femtosecond Enhancement Cavity,” Phys. Rev. Lett. 94, 193201 (2005).
[CrossRef] [PubMed]

Christoph Gohle, Thomas Udem, Maximilian Herrmann, Jens Rauschenberger, Ronald Holzwarth, Hans A. Schuessler, Ferenc Krausz, and Theodor W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[CrossRef] [PubMed]

N. R. Newbury and B. R. Washburn, “Theory of the Frequency Comb Output From a Femtosecond Fiber Laser,” IEEE J. Quantum Electron. 41, 1388–1402 (2005).
[CrossRef]

2004 (4)

2003 (1)

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler,“Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys B 77, 269–277 (2003)
[CrossRef]

2002 (2)

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical Frequency Metrology,” Nature 416, 233–237 (2002)
[CrossRef] [PubMed]

Tara M. Fortier, Jun Ye, Steven T. Cundiff, and Robert S. Windeler, “Nonlinear phase noise generated in air-silica microstructure fiber and its effect on carier-envelope phase,” Opt. Lett 27, 445–447 (2002)
[CrossRef]

2001 (1)

A. V. Husakou and J. Herrmann, “Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers,” Phys. Rev. Lett. 87, 203901 (2001)
[CrossRef] [PubMed]

2000 (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrierenvelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000)
[CrossRef] [PubMed]

1999 (1)

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999)
[CrossRef]

Adel, P.

Adler, F.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001)

Bergquist, J. C.

S. A. Diddams, J. C. Bergquist, S. R. Jefferts, and C. W. Oates, “Standards of time and frequency at the outset of the 21st century,” Science 306, 1318–1324. (2004).
[CrossRef] [PubMed]

Cho, G. C.

I. Hartl, G. Imeshev, L. Dong, G. C. Cho, and M. E. Fermann, “Ultra-compact dispersion compensated femtosecond fiber oscillators and amplifiers,” CLEO (2004), Paper CThG1

Coddington, I.

Coen, S.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler,“Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys B 77, 269–277 (2003)
[CrossRef]

Coen, Stephane

John M. Dudley, Goery Genty, and Stephane Coen,” Supercontinuum generation in photonic crystal fiber” Rev. Mod. Phys. 78, 1135 (2006)
[CrossRef]

Corwin, K. L.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler,“Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys B 77, 269–277 (2003)
[CrossRef]

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrierenvelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000)
[CrossRef] [PubMed]

Cundiff, Steven T.

Tara M. Fortier, Jun Ye, Steven T. Cundiff, and Robert S. Windeler, “Nonlinear phase noise generated in air-silica microstructure fiber and its effect on carier-envelope phase,” Opt. Lett 27, 445–447 (2002)
[CrossRef]

Deng, Yujun

Diddams, S. A.

B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jorgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29, 250–252. (2004).
[CrossRef] [PubMed]

S. A. Diddams, J. C. Bergquist, S. R. Jefferts, and C. W. Oates, “Standards of time and frequency at the outset of the 21st century,” Science 306, 1318–1324. (2004).
[CrossRef] [PubMed]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler,“Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys B 77, 269–277 (2003)
[CrossRef]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrierenvelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000)
[CrossRef] [PubMed]

DiGiovanni, D. J.

I. Hartl, M. E. Fermann, C. Langrock, M. M. Fejer, J. W. Nicholson, and D. J. DiGiovanni,“Integrated Fiber-Frequency Comb Using a PPLN Waveguide for Spectral Broadening and CEO Phase Detection,” in Conference on Lasers and Electro-Optics(Optical Society of America, 2006), paper CtuH5.

Dong, L.

I. Hartl, G. Imeshev, L. Dong, G. C. Cho, and M. E. Fermann, “Ultra-compact dispersion compensated femtosecond fiber oscillators and amplifiers,” CLEO (2004), Paper CThG1

Dudley, J. M.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler,“Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys B 77, 269–277 (2003)
[CrossRef]

Dudley, John M.

John M. Dudley, Goery Genty, and Stephane Coen,” Supercontinuum generation in photonic crystal fiber” Rev. Mod. Phys. 78, 1135 (2006)
[CrossRef]

Dunlop, A. E.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999)
[CrossRef]

Fallnich, Carsten

Feder, K. S.

Fejer, M. M.

W. C. Swann, J. J. McFerran, I. Coddington, N. R. Newbury, I. Hartl, M. E. Fermann, P. S. Westbrook, J. W. Nicholson, K. S. Feder, C. Langrock, and M. M. Fejer, “Fiber-laser frequency combs with subhertz relative linewidths,” Opt. Lett. 31, 3046–3048 (2006)
[CrossRef] [PubMed]

I. Hartl, M. E. Fermann, C. Langrock, M. M. Fejer, J. W. Nicholson, and D. J. DiGiovanni,“Integrated Fiber-Frequency Comb Using a PPLN Waveguide for Spectral Broadening and CEO Phase Detection,” in Conference on Lasers and Electro-Optics(Optical Society of America, 2006), paper CtuH5.

Fermann, M. E.

W. C. Swann, J. J. McFerran, I. Coddington, N. R. Newbury, I. Hartl, M. E. Fermann, P. S. Westbrook, J. W. Nicholson, K. S. Feder, C. Langrock, and M. M. Fejer, “Fiber-laser frequency combs with subhertz relative linewidths,” Opt. Lett. 31, 3046–3048 (2006)
[CrossRef] [PubMed]

T. R. Schibli, K. Minoshima, F.-L. Hong, H. Inaba, A. Onae, H. Matsumoto, I. Hartl, and M. E. Fermann, “Frequency metrology with a turnkey all-fiber system,” Opt. Lett. 29, 2467–2469 (2004).
[CrossRef] [PubMed]

I. Hartl, M. E. Fermann, C. Langrock, M. M. Fejer, J. W. Nicholson, and D. J. DiGiovanni,“Integrated Fiber-Frequency Comb Using a PPLN Waveguide for Spectral Broadening and CEO Phase Detection,” in Conference on Lasers and Electro-Optics(Optical Society of America, 2006), paper CtuH5.

I. Hartl, M. E. Fermann, T. R. Schibli, D. D. Hudson, M. J. Thorpe, R. J. Jones, and J. Ye, “Passive cavity enhancement of a femtosecond fiber chirped pulse amplification system to 204W average power,” Advanced Solid State Photonics (2007), Paper WA4

I. Hartl, G. Imeshev, L. Dong, G. C. Cho, and M. E. Fermann, “Ultra-compact dispersion compensated femtosecond fiber oscillators and amplifiers,” CLEO (2004), Paper CThG1

Fortier, Tara M.

Tara M. Fortier, Jun Ye, Steven T. Cundiff, and Robert S. Windeler, “Nonlinear phase noise generated in air-silica microstructure fiber and its effect on carier-envelope phase,” Opt. Lett 27, 445–447 (2002)
[CrossRef]

Genty, Goery

John M. Dudley, Goery Genty, and Stephane Coen,” Supercontinuum generation in photonic crystal fiber” Rev. Mod. Phys. 78, 1135 (2006)
[CrossRef]

Gohle, Christoph

Christoph Gohle, Thomas Udem, Maximilian Herrmann, Jens Rauschenberger, Ronald Holzwarth, Hans A. Schuessler, Ferenc Krausz, and Theodor W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[CrossRef] [PubMed]

Grosche, G.

P. Kubina, P. Adel, F. Adler, G. Grosche, T. W. Hänsch, R. Holzwarth, A. Leitenstorfer, B. Lipphardt, and H. Schnatz, “Long term comparison of two fiber based frequency comb systems,” Opt. Express 13, 904–909 (2005).
[CrossRef] [PubMed]

H. Schnatz, B. Lipphardt, and G. Grosche, “Frequency Metrology using Fiber-Based fs-Frequency Combs,” in Conference on Lasers and Electro-Optics (Optical Society of America, Long Beach, Ca, 2006), paper CTuH1.

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrierenvelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000)
[CrossRef] [PubMed]

Hänsch, T. W.

Hänsch, Theodor W.

Christoph Gohle, Thomas Udem, Maximilian Herrmann, Jens Rauschenberger, Ronald Holzwarth, Hans A. Schuessler, Ferenc Krausz, and Theodor W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[CrossRef] [PubMed]

Hartl, I.

W. C. Swann, J. J. McFerran, I. Coddington, N. R. Newbury, I. Hartl, M. E. Fermann, P. S. Westbrook, J. W. Nicholson, K. S. Feder, C. Langrock, and M. M. Fejer, “Fiber-laser frequency combs with subhertz relative linewidths,” Opt. Lett. 31, 3046–3048 (2006)
[CrossRef] [PubMed]

T. R. Schibli, K. Minoshima, F.-L. Hong, H. Inaba, A. Onae, H. Matsumoto, I. Hartl, and M. E. Fermann, “Frequency metrology with a turnkey all-fiber system,” Opt. Lett. 29, 2467–2469 (2004).
[CrossRef] [PubMed]

I. Hartl, G. Imeshev, L. Dong, G. C. Cho, and M. E. Fermann, “Ultra-compact dispersion compensated femtosecond fiber oscillators and amplifiers,” CLEO (2004), Paper CThG1

I. Hartl, M. E. Fermann, C. Langrock, M. M. Fejer, J. W. Nicholson, and D. J. DiGiovanni,“Integrated Fiber-Frequency Comb Using a PPLN Waveguide for Spectral Broadening and CEO Phase Detection,” in Conference on Lasers and Electro-Optics(Optical Society of America, 2006), paper CtuH5.

I. Hartl, M. E. Fermann, T. R. Schibli, D. D. Hudson, M. J. Thorpe, R. J. Jones, and J. Ye, “Passive cavity enhancement of a femtosecond fiber chirped pulse amplification system to 204W average power,” Advanced Solid State Photonics (2007), Paper WA4

Haverkamp, Nils

Herrmann, J.

A. V. Husakou and J. Herrmann, “Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers,” Phys. Rev. Lett. 87, 203901 (2001)
[CrossRef] [PubMed]

Herrmann, Maximilian

Christoph Gohle, Thomas Udem, Maximilian Herrmann, Jens Rauschenberger, Ronald Holzwarth, Hans A. Schuessler, Ferenc Krausz, and Theodor W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[CrossRef] [PubMed]

Holzwarth, R.

Holzwarth, Ronald

Christoph Gohle, Thomas Udem, Maximilian Herrmann, Jens Rauschenberger, Ronald Holzwarth, Hans A. Schuessler, Ferenc Krausz, and Theodor W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[CrossRef] [PubMed]

Hong, F.-L.

Hudson, D. D.

I. Hartl, M. E. Fermann, T. R. Schibli, D. D. Hudson, M. J. Thorpe, R. J. Jones, and J. Ye, “Passive cavity enhancement of a femtosecond fiber chirped pulse amplification system to 204W average power,” Advanced Solid State Photonics (2007), Paper WA4

Hundertmark, Holger

Husakou, A. V.

A. V. Husakou and J. Herrmann, “Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers,” Phys. Rev. Lett. 87, 203901 (2001)
[CrossRef] [PubMed]

Imeshev, G.

I. Hartl, G. Imeshev, L. Dong, G. C. Cho, and M. E. Fermann, “Ultra-compact dispersion compensated femtosecond fiber oscillators and amplifiers,” CLEO (2004), Paper CThG1

Inaba, H.

Jefferts, S. R.

S. A. Diddams, J. C. Bergquist, S. R. Jefferts, and C. W. Oates, “Standards of time and frequency at the outset of the 21st century,” Science 306, 1318–1324. (2004).
[CrossRef] [PubMed]

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrierenvelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000)
[CrossRef] [PubMed]

Jones, R. J.

I. Hartl, M. E. Fermann, T. R. Schibli, D. D. Hudson, M. J. Thorpe, R. J. Jones, and J. Ye, “Passive cavity enhancement of a femtosecond fiber chirped pulse amplification system to 204W average power,” Advanced Solid State Photonics (2007), Paper WA4

Jones, R. Jason

R. Jason Jones, Kevin D. Moll, Michael J. Thorpe, and Jun Ye, “Phase-Coherent Frequency Combs in the Vacuum Ultraviolet via High-Harmonic generation inside a Femtosecond Enhancement Cavity,” Phys. Rev. Lett. 94, 193201 (2005).
[CrossRef] [PubMed]

Jorgensen, C. G.

Keller, U.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999)
[CrossRef]

Knox, W. H.

Knox, Wayne H.

Krausz, Ferenc

Christoph Gohle, Thomas Udem, Maximilian Herrmann, Jens Rauschenberger, Ronald Holzwarth, Hans A. Schuessler, Ferenc Krausz, and Theodor W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[CrossRef] [PubMed]

Kubina, P.

Langrock, C.

W. C. Swann, J. J. McFerran, I. Coddington, N. R. Newbury, I. Hartl, M. E. Fermann, P. S. Westbrook, J. W. Nicholson, K. S. Feder, C. Langrock, and M. M. Fejer, “Fiber-laser frequency combs with subhertz relative linewidths,” Opt. Lett. 31, 3046–3048 (2006)
[CrossRef] [PubMed]

I. Hartl, M. E. Fermann, C. Langrock, M. M. Fejer, J. W. Nicholson, and D. J. DiGiovanni,“Integrated Fiber-Frequency Comb Using a PPLN Waveguide for Spectral Broadening and CEO Phase Detection,” in Conference on Lasers and Electro-Optics(Optical Society of America, 2006), paper CtuH5.

Leitenstorfer, A.

Liem, A.

Limpert, J.

Lipphardt, B.

P. Kubina, P. Adel, F. Adler, G. Grosche, T. W. Hänsch, R. Holzwarth, A. Leitenstorfer, B. Lipphardt, and H. Schnatz, “Long term comparison of two fiber based frequency comb systems,” Opt. Express 13, 904–909 (2005).
[CrossRef] [PubMed]

H. Schnatz, B. Lipphardt, and G. Grosche, “Frequency Metrology using Fiber-Based fs-Frequency Combs,” in Conference on Lasers and Electro-Optics (Optical Society of America, Long Beach, Ca, 2006), paper CTuH1.

Lu, F.

Lu, Fei

Matsumoto, H.

McFerran, J. J.

Minoshima, K.

Moll, Kevin D.

R. Jason Jones, Kevin D. Moll, Michael J. Thorpe, and Jun Ye, “Phase-Coherent Frequency Combs in the Vacuum Ultraviolet via High-Harmonic generation inside a Femtosecond Enhancement Cavity,” Phys. Rev. Lett. 94, 193201 (2005).
[CrossRef] [PubMed]

Newbury, N. R.

Nicholson, J. W.

Oates, C. W.

S. A. Diddams, J. C. Bergquist, S. R. Jefferts, and C. W. Oates, “Standards of time and frequency at the outset of the 21st century,” Science 306, 1318–1324. (2004).
[CrossRef] [PubMed]

Onae, A.

Ortac, B.

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrierenvelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000)
[CrossRef] [PubMed]

Rauschenberger, Jens

Christoph Gohle, Thomas Udem, Maximilian Herrmann, Jens Rauschenberger, Ronald Holzwarth, Hans A. Schuessler, Ferenc Krausz, and Theodor W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[CrossRef] [PubMed]

Röser, F.

Rothhard, J.

Schibli, T. R.

T. R. Schibli, K. Minoshima, F.-L. Hong, H. Inaba, A. Onae, H. Matsumoto, I. Hartl, and M. E. Fermann, “Frequency metrology with a turnkey all-fiber system,” Opt. Lett. 29, 2467–2469 (2004).
[CrossRef] [PubMed]

I. Hartl, M. E. Fermann, T. R. Schibli, D. D. Hudson, M. J. Thorpe, R. J. Jones, and J. Ye, “Passive cavity enhancement of a femtosecond fiber chirped pulse amplification system to 204W average power,” Advanced Solid State Photonics (2007), Paper WA4

Schmidt, O.

Schnatz, H.

P. Kubina, P. Adel, F. Adler, G. Grosche, T. W. Hänsch, R. Holzwarth, A. Leitenstorfer, B. Lipphardt, and H. Schnatz, “Long term comparison of two fiber based frequency comb systems,” Opt. Express 13, 904–909 (2005).
[CrossRef] [PubMed]

H. Schnatz, B. Lipphardt, and G. Grosche, “Frequency Metrology using Fiber-Based fs-Frequency Combs,” in Conference on Lasers and Electro-Optics (Optical Society of America, Long Beach, Ca, 2006), paper CTuH1.

Schreiber, T.

Schuessler, Hans A.

Christoph Gohle, Thomas Udem, Maximilian Herrmann, Jens Rauschenberger, Ronald Holzwarth, Hans A. Schuessler, Ferenc Krausz, and Theodor W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[CrossRef] [PubMed]

Steinmeyer, G.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999)
[CrossRef]

Stenger, J.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999)
[CrossRef]

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrierenvelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000)
[CrossRef] [PubMed]

Sutter, D. H.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999)
[CrossRef]

Swann, W. C.

Telle, H. R.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999)
[CrossRef]

Telle, Harald R.

Thorpe, M. J.

I. Hartl, M. E. Fermann, T. R. Schibli, D. D. Hudson, M. J. Thorpe, R. J. Jones, and J. Ye, “Passive cavity enhancement of a femtosecond fiber chirped pulse amplification system to 204W average power,” Advanced Solid State Photonics (2007), Paper WA4

Thorpe, Michael J.

R. Jason Jones, Kevin D. Moll, Michael J. Thorpe, and Jun Ye, “Phase-Coherent Frequency Combs in the Vacuum Ultraviolet via High-Harmonic generation inside a Femtosecond Enhancement Cavity,” Phys. Rev. Lett. 94, 193201 (2005).
[CrossRef] [PubMed]

Tünnermann, A.

Udem, Th.

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical Frequency Metrology,” Nature 416, 233–237 (2002)
[CrossRef] [PubMed]

Udem, Thomas

Christoph Gohle, Thomas Udem, Maximilian Herrmann, Jens Rauschenberger, Ronald Holzwarth, Hans A. Schuessler, Ferenc Krausz, and Theodor W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[CrossRef] [PubMed]

Wandt, Dieter

Washburn, B. R.

N. R. Newbury and B. R. Washburn, “Theory of the Frequency Comb Output From a Femtosecond Fiber Laser,” IEEE J. Quantum Electron. 41, 1388–1402 (2005).
[CrossRef]

B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jorgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29, 250–252. (2004).
[CrossRef] [PubMed]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler,“Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys B 77, 269–277 (2003)
[CrossRef]

Weber, K.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler,“Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys B 77, 269–277 (2003)
[CrossRef]

Westbrook, P. S.

Windeler, R. S.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler,“Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys B 77, 269–277 (2003)
[CrossRef]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrierenvelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000)
[CrossRef] [PubMed]

Windeler, Robert S.

Tara M. Fortier, Jun Ye, Steven T. Cundiff, and Robert S. Windeler, “Nonlinear phase noise generated in air-silica microstructure fiber and its effect on carier-envelope phase,” Opt. Lett 27, 445–447 (2002)
[CrossRef]

Yan, M. F.

Ye, J.

I. Hartl, M. E. Fermann, T. R. Schibli, D. D. Hudson, M. J. Thorpe, R. J. Jones, and J. Ye, “Passive cavity enhancement of a femtosecond fiber chirped pulse amplification system to 204W average power,” Advanced Solid State Photonics (2007), Paper WA4

Ye, Jun

R. Jason Jones, Kevin D. Moll, Michael J. Thorpe, and Jun Ye, “Phase-Coherent Frequency Combs in the Vacuum Ultraviolet via High-Harmonic generation inside a Femtosecond Enhancement Cavity,” Phys. Rev. Lett. 94, 193201 (2005).
[CrossRef] [PubMed]

Tara M. Fortier, Jun Ye, Steven T. Cundiff, and Robert S. Windeler, “Nonlinear phase noise generated in air-silica microstructure fiber and its effect on carier-envelope phase,” Opt. Lett 27, 445–447 (2002)
[CrossRef]

Appl. Phys B (1)

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler,“Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys B 77, 269–277 (2003)
[CrossRef]

Appl. Phys. B (1)

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999)
[CrossRef]

IEEE J. Quantum Electron. (1)

N. R. Newbury and B. R. Washburn, “Theory of the Frequency Comb Output From a Femtosecond Fiber Laser,” IEEE J. Quantum Electron. 41, 1388–1402 (2005).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nature (2)

Christoph Gohle, Thomas Udem, Maximilian Herrmann, Jens Rauschenberger, Ronald Holzwarth, Hans A. Schuessler, Ferenc Krausz, and Theodor W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[CrossRef] [PubMed]

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical Frequency Metrology,” Nature 416, 233–237 (2002)
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett (1)

Tara M. Fortier, Jun Ye, Steven T. Cundiff, and Robert S. Windeler, “Nonlinear phase noise generated in air-silica microstructure fiber and its effect on carier-envelope phase,” Opt. Lett 27, 445–447 (2002)
[CrossRef]

Opt. Lett. (4)

Phys. Rev. Lett. (2)

R. Jason Jones, Kevin D. Moll, Michael J. Thorpe, and Jun Ye, “Phase-Coherent Frequency Combs in the Vacuum Ultraviolet via High-Harmonic generation inside a Femtosecond Enhancement Cavity,” Phys. Rev. Lett. 94, 193201 (2005).
[CrossRef] [PubMed]

A. V. Husakou and J. Herrmann, “Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers,” Phys. Rev. Lett. 87, 203901 (2001)
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

John M. Dudley, Goery Genty, and Stephane Coen,” Supercontinuum generation in photonic crystal fiber” Rev. Mod. Phys. 78, 1135 (2006)
[CrossRef]

Science (2)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrierenvelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000)
[CrossRef] [PubMed]

S. A. Diddams, J. C. Bergquist, S. R. Jefferts, and C. W. Oates, “Standards of time and frequency at the outset of the 21st century,” Science 306, 1318–1324. (2004).
[CrossRef] [PubMed]

Other (6)

I. Hartl, G. Imeshev, L. Dong, G. C. Cho, and M. E. Fermann, “Ultra-compact dispersion compensated femtosecond fiber oscillators and amplifiers,” CLEO (2004), Paper CThG1

I. Hartl, M. E. Fermann, C. Langrock, M. M. Fejer, J. W. Nicholson, and D. J. DiGiovanni,“Integrated Fiber-Frequency Comb Using a PPLN Waveguide for Spectral Broadening and CEO Phase Detection,” in Conference on Lasers and Electro-Optics(Optical Society of America, 2006), paper CtuH5.

Jun Ye and Steven T. Cundiff eds., Femtosecond Optical Frequency Comb Technology,: Principle, Operation and Application (Springer New York, NY2005)

H. Schnatz, B. Lipphardt, and G. Grosche, “Frequency Metrology using Fiber-Based fs-Frequency Combs,” in Conference on Lasers and Electro-Optics (Optical Society of America, Long Beach, Ca, 2006), paper CTuH1.

I. Hartl, M. E. Fermann, T. R. Schibli, D. D. Hudson, M. J. Thorpe, R. J. Jones, and J. Ye, “Passive cavity enhancement of a femtosecond fiber chirped pulse amplification system to 204W average power,” Advanced Solid State Photonics (2007), Paper WA4

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Experimental set-up. SA: saturable absorber; PZT: piezo actuator; FBG: fiber-Bragg grating; ISO: isolator; PBS: polarizing beam splitter; DMM PCF: dispersion micromanaged photonic crystal fiber; LBO: Lithium triborate; BS: beam-splitter. (b) Autocorrelation measurement of the compressed laser output. For comparison a 117fs FWHM sech2 function is shown.

Fig. 2.
Fig. 2.

(a) Dispersion profiles for the dispersion micromanaged holey fiber’s (DMM HF) initial and final core diameters of 3.3µm and 2.7µm respectively. (b) Spectrum generated by launching ~7 nJ, 130fs pulses into the 18mm long DMM HF. For qualitative comparison a spectrum generated in a 25 mm non-tapered HF as well as the launched laser spectrum is shown.

Fig. 3.
Fig. 3.

a) Free running beat signal. b) Mixing product of f CEO and f rep at 125 MHz (phase locked with low gain). c) At higher gain phase locked operation a coherent peak (instrument limited bandwidth) as well as 60Hz pick-off can be observed.

Fig 4.
Fig 4.

Frequency counter measurement of f CEO (a) and f rep (b). The low frequency oscillatory noise is correlated and might be related to cross talk or various environmental noise sources.

Metrics