Abstract

We demonstrate a fully stabilized frequency comb in the 1µm spectral region based on an Yb-fiber oscillator and a cladding pumped chirped pulse Yb-fiber amplifier whose output is spectrally broadened in a dispersion micromanaged holey fiber. The dispersion micromanaged fiber is used to generate efficient, low noise spectral components at 523nm which are heterodyned with the second harmonic of the amplifier output for standard f-to-2f self-referenced carrier envelope offset frequency detection. For comb stabilization we phase-lock this offset frequency and the oscillator repetition frequency simultaneously to an RF reference by feedback controlling the oscillator pump diode current and the driving voltage of an intracavity piezo-electric fiber stretcher respectively.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000)
    [CrossRef] [PubMed]
  2. Th. Udem, R. Holzwarth, and T. W. Hänsch, "Optical Frequency Metrology," Nature 416, 233-237 (2002)
    [CrossRef] [PubMed]
  3. Jun Ye and Steven T. Cundiff eds., Femtosecond Optical Frequency Comb Technology: Principle, Operation and Application (Springer New York, NY 2005)
  4. B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jorgensen, "Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared," Opt. Lett. 29,250-252. (2004).
    [CrossRef] [PubMed]
  5. T. R. Schibli, K. Minoshima, F.-L. Hong, H. Inaba, A. Onae, H. Matsumoto, I. Hartl, and M. E. Fermann, "Frequency metrology with a turnkey all-fiber system," Opt. Lett. 29,2467-2469 (2004).
    [CrossRef] [PubMed]
  6. H. Hundertmark, D. Wandt, C. Fallnich, N. Haverkamp, and H. R. Telle, "Phase-locked carrier-envelope-offset frequency at 1560 nm," Opt. Express 12,770-775 (2004)
    [CrossRef] [PubMed]
  7. P. Kubina, P. Adel, F. Adler, G. Grosche, T. W. Hänsch, R. Holzwarth, A. Leitenstorfer, B. Lipphardt, and H. Schnatz, "Long term comparison of two fiber based frequency comb systems," Opt. Express 13, 904-909 (2005).
    [CrossRef] [PubMed]
  8. H. Schnatz, B. Lipphardt, and G. Grosche, "Frequency Metrology using Fiber-Based fs-Frequency Combs," in Conference on Lasers and Electro-Optics (Optical Society of America, Long Beach, Ca, 2006), paper CTuH1.
  9. W. C. Swann, J. J. McFerran, I. Coddington, N. R. Newbury, I. Hartl, M. E. Fermann, P. S. Westbrook, J. W. Nicholson, K. S. Feder, C. Langrock, M. M. Fejer, "Fiber-laser frequency combs with subhertz relative linewidths," Opt. Lett. 31, 3046-3048 (2006)
    [CrossRef] [PubMed]
  10. S. A. Diddams, J. C. Bergquist, S. R. Jefferts, and C. W. Oates, "Standards of time and frequency at the outset of the 21st century," Science 306,1318-1324. (2004).
    [CrossRef] [PubMed]
  11. I. Hartl, G. Imeshev, L. Dong, G. C. Cho and M. E. Fermann, "Ultra-compact dispersion compensated femtosecond fiber oscillators and amplifiers," CLEO (2004), Paper CThG1
  12. F. Röser, J. Rothhard, B. Ortac, A. Liem, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, "131 W 220 fs fiber laser system," Opt. Lett. 30,2754 (2005).
    [CrossRef] [PubMed]
  13. H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, "Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation," Appl. Phys. B 69, 327-332 (1999)
    [CrossRef]
  14. I. Hartl, M. E. Fermann, C. Langrock, M. M. Fejer, J. W. Nicholson, and D. J. DiGiovanni, "Integrated Fiber-Frequency Comb Using a PPLN Waveguide for Spectral Broadening and CEO Phase Detection," in Conference on Lasers and Electro-Optics(Optical Society of America, 2006), paper CtuH5.
  15. F. Lu, and W. H. Knox, "Generation, characterization, and application of broadband coherent, femtosecond visible pulses in dispersion micromanaged holey fibers," J. Opt. Soc. Am. B,  23,1221-1227 (2006)
    [CrossRef]
  16. Y. Deng, F. Lu, and W. H. Knox, "Fiber-laser-based difference frequency generation scheme for carrier-envelope-offset phase stabilization applications," Opt. Express 13, 4589-4593 (2005)
    [CrossRef] [PubMed]
  17. A. V. Husakou and J. Herrmann, "Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers," Phys. Rev. Lett. 87, 203901 (2001)
    [CrossRef] [PubMed]
  18. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler,"Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber," Appl. Phys B 77, 269-277 (2003)
    [CrossRef]
  19. J. M. Dudley, G. Genty, and S. Coen," Supercontinuum generation in photonic crystal fiber" Rev. Mod. Phys. 78, 1135 (2006)
    [CrossRef]
  20. T. M. Fortier, J. Ye, S. T. Cundiff, and R. S. Windeler, "Nonlinear phase noise generated in air-silica microstructure fiber and its effect on carier-envelope phase," Opt. Lett 27, 445-447 (2002)
    [CrossRef]
  21. I. Hartl, M. E. Fermann, T. R. Schibli, D. D. Hudson, M. J. Thorpe, R. J. Jones, and J. Ye, "Passive cavity enhancement of a femtosecond fiber chirped pulse amplification system to 204W average power," Advanced Solid State Photonics (2007), Paper WA4.
  22. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001)
  23. N. R. Newbury, and B. R. Washburn, "Theory of the Frequency Comb Output From a Femtosecond Fiber Laser," IEEE J. Quantum Electron. 41, 1388-1402 (2005).
    [CrossRef]
  24. N. R. Newbury and W. C. Swann, "Low-noise fiber-laser frequency combs (Invited)," J. Opt. Soc. Am. B 24, 1756-1770 (2007).
    [CrossRef]
  25. R. Jason Jones, KevinD. Moll, Michael J. Thorpe, and Jun Ye, "Phase-Coherent Frequency Combs in the Vacuum Ultraviolet via High-Harmonic generation inside a Femtosecond Enhancement Cavity," Phys. Rev. Lett. 94, 193201 (2005).
    [CrossRef] [PubMed]
  26. C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, "A frequency comb in the extreme ultraviolet," Nature 436, 234-237 (2005).
    [CrossRef] [PubMed]

2007

2006

2005

F. Röser, J. Rothhard, B. Ortac, A. Liem, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, "131 W 220 fs fiber laser system," Opt. Lett. 30,2754 (2005).
[CrossRef] [PubMed]

Y. Deng, F. Lu, and W. H. Knox, "Fiber-laser-based difference frequency generation scheme for carrier-envelope-offset phase stabilization applications," Opt. Express 13, 4589-4593 (2005)
[CrossRef] [PubMed]

P. Kubina, P. Adel, F. Adler, G. Grosche, T. W. Hänsch, R. Holzwarth, A. Leitenstorfer, B. Lipphardt, and H. Schnatz, "Long term comparison of two fiber based frequency comb systems," Opt. Express 13, 904-909 (2005).
[CrossRef] [PubMed]

R. Jason Jones, KevinD. Moll, Michael J. Thorpe, and Jun Ye, "Phase-Coherent Frequency Combs in the Vacuum Ultraviolet via High-Harmonic generation inside a Femtosecond Enhancement Cavity," Phys. Rev. Lett. 94, 193201 (2005).
[CrossRef] [PubMed]

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, "A frequency comb in the extreme ultraviolet," Nature 436, 234-237 (2005).
[CrossRef] [PubMed]

N. R. Newbury, and B. R. Washburn, "Theory of the Frequency Comb Output From a Femtosecond Fiber Laser," IEEE J. Quantum Electron. 41, 1388-1402 (2005).
[CrossRef]

2004

2003

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler,"Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber," Appl. Phys B 77, 269-277 (2003)
[CrossRef]

2002

T. M. Fortier, J. Ye, S. T. Cundiff, and R. S. Windeler, "Nonlinear phase noise generated in air-silica microstructure fiber and its effect on carier-envelope phase," Opt. Lett 27, 445-447 (2002)
[CrossRef]

Th. Udem, R. Holzwarth, and T. W. Hänsch, "Optical Frequency Metrology," Nature 416, 233-237 (2002)
[CrossRef] [PubMed]

2001

A. V. Husakou and J. Herrmann, "Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers," Phys. Rev. Lett. 87, 203901 (2001)
[CrossRef] [PubMed]

2000

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000)
[CrossRef] [PubMed]

1999

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, "Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation," Appl. Phys. B 69, 327-332 (1999)
[CrossRef]

Appl. Phys B

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler,"Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber," Appl. Phys B 77, 269-277 (2003)
[CrossRef]

Appl. Phys. B

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, "Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation," Appl. Phys. B 69, 327-332 (1999)
[CrossRef]

IEEE J. Quantum Electron.

N. R. Newbury, and B. R. Washburn, "Theory of the Frequency Comb Output From a Femtosecond Fiber Laser," IEEE J. Quantum Electron. 41, 1388-1402 (2005).
[CrossRef]

J. Opt. Soc. Am. B

Nature

Th. Udem, R. Holzwarth, and T. W. Hänsch, "Optical Frequency Metrology," Nature 416, 233-237 (2002)
[CrossRef] [PubMed]

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, "A frequency comb in the extreme ultraviolet," Nature 436, 234-237 (2005).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett

T. M. Fortier, J. Ye, S. T. Cundiff, and R. S. Windeler, "Nonlinear phase noise generated in air-silica microstructure fiber and its effect on carier-envelope phase," Opt. Lett 27, 445-447 (2002)
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

A. V. Husakou and J. Herrmann, "Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers," Phys. Rev. Lett. 87, 203901 (2001)
[CrossRef] [PubMed]

R. Jason Jones, KevinD. Moll, Michael J. Thorpe, and Jun Ye, "Phase-Coherent Frequency Combs in the Vacuum Ultraviolet via High-Harmonic generation inside a Femtosecond Enhancement Cavity," Phys. Rev. Lett. 94, 193201 (2005).
[CrossRef] [PubMed]

Rev. Mod. Phys.

J. M. Dudley, G. Genty, and S. Coen," Supercontinuum generation in photonic crystal fiber" Rev. Mod. Phys. 78, 1135 (2006)
[CrossRef]

Science

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000)
[CrossRef] [PubMed]

S. A. Diddams, J. C. Bergquist, S. R. Jefferts, and C. W. Oates, "Standards of time and frequency at the outset of the 21st century," Science 306,1318-1324. (2004).
[CrossRef] [PubMed]

Other

I. Hartl, G. Imeshev, L. Dong, G. C. Cho and M. E. Fermann, "Ultra-compact dispersion compensated femtosecond fiber oscillators and amplifiers," CLEO (2004), Paper CThG1

H. Schnatz, B. Lipphardt, and G. Grosche, "Frequency Metrology using Fiber-Based fs-Frequency Combs," in Conference on Lasers and Electro-Optics (Optical Society of America, Long Beach, Ca, 2006), paper CTuH1.

Jun Ye and Steven T. Cundiff eds., Femtosecond Optical Frequency Comb Technology: Principle, Operation and Application (Springer New York, NY 2005)

I. Hartl, M. E. Fermann, C. Langrock, M. M. Fejer, J. W. Nicholson, and D. J. DiGiovanni, "Integrated Fiber-Frequency Comb Using a PPLN Waveguide for Spectral Broadening and CEO Phase Detection," in Conference on Lasers and Electro-Optics(Optical Society of America, 2006), paper CtuH5.

I. Hartl, M. E. Fermann, T. R. Schibli, D. D. Hudson, M. J. Thorpe, R. J. Jones, and J. Ye, "Passive cavity enhancement of a femtosecond fiber chirped pulse amplification system to 204W average power," Advanced Solid State Photonics (2007), Paper WA4.

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Experimental set-up. SA: saturable absorber; PZT: piezo actuator; FBG: fiber-Bragg grating; ISO: isolator; PBS: polarizing beam splitter; DMM PCF: dispersion micromanaged photonic crystal fiber; LBO: Lithium triborate; BS: beam-splitter. (b) Autocorrelation measurement of the compressed laser output. For comparison a 117fs FWHM sech2 function is shown.

Fig. 2.
Fig. 2.

(a) Dispersion profiles for the dispersion micromanaged holey fiber’s (DMM HF) initial and final core diameters of 3.3µm and 2.7µm respectively. (b) Spectrum generated by launching ~7 nJ, 130fs pulses into the 18mm long DMM HF. For qualitative comparison a spectrum generated in a 25 mm non-tapered HF as well as the launched laser spectrum is shown.

Fig. 3.
Fig. 3.

a) Free running beat signal. b) Mixing product of f CEO and f rep at 125 MHz (phase locked with low gain). c) At higher gain phase locked operation a coherent peak (instrument limited bandwidth) as well as 60Hz pick-off can be observed.

Fig 4.
Fig 4.

Frequency counter measurement of f CEO (a) and f rep (b). The low frequency oscillatory noise is correlated and might be related to cross talk or various environmental noise sources.

Metrics