Abstract

Even though gold nanorod doped dielectrics have been widely used for optical laser writing and patterning there has been no attempt to study the dynamic range of these nanocomposites, let alone exploring ways to improve this property. Here we study the dynamic range of a gold nanorod doped polyvinyl alcohol film for various laser spot sizes at two different laser pulse repetition rates and show that when a high repetition rate laser source is employed the dynamic range of the nanocomposite is severely limited due to accumulative heating inside the focal volume. This problem could be solved by silica-coating the nanorods inside the polymer matrix. This method does not compromise the high repetition rate of the laser writing source and yet retains the attractive flexible properties of the polymer matrix. The silica-coated gold nanorod doped polymer nanocomposite could be an attractive medium for future high-speed, high repetition rate pulsed laser writing and patterning applications.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. M. A. El-Sayed, "Some interesting properties of metals confined in time and nanometer space of different shapes," Acc. Chem. Res. 34, 257-264 (2001).
    [CrossRef] [PubMed]
  2. O. Wilson, G. J. Wilson, and P. Mulvaney, "Laser writing in polarized silver nanorod films," Adv. Mater. 14, 1000-1004 (2002).
  3. J. Pérez-Juste, B. Rodrîguez-González, P. Mulvaney, and L. M. Liz-Marzán, "Optical control and patterning of gold-nanorod-poly(vinyl alcohol) nanocomposite films," Adv. Funct. Mater. 15, 1065-1071 (2005).
    [CrossRef]
  4. J. W. M. Chon, C. Bullen, P. Zijlstra, and M. Gu, "Spectral encoding on gold nanorods doped in a silica sol-gel matrix and its application to high density optical data storage," Adv. Funct. Mater. 17, 875-880 (2007).
    [CrossRef]
  5. J. Pérez-Juste, P. Mulvaney, and L. M. Liz-Marzán, "Patterning and encryptation using gold nanoparticles," Int. J. Nanotechnol. 4, 15-225 (2007).
  6. S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, "Laser photothermal melting and fragmentation of gold nanorods: Energy and laser pulse-width dependence," J. Phys. Chem. A 103, 1165-1170 (1999).
    [CrossRef]
  7. S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. C. Wang, "The shape transition of gold nanorods," Langmuir 15, 701-709 (1999).
    [CrossRef]
  8. B. Nikoobakht, and M. A. El-Sayed, "Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method," Chem. Mater. 15, 1957-1962 (2003).
    [CrossRef]
  9. S. Link, and M. A. El-Sayed, "Spectroscopic determination of the melting energy of a gold nanorod," J. Chem. Phys. 114, 2362-2368 (2001).
    [CrossRef]
  10. H. Petrova, J. Pérez-Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzán, and P. Mulvaney, "On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating," Phys. Chem. Chem. Phys. 8, 814-821 (2006).
    [CrossRef] [PubMed]
  11. F. Cooper, "Heat transfer from a sphere to an infinite medium," Int. J. Heat Mass Transfer, 991-993 (1977).
    [CrossRef]
  12. H. Inouye, K. Tanaka, I. Tanahashi, and K. Hirao, "Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system," Phys. Rev. B 57, 11334-11340 (1998).
    [CrossRef]
  13. T. Nishino, S. C. Kani, K. Gotoh, and K. Nakamae, "Melt processing of poly(vinyl alcohol) through blending with sugar pendant polymer," Polymer 43, 2869-2873 (2002).
    [CrossRef]
  14. A. Bejan, Heat transfer (John Wiley and Sons, 1993).
  15. W.J. Roff, and J.R. Scott, Fibres, films, plastics and rubbers, a handbook of common polymers (Butterworths, London, 1971).
  16. R. C. Weast, and D. R. Lide, CRC handbook of chemistry and physics, 85th ed. (CRC press: Boca Raton, Florida, 2004), pp. 4-82.
  17. L. M. Liz-Marzán, M. Giersig, and P. Mulvaney, "Synthesis of nanosized gold-silica core-shell particles," Langmuir 12, 4329-4335 (1996).
    [CrossRef]
  18. A. L. Stepanov, D. E. Hole, A. A. Bukharaev, P. D. Townsend, and N. I. Nurgazizov, "Reduction of the size of the implanted silver nanoparticles in float glass during excimer laser annealing," Appl. Surf. Sci. 136, 298-305 (1998).
    [CrossRef]
  19. The parameters used in the equation are ρsil=2200 kgm-3, ksil=1.3 Wm-1K-1, cp,sil=750 Jkg-1K-1.
  20. S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, "Femtosecond transient-absorption dynamics of colloidal gold nanorods: Shape independence of the electron-phonon relaxation time," Phys. Rev. B 61, 6086-6090 (2000).
    [CrossRef]
  21. M. Hu, X. Wang, G. V. Hartland, V. Salgueiriño-Maceira, and L. M. Liz-Marz’an, "Heat dissipation in gold-silica core-shell nanoparticles," Chem. Phys. Lett. 372, 767-772 (2003).
    [CrossRef]

2007

J. W. M. Chon, C. Bullen, P. Zijlstra, and M. Gu, "Spectral encoding on gold nanorods doped in a silica sol-gel matrix and its application to high density optical data storage," Adv. Funct. Mater. 17, 875-880 (2007).
[CrossRef]

J. Pérez-Juste, P. Mulvaney, and L. M. Liz-Marzán, "Patterning and encryptation using gold nanoparticles," Int. J. Nanotechnol. 4, 15-225 (2007).

2006

H. Petrova, J. Pérez-Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzán, and P. Mulvaney, "On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating," Phys. Chem. Chem. Phys. 8, 814-821 (2006).
[CrossRef] [PubMed]

2005

J. Pérez-Juste, B. Rodrîguez-González, P. Mulvaney, and L. M. Liz-Marzán, "Optical control and patterning of gold-nanorod-poly(vinyl alcohol) nanocomposite films," Adv. Funct. Mater. 15, 1065-1071 (2005).
[CrossRef]

2003

B. Nikoobakht, and M. A. El-Sayed, "Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method," Chem. Mater. 15, 1957-1962 (2003).
[CrossRef]

M. Hu, X. Wang, G. V. Hartland, V. Salgueiriño-Maceira, and L. M. Liz-Marz’an, "Heat dissipation in gold-silica core-shell nanoparticles," Chem. Phys. Lett. 372, 767-772 (2003).
[CrossRef]

2002

O. Wilson, G. J. Wilson, and P. Mulvaney, "Laser writing in polarized silver nanorod films," Adv. Mater. 14, 1000-1004 (2002).

T. Nishino, S. C. Kani, K. Gotoh, and K. Nakamae, "Melt processing of poly(vinyl alcohol) through blending with sugar pendant polymer," Polymer 43, 2869-2873 (2002).
[CrossRef]

2001

M. A. El-Sayed, "Some interesting properties of metals confined in time and nanometer space of different shapes," Acc. Chem. Res. 34, 257-264 (2001).
[CrossRef] [PubMed]

S. Link, and M. A. El-Sayed, "Spectroscopic determination of the melting energy of a gold nanorod," J. Chem. Phys. 114, 2362-2368 (2001).
[CrossRef]

2000

S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, "Femtosecond transient-absorption dynamics of colloidal gold nanorods: Shape independence of the electron-phonon relaxation time," Phys. Rev. B 61, 6086-6090 (2000).
[CrossRef]

1999

S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, "Laser photothermal melting and fragmentation of gold nanorods: Energy and laser pulse-width dependence," J. Phys. Chem. A 103, 1165-1170 (1999).
[CrossRef]

S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. C. Wang, "The shape transition of gold nanorods," Langmuir 15, 701-709 (1999).
[CrossRef]

1998

A. L. Stepanov, D. E. Hole, A. A. Bukharaev, P. D. Townsend, and N. I. Nurgazizov, "Reduction of the size of the implanted silver nanoparticles in float glass during excimer laser annealing," Appl. Surf. Sci. 136, 298-305 (1998).
[CrossRef]

H. Inouye, K. Tanaka, I. Tanahashi, and K. Hirao, "Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system," Phys. Rev. B 57, 11334-11340 (1998).
[CrossRef]

1996

L. M. Liz-Marzán, M. Giersig, and P. Mulvaney, "Synthesis of nanosized gold-silica core-shell particles," Langmuir 12, 4329-4335 (1996).
[CrossRef]

1977

F. Cooper, "Heat transfer from a sphere to an infinite medium," Int. J. Heat Mass Transfer, 991-993 (1977).
[CrossRef]

Acc. Chem. Res.

M. A. El-Sayed, "Some interesting properties of metals confined in time and nanometer space of different shapes," Acc. Chem. Res. 34, 257-264 (2001).
[CrossRef] [PubMed]

Adv. Funct. Mater.

J. Pérez-Juste, B. Rodrîguez-González, P. Mulvaney, and L. M. Liz-Marzán, "Optical control and patterning of gold-nanorod-poly(vinyl alcohol) nanocomposite films," Adv. Funct. Mater. 15, 1065-1071 (2005).
[CrossRef]

J. W. M. Chon, C. Bullen, P. Zijlstra, and M. Gu, "Spectral encoding on gold nanorods doped in a silica sol-gel matrix and its application to high density optical data storage," Adv. Funct. Mater. 17, 875-880 (2007).
[CrossRef]

Adv. Mater.

O. Wilson, G. J. Wilson, and P. Mulvaney, "Laser writing in polarized silver nanorod films," Adv. Mater. 14, 1000-1004 (2002).

Appl. Surf. Sci.

A. L. Stepanov, D. E. Hole, A. A. Bukharaev, P. D. Townsend, and N. I. Nurgazizov, "Reduction of the size of the implanted silver nanoparticles in float glass during excimer laser annealing," Appl. Surf. Sci. 136, 298-305 (1998).
[CrossRef]

Chem. Mater.

B. Nikoobakht, and M. A. El-Sayed, "Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method," Chem. Mater. 15, 1957-1962 (2003).
[CrossRef]

Chem. Phys. Lett.

M. Hu, X. Wang, G. V. Hartland, V. Salgueiriño-Maceira, and L. M. Liz-Marz’an, "Heat dissipation in gold-silica core-shell nanoparticles," Chem. Phys. Lett. 372, 767-772 (2003).
[CrossRef]

Int. J. Heat Mass Transfer

F. Cooper, "Heat transfer from a sphere to an infinite medium," Int. J. Heat Mass Transfer, 991-993 (1977).
[CrossRef]

Int. J. Nanotechnol.

J. Pérez-Juste, P. Mulvaney, and L. M. Liz-Marzán, "Patterning and encryptation using gold nanoparticles," Int. J. Nanotechnol. 4, 15-225 (2007).

J. Chem. Phys.

S. Link, and M. A. El-Sayed, "Spectroscopic determination of the melting energy of a gold nanorod," J. Chem. Phys. 114, 2362-2368 (2001).
[CrossRef]

J. Phys. Chem. A

S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, "Laser photothermal melting and fragmentation of gold nanorods: Energy and laser pulse-width dependence," J. Phys. Chem. A 103, 1165-1170 (1999).
[CrossRef]

Langmuir

S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. C. Wang, "The shape transition of gold nanorods," Langmuir 15, 701-709 (1999).
[CrossRef]

L. M. Liz-Marzán, M. Giersig, and P. Mulvaney, "Synthesis of nanosized gold-silica core-shell particles," Langmuir 12, 4329-4335 (1996).
[CrossRef]

Phys. Chem. Chem. Phys.

H. Petrova, J. Pérez-Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzán, and P. Mulvaney, "On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating," Phys. Chem. Chem. Phys. 8, 814-821 (2006).
[CrossRef] [PubMed]

Phys. Rev. B

S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, "Femtosecond transient-absorption dynamics of colloidal gold nanorods: Shape independence of the electron-phonon relaxation time," Phys. Rev. B 61, 6086-6090 (2000).
[CrossRef]

H. Inouye, K. Tanaka, I. Tanahashi, and K. Hirao, "Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system," Phys. Rev. B 57, 11334-11340 (1998).
[CrossRef]

Polymer

T. Nishino, S. C. Kani, K. Gotoh, and K. Nakamae, "Melt processing of poly(vinyl alcohol) through blending with sugar pendant polymer," Polymer 43, 2869-2873 (2002).
[CrossRef]

Other

A. Bejan, Heat transfer (John Wiley and Sons, 1993).

W.J. Roff, and J.R. Scott, Fibres, films, plastics and rubbers, a handbook of common polymers (Butterworths, London, 1971).

R. C. Weast, and D. R. Lide, CRC handbook of chemistry and physics, 85th ed. (CRC press: Boca Raton, Florida, 2004), pp. 4-82.

The parameters used in the equation are ρsil=2200 kgm-3, ksil=1.3 Wm-1K-1, cp,sil=750 Jkg-1K-1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The extinction spectrum of a PVA film doped with gold nanorods. The TEM micrograph shows the gold nanorods on a copper grid. The scale bar indicates 50 nm. The inset shows the change in optical density within the focal volume upon pulsed laser irradiation (irradiation parameters: NA 0.7, λ=850 nm, texp=25 ms, pulse energy density 7.6 mJcm-2.)

Fig. 2.
Fig. 2.

Bit patterns recorded through an 0.7 NA objective lens using pulse energies of (a) 7.6 mJcm-2 and (b) 9 mJcm-2. The size of the whole recorded pattern is 30 µm×30 µm. (c) Recording threshold (open circles) and damage threshold (solid circles) as a function of NA of the recording lens. The error bars indicate the standard deviation of the spread in contrast obtained from all 16 recorded bits. The error bars for the damage threshold are of the order of the symbol size.

Fig. 3.
Fig. 3.

Recording threshold (open circles) and damage threshold (solid circles) as a function of NA of the recording lens, using a low repetition rate laser source. The error bars for the recording threshold are of the order of the symbol size.

Fig. 4.
Fig. 4.

(a) Typical calculated temperature distribution in and around the focal volume 12.5 ns after absorption of 200 laser pulses at a repetition rate of 82 MHz. The intensity distribution within the focal volume is shown at the top (r foc=1 µm). (b) Calculated average temperature within the focal volume 12.5 ns after absorption of a number of laser pulses for different r foc. The repetition rate of the laser source was 82 MHz (closed symbols) or 1 kHz (open symbols). The results for different r foc for the low repetition rate laser source overlap. The error bars were obtained by performing fifteen independent calculations for which a new distribution of random Q was defined. The error bars indicate the standard deviation of the spread in T avg.

Fig. 5.
Fig. 5.

(a) Bit pattern contrasts obtained from transmission images for patterns recorded with three different numerical apertures in PVA samples doped with uncoated nanorods (open symbols) and silica coated nanorods (solid symbols). The lines are a guide to the eye. The error bars indicate the standard deviation of the spread in contrast obtained from all 16 recorded bits. (b) Dynamic range as a function of NA for PVA samples doped with uncoated gold nanorods (open circles) and silica coated nanorods (solid circles). The inset shows a TEM micrograph of the silica coated nanorods on a copper grid, the scale bar indicates 50 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Θ ( r , t ) = T ( r , t ) T 0 = Q 8 ρ c p ( π α t ) 3 2 exp [ ( r r 0 ) 2 4 α t ] ,
R = k τ ρ c p ,

Metrics