Abstract

We suggest and demonstrate a novel platform for the study of tunable nonlinear light propagation in two-dimensional discrete systems, based on photonic crystal fibers filled with high index nonlinear liquids. Using the infiltrated cladding region of a photonic crystal fiber as a nonlinear waveguide array, we experimentally demonstrate highly tunable beam diffraction and thermal self-defocusing, and realize a compact all-optical power limiter based on a tunable nonlinear response.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. D. N. Christodoulides, F. Lederer, and Y. Silberberg, "Discretizing light behavior in linear and nonlinear waveguide lattices," Nature 424,817-823 (2003).
    [CrossRef] [PubMed]
  2. J.W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, "Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices," Nature 422,147-150 (2003).
    [CrossRef] [PubMed]
  3. H. Martin, E. D. Eugenieva, Z. Chen, and D. N. Christodoulides, "Discrete solitons and soliton-induced dislocations in partially coherent photonic lattices," Phys. Rev. Lett. 92123902-4 (2004).
    [CrossRef] [PubMed]
  4. G. Bartal, O. Cohen, H. Buljan, J. W. Fleischer, O. Manela, and M. Segev, "Brillouin Zone Spectroscopy of Nonlinear Photonic Lattices," Phys. Rev. Lett. 94, 163902-4 (2005).
    [CrossRef] [PubMed]
  5. R. Fischer, D. Trager, D. N. Neshev, A. A. Sukhorukov, W. Krolikowski, C. Denz, and Yu. S. Kivshar, "Reduced-Symmetry Two-Dimensional Solitons in Photonic Lattices," Phys. Rev. Lett. 96, 023905-4 (2006).
    [CrossRef] [PubMed]
  6. H. Trompeter, W. Krolikowski, D. N. Neshev, A. S. Desyatnikov, A. A. Sukhorukov, Y. S. Kivshar, T. Pertsch, U. Peschel, and F. Lederer, "Bloch oscillations and Zener tunneling in two-dimensional photonic lattices," Phys. Rev. Lett. 96, 053903-4 (2006).
    [CrossRef] [PubMed]
  7. C. R. Rosberg, D. N. Neshev, A. A. Sukhorukov, W. Krolikowski, and Y. S. Kivshar, "Observation of nonlinear self-trapping in triangular photonic lattices," Opt. Lett. 32,397-399 (2007).
    [CrossRef] [PubMed]
  8. T. Pertsch, U. Peschel, F. Lederer, J. Burghoff, M. Will, S. Nolte, and A. Tünnermann, "Discrete diffraction in two-dimensional arrays of coupled waveguides in silica," Opt. Lett. 29,468-470 (2004).
    [CrossRef] [PubMed]
  9. A. Szameit, D. Blömer, J. Burghoff, T. Pertsch, S. Nolte, A. Tünnermann, "Hexagonal waveguide arrays written with fs-laser pulses," Appl. Phys. B. 82,507-512 (2006).
    [CrossRef]
  10. T. Pertsch, U. Peschel, J. Kobelke, K. Schuster, H. Bartelt, S. Nolte, A. T¨unnermann, and F. Lederer, "Nonlinearity and disorder in fiber arrays," Phys. Rev Lett. 93,053901-4 (2004).
    [CrossRef] [PubMed]
  11. U. Röpke, H. Bartelt, S. Unger, K. Schuster, and J. Kobelke, "Two-dimensional high-precision fiber waveguide arrays for coherent light propagation," Opt. Express 15,6894-6899 (2007).
    [CrossRef] [PubMed]
  12. P. St. J. Russell, "Photonic Crystal Fibers," Science 299,358-362 (2003).
    [CrossRef] [PubMed]
  13. T.M. Monro, D. J. Richardson, and P. J. Bennett, "Developing holey fibres for evanescent field devices," Electron. Lett. 35,1188-1189 (1999).
    [CrossRef]
  14. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, "Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions," Opt. Lett. 29,1974-1976 (2004).
    [CrossRef] [PubMed]
  15. F. M. Cox, A. Argyros, and M. C. J. Large, "Liquid-filled hollow core microstructured polymer optical fiber," Opt. Express 14,4135-4140 (2006).
    [CrossRef] [PubMed]
  16. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9,698-713 (2001).
    [CrossRef] [PubMed]
  17. R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, "Tunable photonic band gap fiber," in OSA Trends in Optics and Photonics (TOPS) 70, Optical Fiber Communication Conference Technical Digest, Postconference Edition (Optical Society of America, Washington, DC, 2002), 466-468.
  18. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres," Opt. Express 11,2589-2596 (2003).
    [CrossRef] [PubMed]
  19. T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, "Alloptical modulation in dye-doped nematic liquid crystal photonic bandgap fibers," Opt. Express 12,5857-5871 (2004).
    [CrossRef] [PubMed]
  20. P. Steinvurzel, B. Kuhlmey, T. White, M. Steel, C. de Sterke, and B. Eggleton, "Long wavelength anti-resonant guidance in high index inclusion microstructured fibers," Opt. Express 12,5424-5433 (2004).
    [CrossRef] [PubMed]
  21. A. Fuerbach, P. Steinvurzel, J. A. Bolger, A. Nulsen, and B. J. Eggleton, "Nonlinear propagation effects in antiresonant highindex inclusion photonic crystal fibers," Opt. Lett. 30,830-832 (2005).
    [CrossRef] [PubMed]
  22. S. Lebrun, P. Delaye, R. Frey, and G. Roosen, "High-efficiency single-mode Raman generation in a liquid-filled photonic bandgap fiber," Opt. Lett. 32,337-339 (2007).
    [CrossRef] [PubMed]
  23. R. Zhang, J. Teipel, and H. Giessen, "Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation," Opt. Express 14,6800-6812 (2006).
    [CrossRef] [PubMed]
  24. F. Couny, F. Benabid, P. J. Roberts, M. T. Burnett, and S. A. Meier, "Identification of Bloch-modes in hollow-core photonic crystal fiber cladding," Opt. Express 15,325-338 (2007).
    [CrossRef] [PubMed]

2007 (4)

2006 (5)

F. M. Cox, A. Argyros, and M. C. J. Large, "Liquid-filled hollow core microstructured polymer optical fiber," Opt. Express 14,4135-4140 (2006).
[CrossRef] [PubMed]

R. Zhang, J. Teipel, and H. Giessen, "Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation," Opt. Express 14,6800-6812 (2006).
[CrossRef] [PubMed]

R. Fischer, D. Trager, D. N. Neshev, A. A. Sukhorukov, W. Krolikowski, C. Denz, and Yu. S. Kivshar, "Reduced-Symmetry Two-Dimensional Solitons in Photonic Lattices," Phys. Rev. Lett. 96, 023905-4 (2006).
[CrossRef] [PubMed]

H. Trompeter, W. Krolikowski, D. N. Neshev, A. S. Desyatnikov, A. A. Sukhorukov, Y. S. Kivshar, T. Pertsch, U. Peschel, and F. Lederer, "Bloch oscillations and Zener tunneling in two-dimensional photonic lattices," Phys. Rev. Lett. 96, 053903-4 (2006).
[CrossRef] [PubMed]

A. Szameit, D. Blömer, J. Burghoff, T. Pertsch, S. Nolte, A. Tünnermann, "Hexagonal waveguide arrays written with fs-laser pulses," Appl. Phys. B. 82,507-512 (2006).
[CrossRef]

2005 (2)

A. Fuerbach, P. Steinvurzel, J. A. Bolger, A. Nulsen, and B. J. Eggleton, "Nonlinear propagation effects in antiresonant highindex inclusion photonic crystal fibers," Opt. Lett. 30,830-832 (2005).
[CrossRef] [PubMed]

G. Bartal, O. Cohen, H. Buljan, J. W. Fleischer, O. Manela, and M. Segev, "Brillouin Zone Spectroscopy of Nonlinear Photonic Lattices," Phys. Rev. Lett. 94, 163902-4 (2005).
[CrossRef] [PubMed]

2004 (6)

2003 (4)

T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres," Opt. Express 11,2589-2596 (2003).
[CrossRef] [PubMed]

D. N. Christodoulides, F. Lederer, and Y. Silberberg, "Discretizing light behavior in linear and nonlinear waveguide lattices," Nature 424,817-823 (2003).
[CrossRef] [PubMed]

J.W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, "Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices," Nature 422,147-150 (2003).
[CrossRef] [PubMed]

P. St. J. Russell, "Photonic Crystal Fibers," Science 299,358-362 (2003).
[CrossRef] [PubMed]

2001 (1)

1999 (1)

T.M. Monro, D. J. Richardson, and P. J. Bennett, "Developing holey fibres for evanescent field devices," Electron. Lett. 35,1188-1189 (1999).
[CrossRef]

Appl. Phys. B. (1)

A. Szameit, D. Blömer, J. Burghoff, T. Pertsch, S. Nolte, A. Tünnermann, "Hexagonal waveguide arrays written with fs-laser pulses," Appl. Phys. B. 82,507-512 (2006).
[CrossRef]

Electron. Lett. (1)

T.M. Monro, D. J. Richardson, and P. J. Bennett, "Developing holey fibres for evanescent field devices," Electron. Lett. 35,1188-1189 (1999).
[CrossRef]

Nature (2)

D. N. Christodoulides, F. Lederer, and Y. Silberberg, "Discretizing light behavior in linear and nonlinear waveguide lattices," Nature 424,817-823 (2003).
[CrossRef] [PubMed]

J.W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, "Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices," Nature 422,147-150 (2003).
[CrossRef] [PubMed]

Opt. Express (8)

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9,698-713 (2001).
[CrossRef] [PubMed]

T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres," Opt. Express 11,2589-2596 (2003).
[CrossRef] [PubMed]

P. Steinvurzel, B. Kuhlmey, T. White, M. Steel, C. de Sterke, and B. Eggleton, "Long wavelength anti-resonant guidance in high index inclusion microstructured fibers," Opt. Express 12,5424-5433 (2004).
[CrossRef] [PubMed]

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, "Alloptical modulation in dye-doped nematic liquid crystal photonic bandgap fibers," Opt. Express 12,5857-5871 (2004).
[CrossRef] [PubMed]

F. M. Cox, A. Argyros, and M. C. J. Large, "Liquid-filled hollow core microstructured polymer optical fiber," Opt. Express 14,4135-4140 (2006).
[CrossRef] [PubMed]

R. Zhang, J. Teipel, and H. Giessen, "Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation," Opt. Express 14,6800-6812 (2006).
[CrossRef] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, M. T. Burnett, and S. A. Meier, "Identification of Bloch-modes in hollow-core photonic crystal fiber cladding," Opt. Express 15,325-338 (2007).
[CrossRef] [PubMed]

U. Röpke, H. Bartelt, S. Unger, K. Schuster, and J. Kobelke, "Two-dimensional high-precision fiber waveguide arrays for coherent light propagation," Opt. Express 15,6894-6899 (2007).
[CrossRef] [PubMed]

Opt. Lett. (5)

Phys. Rev Lett. (1)

T. Pertsch, U. Peschel, J. Kobelke, K. Schuster, H. Bartelt, S. Nolte, A. T¨unnermann, and F. Lederer, "Nonlinearity and disorder in fiber arrays," Phys. Rev Lett. 93,053901-4 (2004).
[CrossRef] [PubMed]

Phys. Rev. Lett. (4)

H. Martin, E. D. Eugenieva, Z. Chen, and D. N. Christodoulides, "Discrete solitons and soliton-induced dislocations in partially coherent photonic lattices," Phys. Rev. Lett. 92123902-4 (2004).
[CrossRef] [PubMed]

G. Bartal, O. Cohen, H. Buljan, J. W. Fleischer, O. Manela, and M. Segev, "Brillouin Zone Spectroscopy of Nonlinear Photonic Lattices," Phys. Rev. Lett. 94, 163902-4 (2005).
[CrossRef] [PubMed]

R. Fischer, D. Trager, D. N. Neshev, A. A. Sukhorukov, W. Krolikowski, C. Denz, and Yu. S. Kivshar, "Reduced-Symmetry Two-Dimensional Solitons in Photonic Lattices," Phys. Rev. Lett. 96, 023905-4 (2006).
[CrossRef] [PubMed]

H. Trompeter, W. Krolikowski, D. N. Neshev, A. S. Desyatnikov, A. A. Sukhorukov, Y. S. Kivshar, T. Pertsch, U. Peschel, and F. Lederer, "Bloch oscillations and Zener tunneling in two-dimensional photonic lattices," Phys. Rev. Lett. 96, 053903-4 (2006).
[CrossRef] [PubMed]

Science (1)

P. St. J. Russell, "Photonic Crystal Fibers," Science 299,358-362 (2003).
[CrossRef] [PubMed]

Other (1)

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, "Tunable photonic band gap fiber," in OSA Trends in Optics and Photonics (TOPS) 70, Optical Fiber Communication Conference Technical Digest, Postconference Edition (Optical Society of America, Washington, DC, 2002), 466-468.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Microscope images of (a) the photonic crystal fiber used in the experiment, and (b) section of fiber cladding after infiltration with a high index liquid. (c) Schematic of the experimental setup for coupling of light into the infiltrated PCF. PM — polarization maintaining fiber, xyz — 3D translation stage.

Fig. 2.
Fig. 2.

(a–d) Linear output intensity distribution at temperature 72, 73, 74, and 75 °C, respectively. (e) Output power at the central lattice site measured as a function of temperature.

Fig. 3.
Fig. 3.

(a-d) Output intensity distribution at 74 °C for increasing laser power; (a) corresponds to linear propagation. (e) Output power measured at the central lattice site versus input beam power for weakly absorbing sample.

Fig. 4.
Fig. 4.

(a) Output versus input power at the central lattice site measured at different temperatures for moderately absorbing sample. (b) Corresponding maximum output power as a function of temperature.

Metrics