Abstract

The authors report their latest results on II–VI intersubband all-optical switches in which the 10 dB absorption saturation energy is lowered to ~2.0–2.2 pJ for 1.55–1.58 µm by decreasing the thickness of the active layer and increasing the refractive index difference between the core layer and the cladding layers in waveguides. Such low saturation energies greatly improve the switching performance. <7 pJ pump energy at 1520 nm is sufficient for realizing 10 dB switching operation at 1566 nm (switching energy: ~0.7 pJ/dB). To the best of our knowledge, these switching energy and saturation energy values are the lowest reported ones for such ultrafast intersubband all-optical switches at telecommunication wavelengths.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. Noda, T. Uemura, T. Yamashita, and A. Sasaki, "All-optical modulation using an n-doped quantum-well structure," J. Appl. Phys. 68, 6529−6531 (1990).
    [CrossRef]
  2. N. Suzuki and N. Iizuka, "Feasibility study on ultrafast nonlinear optical properties of 1.55-µm intersubband transition in AlGaN/GaN quantum wells," Jpn. J. Appl. Phys. 36, L1006−1008 (1997).
    [CrossRef]
  3. J. Hamazaki, S. Matsui, H. Kunugita, K. Ema, H. Kanazawa, T. Tachibana, A. Kikuchi, and K. Kishino, "Ultrafast intersubband relaxation and nonlinear susceptibility at 1.55 µm in GaN/AlN multiple-quantum wells," Appl. Phys. Lett. 84, 1102−1104 (2004).
    [CrossRef]
  4. S. Sekiguchi, T. Simoyama, H. Yoshida, J. Kasai, T. Mozume, and H. Ishikawa, "Waveguide design of InGaAs/AlAs/AlAsSb intersubband transition optical switch," Technical Digest 2005 Optical Fibre Communication Conference (Optical Society of America, Washington, DC, 2005) paper OFE4.
  5. T. Simoyama, S. Sekiguchi, H. Yoshida, J. Kasai, T. Mozume, and H. Ishikawa, "Absorption dynamics in all-optical switch based on intersubband transition in InGaAs-AlAs-AlAsSb coupled quantum wells," IEEE Photon. Technol. Lett. 19, 604−606 (2007).
    [CrossRef]
  6. N. Iizuka, K. Kaneko, and N. Suzuki, "Sub-picosecond modulation by intersubband transition in ridge waveguide with GaN/AlN quantum wells," Electron. Lett. 40, 962−963 (2004).
    [CrossRef]
  7. N. Iizuka, K. Kaneko, and N. Suzuki, "Sub-picosecond all-optical gate utilizing an intersubband transition," Opt. Express 13, 3835−3840 (2005).
    [CrossRef] [PubMed]
  8. N. Iizuka, K. Kaneko, and N. Suzuki, "All-optical switch utilizing intersubband transition in GaN quantum wells," IEEE J. Quantum Electron. 42, 765−771 (2006).
    [CrossRef]
  9. Y. Li, A. Bhattacharyya, C. Thomidis, T.D. Moustakas, and R. Paiella, "Nonlinear optical waveguides based on near-infrared intersubband transitions in GaN/AlN quantum wells," Opt. Express 15, 5860−5865 (2007).
    [CrossRef] [PubMed]
  10. R. Akimoto, B.S. Li, K. Akita, and T. Hasama, "Subpicosecond saturation of intersubband absorption in (CdS/ZnSe)/BeTe quantum-well waveguides at telecommunication wavelength," Appl. Phys. Lett. 87, 181104 (2005).
    [CrossRef]
  11. K. Akita, R. Akimoto, T. Hasama, H. Ishikawa, and Y. Takanashi, "Intersubband all-optical switching in submicron high-mesa SCH waveguide structure with wide-gap II-VI-based quantum wells," Electron. Lett. 42, 1352−1353 (2006).
    [CrossRef]
  12. http://web1.rsoftdesign.com/products/component_design/BeamPROP/
  13. H.C. Liu and F. Capasso, Intersubband Transitions in Quantum Wells: Physics and Device Applications I (Academic Press, 2000), Chap. 1.
  14. P. Harrison, Quantum Wells, Wires and Dots: theoretical and computational physics (John Wiley & Sons Ltd, 2000), Chap. 3.
  15. R. Akimoto, K. Akita, F. Sasaki, and T. Hasama, "Sub-picosecond electron relaxation of newar-infrared intersubband transitions in n-doped (CdS/ZnSe)/BeTe quantum wells," Appl. Phys. Lett. 81, 2998-3000 (2002).
    [CrossRef]
  16. C.V.-B. Tribuzy, S. Ohser, S. Winnerl, J. Grenzer, H. Schneider, M. Helm, J. Neuhaus, T. Dekorsy, K. Biermann, and H. Künzel, "Femtosecond pump-probe spectroscopy of intersubband relaxation dynamics in narrow InGaAs/AlAsSb quantum well structures," Appl. Phys. Lett. 89, 171104 (2006).
    [CrossRef]

2007

T. Simoyama, S. Sekiguchi, H. Yoshida, J. Kasai, T. Mozume, and H. Ishikawa, "Absorption dynamics in all-optical switch based on intersubband transition in InGaAs-AlAs-AlAsSb coupled quantum wells," IEEE Photon. Technol. Lett. 19, 604−606 (2007).
[CrossRef]

Y. Li, A. Bhattacharyya, C. Thomidis, T.D. Moustakas, and R. Paiella, "Nonlinear optical waveguides based on near-infrared intersubband transitions in GaN/AlN quantum wells," Opt. Express 15, 5860−5865 (2007).
[CrossRef] [PubMed]

2006

C.V.-B. Tribuzy, S. Ohser, S. Winnerl, J. Grenzer, H. Schneider, M. Helm, J. Neuhaus, T. Dekorsy, K. Biermann, and H. Künzel, "Femtosecond pump-probe spectroscopy of intersubband relaxation dynamics in narrow InGaAs/AlAsSb quantum well structures," Appl. Phys. Lett. 89, 171104 (2006).
[CrossRef]

N. Iizuka, K. Kaneko, and N. Suzuki, "All-optical switch utilizing intersubband transition in GaN quantum wells," IEEE J. Quantum Electron. 42, 765−771 (2006).
[CrossRef]

K. Akita, R. Akimoto, T. Hasama, H. Ishikawa, and Y. Takanashi, "Intersubband all-optical switching in submicron high-mesa SCH waveguide structure with wide-gap II-VI-based quantum wells," Electron. Lett. 42, 1352−1353 (2006).
[CrossRef]

2005

R. Akimoto, B.S. Li, K. Akita, and T. Hasama, "Subpicosecond saturation of intersubband absorption in (CdS/ZnSe)/BeTe quantum-well waveguides at telecommunication wavelength," Appl. Phys. Lett. 87, 181104 (2005).
[CrossRef]

N. Iizuka, K. Kaneko, and N. Suzuki, "Sub-picosecond all-optical gate utilizing an intersubband transition," Opt. Express 13, 3835−3840 (2005).
[CrossRef] [PubMed]

2004

J. Hamazaki, S. Matsui, H. Kunugita, K. Ema, H. Kanazawa, T. Tachibana, A. Kikuchi, and K. Kishino, "Ultrafast intersubband relaxation and nonlinear susceptibility at 1.55 µm in GaN/AlN multiple-quantum wells," Appl. Phys. Lett. 84, 1102−1104 (2004).
[CrossRef]

N. Iizuka, K. Kaneko, and N. Suzuki, "Sub-picosecond modulation by intersubband transition in ridge waveguide with GaN/AlN quantum wells," Electron. Lett. 40, 962−963 (2004).
[CrossRef]

2002

R. Akimoto, K. Akita, F. Sasaki, and T. Hasama, "Sub-picosecond electron relaxation of newar-infrared intersubband transitions in n-doped (CdS/ZnSe)/BeTe quantum wells," Appl. Phys. Lett. 81, 2998-3000 (2002).
[CrossRef]

1997

N. Suzuki and N. Iizuka, "Feasibility study on ultrafast nonlinear optical properties of 1.55-µm intersubband transition in AlGaN/GaN quantum wells," Jpn. J. Appl. Phys. 36, L1006−1008 (1997).
[CrossRef]

1990

S. Noda, T. Uemura, T. Yamashita, and A. Sasaki, "All-optical modulation using an n-doped quantum-well structure," J. Appl. Phys. 68, 6529−6531 (1990).
[CrossRef]

Appl. Phys. Lett.

J. Hamazaki, S. Matsui, H. Kunugita, K. Ema, H. Kanazawa, T. Tachibana, A. Kikuchi, and K. Kishino, "Ultrafast intersubband relaxation and nonlinear susceptibility at 1.55 µm in GaN/AlN multiple-quantum wells," Appl. Phys. Lett. 84, 1102−1104 (2004).
[CrossRef]

R. Akimoto, B.S. Li, K. Akita, and T. Hasama, "Subpicosecond saturation of intersubband absorption in (CdS/ZnSe)/BeTe quantum-well waveguides at telecommunication wavelength," Appl. Phys. Lett. 87, 181104 (2005).
[CrossRef]

R. Akimoto, K. Akita, F. Sasaki, and T. Hasama, "Sub-picosecond electron relaxation of newar-infrared intersubband transitions in n-doped (CdS/ZnSe)/BeTe quantum wells," Appl. Phys. Lett. 81, 2998-3000 (2002).
[CrossRef]

C.V.-B. Tribuzy, S. Ohser, S. Winnerl, J. Grenzer, H. Schneider, M. Helm, J. Neuhaus, T. Dekorsy, K. Biermann, and H. Künzel, "Femtosecond pump-probe spectroscopy of intersubband relaxation dynamics in narrow InGaAs/AlAsSb quantum well structures," Appl. Phys. Lett. 89, 171104 (2006).
[CrossRef]

Electron. Lett.

N. Iizuka, K. Kaneko, and N. Suzuki, "Sub-picosecond modulation by intersubband transition in ridge waveguide with GaN/AlN quantum wells," Electron. Lett. 40, 962−963 (2004).
[CrossRef]

K. Akita, R. Akimoto, T. Hasama, H. Ishikawa, and Y. Takanashi, "Intersubband all-optical switching in submicron high-mesa SCH waveguide structure with wide-gap II-VI-based quantum wells," Electron. Lett. 42, 1352−1353 (2006).
[CrossRef]

IEEE J. Quantum Electron.

N. Iizuka, K. Kaneko, and N. Suzuki, "All-optical switch utilizing intersubband transition in GaN quantum wells," IEEE J. Quantum Electron. 42, 765−771 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

T. Simoyama, S. Sekiguchi, H. Yoshida, J. Kasai, T. Mozume, and H. Ishikawa, "Absorption dynamics in all-optical switch based on intersubband transition in InGaAs-AlAs-AlAsSb coupled quantum wells," IEEE Photon. Technol. Lett. 19, 604−606 (2007).
[CrossRef]

J. Appl. Phys.

S. Noda, T. Uemura, T. Yamashita, and A. Sasaki, "All-optical modulation using an n-doped quantum-well structure," J. Appl. Phys. 68, 6529−6531 (1990).
[CrossRef]

Jpn. J. Appl. Phys.

N. Suzuki and N. Iizuka, "Feasibility study on ultrafast nonlinear optical properties of 1.55-µm intersubband transition in AlGaN/GaN quantum wells," Jpn. J. Appl. Phys. 36, L1006−1008 (1997).
[CrossRef]

Opt. Express

Other

S. Sekiguchi, T. Simoyama, H. Yoshida, J. Kasai, T. Mozume, and H. Ishikawa, "Waveguide design of InGaAs/AlAs/AlAsSb intersubband transition optical switch," Technical Digest 2005 Optical Fibre Communication Conference (Optical Society of America, Washington, DC, 2005) paper OFE4.

http://web1.rsoftdesign.com/products/component_design/BeamPROP/

H.C. Liu and F. Capasso, Intersubband Transitions in Quantum Wells: Physics and Device Applications I (Academic Press, 2000), Chap. 1.

P. Harrison, Quantum Wells, Wires and Dots: theoretical and computational physics (John Wiley & Sons Ltd, 2000), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Time-resolved ultrafast laser system for the absorption saturation and pump-probe measurements.

Fig. 2.
Fig. 2.

Schematic tapered-waveguide model: (a) cross-section view and (b) top view with main parameters set up in BPM simulation. The inset table lists the real parameters of the waveguides in this work and our previous work. (h: height, w: width).

Fig. 3.
Fig. 3.

(a) Two representative simulated saturation curves for w mesa=1 µm. The contrast between the black and red lines corresponds to that between the previous and current waveguides. The Ish value of each line is shown. (b)–(d) show the contour mappings of Ish versus h OCL and w mesa. The optical mode does not exist in the black shaded regions and the dashed lines (valley paths) plot h OCL at the minimum Ish along w mesa. The two triangles in (b) and (d) indicate the approximate positions for the previous work and this work, respectively.

Fig. 4.
Fig. 4.

Static intersubband absorption spectra under p and s polarization measured by Fourier transform infrared spectrometer. The inset enlarges the ISBT region.

Fig. 5.
Fig. 5.

(a) The waveguide absorption saturation curves of TM polarization at 1565 nm with a definition of 10 dB saturation energy. (b) Wavelength-dependent 10 dB saturation energy and TM insertion loss.

Fig. 6.
Fig. 6.

Temporal transmitted probe intensity versus pump-probe delay-time under different pump energies (increase along y axis). The inset shows the pump-energy dependent SER.

Metrics